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How to Design a PRT Guideway 

Abstract 

The guideway is the most expensive item in a PRT system.  Yet in all but a few cases the design of 

the guideway was more or less an afterthought – something that did not require a great deal of 

attention.  This is a major reason many PRT systems have not survived.  Primary attention had to 

be placed on the development and design of the control system because it was the single technolog-

ical advance that made consideration of PRT possible.  With limited resources, control downgraded 

the importance of everything else about a PRT system.  During the long history of PRT development 

and design, guideways have been designed for Veyar, Monocab, TTI, StaRRcar, Uniflo, 

Dashaveyor, Morgantown, The Aerospace Corporation PRT System, Cabintaxi, CVS, Aramis, 

ELAN-SIG, VEC, Swede Track, Mitchell, SkyCab, Taxi 2000, PRT 2000, Microrail, Skytran, Mon-

icPRT, ULTra, Vectus, and others.  This plethora of designs likely has had much to do with the 

reluctance of city planners to recommend PRT.  No two of these guideway designs are very close 

to each other.  Now that the control problem is well understood, it is time to turn more attention to 

the guideway.  The purpose of this paper is to stress the importance of adequate consideration of 

guideway design requirements and criteria as the basis for the design of guideways that have the 

potential of becoming standardized and widely deployed.   

Introduction 

As an engineering professor working on PRT for 13 years with no commitment to any particular 

system, I was privileged to visit the inventors and developers of Veyar, Monocab, TTI, 

StaRRcar, Uniflo, Dashaveyor, Morgantown, The Aerospace Corporation PRT System, Cabin-

taxi, CVS, Aramis, ELAN-SIG, VEC, Swede Track, Mitchell as well as other AGT systems then 

under development including Westinghouse Skybus, Jetrail, Airtrans, Ford-ACT, UTDC, Uni-

versal Mobility, H-Bahn, Krauss-Maffei, VAL, and AGRT.  Later I developed Taxi 2000 and 

watched in dismay as it degraded into PRT 2000, mainly because guideway design was not taken 

seriously.  Later I learned of Austran, Cybertran, SkyCab, Microrail, Skytran, MonicPRT, UL-

Tra, and Vectus.  Now there are many more offerings than I can name.  Some of these systems 

were on paper only, some were built as test tracks, and some were built as applications, but they 

all provided opportunities to become aware of the variety of guideway designs.   

At the University of Minnesota early in my work on PRT I coordinated a Task Force on New 

Concepts in Urban Transportation.  We conducted planning studies of PRT for Minneapolis, St. 

Paul, and Duluth and soon saw that such studies were mandatory to real understanding of the 

problems of designing and installing a PRT system, including its guideway.  We discussed our 

work with many public officials, planners, and interested citizens not only in Minnesota, but in 

many locations around the United States, Canada, Europe, and Asia.  We reviewed the work of 

the many government-funded studies related to AGT design.  The most helpful for guideway de-

sign were [Snyder, 1975], [Stevens, 1979], and [Murtoh, 1984].  Out of this experience, I was 

able to write down a hopefully comprehensive set of requirements and criteria for the design of a 

PRT guideway, and subsequently found a design configuration that met them all.  The discussion 

in this paper applies to elevated guideway structures for the simple reason that after trading off 

underground, surface-level, and elevated systems planners almost always opt for elevated sys-

tems.     



4 
 

As overall guidance for guideway design I find it difficult to improve on the following statement 

[Pushkarev, 1982] by Louis J.  Gambaccini, New Jersey Transportation Commissioner and crea-

tor of the nation’s first statewide public transit agency. 

“Fixed guideway transit is not a universal solution nor should it be applied in all urban 

areas.  Fixed guideway is a potential strategy, as is the bus, the ferry boat, the car pool or 

the van pool.  In many possible applications, fixed guideway is a superior strategy.  But 

whatever strategy is finally selected, each should be evaluated not in the narrow context of 

transportation alone, nor solely in the framework of accounting.  It should be measured in 

the broader context of its contribution to the overall long-term aspirations of the urban 

society it is supposed to serve.” 

Our challenge today is to design and build PRT systems even more able to “contribute to the 

overall long-term aspirations of the urban society” than Mr. Gambaccini could imagine thirty 

years ago. 

Definitions 

From the Oxford American Dictionary: 

A Need:     A circumstance in which a thing or a course of action is required. 

A Criterion:     A standard of judgment. 

An Attribute:     A quality that is characteristic of a person or thing. 

From Wikipedia: 

A Requirement:  A necessary attribute, capability, characteristic, or quality of a system in order  

      for it to have value and utility to a user.     

Design Process 

After decades of experience in the practice and teaching of engineering design I realized that the 

first step in a design process is to study deeply and follow rigorously a comprehensive set of 

rules of engineering design.  I make no claim that my set [Anderson, 2007a] of such rules is 

complete, and I welcome collaboration with other experienced engineering designers to develop 

a more comprehensive set.  But I have observed that the less successful PRT guideway designs 

have resulted primarily from violating one or more of these rules.  What is now commonly called 

“risk management” consists mainly in following rigorously such a set of rules.  My contribution 

was inspired by reading, as a young design engineer, the Rules of Engineering of W. J. King 

[King, 1944].  Beginning with these rules, the design processes I used to arrive at my conclu-

sions about the design of a PRT system are summarized in a DVD [Anderson, 2008d]. 

The next step is to write down a simple statement answering this question: What does a PRT 

guideway really need to do if it is to win competitions?  Here is my short answer: 

A PRT guideway must carry vehicles containing people safely, reliably, and comfortably in 

all reasonable environmental conditions for up to 50 years over curves, hills, and straight 

sections at an acceptable range of speeds, acceptable cost, and acceptable visual impact. 
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But, we need to be more specific.  Only by long experience in the design of whole PRT systems 

can one unearth all of the requirements and criteria for guideway design.  Designing a PRT 

guideway cannot be done successfully without a great detail of development work on the whole 

system because the guideway design depends on other system features and other system features 

depend on guideway specifics [Anderson, 2000, 2008a].  In the following section, in no particu-

lar order, I give my list of guideway design requirements.  All are important. To be successful, 

none can be ignored.  For clarity and ease of reading, I list the requirements for the design of an 

elevated guideway without comment and without quantification.  I then discuss alternative sys-

tem issues and tradeoffs that in some cases affect guideway design and in others are influenced 

by the guideway-design requirements.  Next, I list three guideway-design tradeoffs.  Then, I sug-

gest design criteria.  Finally, I state how, by using this process, I arrived at my guideway design.  

My bottom line goal for decades has been to design a system of urban transportation that can re-

cover all of its costs from revenue – to turn urban transportation into a profitable enterprise. 

PRT Guideway Design Requirements 

1. The guideway must assure an acceptably high level of safety for the passengers that ride in the 

vehicles mounted on it in all reasonable circumstances. 

2. Consistent with other requirements, the guideway must have minimum size, weight and cap-

ital cost.   

3. The appearance of the guideway must be acceptable and variable to suit the community. 

4. The switching concept for merge and diverge sections of the guideway must be straightfor-

ward, easily explained, and one of the first items to clarify while developing the configura-

tion.   

5. Accommodation of hills, valleys, and horizontal curves must be straightforward.  

6. The design must permit straightforward manufacturability and installation. 

7. Ride comfort must be acceptable. 

8. The design must be compatible with the Americans with Disabilities Act. 

9. The guideway must be designed to minimize operating cost. 

10. The minimum span length must be determined from careful city planning. 

11. The guideway must be designed for long life under the variable vertical, lateral, and longitu-

dinal loads that can reasonably be expected. 

12. The guideway must be designed to withstand reasonable earthquake loads. 

13. There can be no passenger injury due to collisions of street vehicles with support posts, falling 

trees, etc. if such events may be possible. 
 

14. The system must be designed to operate in the presence of wind, rain, snow, ice, lightning, 

dust, salt and other airborne corrosive substances, nesting birds and insects, i.e. in a general 

outdoor environment. 
15. The guideway must be designed so that under winter conditions, guideway heating will not 

be necessary, except for systems not intended to operate under winter conditions. 

16. The guideway must be easy to erect, change, expand, or remove. 

17. The guideway design must permit access for maintenance. 

18. The guideway must be designed for relief of thermal stresses. 

19. The guideway must be designed for competitive operating speeds.   

20. The guideway design must permit the system to expand indefinitely.   
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21. If power rails are used, the guideway must be designed so that frost will not form on them. 

22. It must be very difficult if not impossible for anyone to be electrocuted by the system. 

23. The guideway must be designed with adequate torsional stiffness. 

24. It must be very difficult if not impossible to walk on the guideway. 

25. The guideway design must liberalize the required post-settling tolerance. 

26. The guideway design must eliminate slope discontinuities. 

27. There must be space in the guideway for the communication means. 

28. The design must minimize electromagnetic interference. 

29. The design must minimize acoustical noise.  

30. The design must minimize the potential for vandalism or sabotage 

31. Provision must be made in the guideway design to prevent corrosion. 

32. There must be no place in the guideway for water accumulation. 

33. The design must provide for vibration damping. 

 

Issues and Tradeoffs in PRT System Design 

Early in my career at the University of Minnesota, I was privileged to hear a lecture by Califor-

nia Institute of Technology Professor Fritz Zwicky, in which he stressed “the morphological ap-

proach which attempts to view all problems in their totality and without prejudice.”  During 

World War II, he was deeply engaged in the design of jet engines, in which process, before any 

detailed design was begun, he and his colleagues wrote down in chart form every way they could 

conceive that a jet engine could be designed.  The process described in his book [Zwicky, 1962] 

is general.  It is a useful guide to the design of anything, and it strongly influenced the way I 

taught engineering design and in the methodology I practiced in the design of my PRT system.  

Zwicky’s influence is present in the preceding and following discussion.  One makes progress by 

“standing on the shoulders of giants.”  Zwicky was one of the giants.  Here are some of the re-

sults of morphological thinking: 

 Safety issues.  These issues are mentioned because they need to be treated as part of the overall 

PRT system design process.  Neglecting any one of them can result in rejection.  Discussion of 

the details is, however, beyond the scope of this paper. [Irving, 1978; Anderson, 1978a; Ander-

son, 1994]  

a. How can the control system be designed for maximum practical safety? 

b. How can the vehicles be designed for maximum practical safety? 

c. What should be the minimum operational headway? 

d. Should seat belts, air bags, or neither be required? 

e. Should shock-absorbing bumpers be designed into the vehicles? 

f. How should potential collisions with street vehicles or other objects be handled? 

g. How can people be prevented from walking on the guideway? 

h. How can the possibility of electrocution be prevented? 

i. How should fire safety issues be handled?  NFPA 130. 

j. How should evacuation and rescue be handled? 
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2. Is the system predominately elevated, at grade, or underground?  The issues are 

 

a. Congestion relief 

b. Safety 

c. Land requirements 

d. Costs 

 

3. Is a walkway along the guideway necessary? 

 

This issue has been debated for a long time [NFPA 150, Anderson, 1978b].  If one or more 

vehicles are stranded on the guideway, how should passengers be rescued?  The requirement 

of a walkway will make the guideway larger and more expensive, for which reason the 

guideway designer would like not to be required to include walkways.  There are two essen-

tial subsidiary considerations that must be understood: 

 

a. Can all kinds of people including the elderly and the disabled in all reasonable kinds 

of weather use a walkway?  Could a walkway be acceptable in rainy, snowy, or 

windy conditions? A little reflection shows that a walkway would be usable for the 

abler bodied people in a warm and dry climate, and thus, if PRT is to be acceptable 

for all people, it must be possible to design the system in such a way that the mean 

time between incidents in which a walkway would be desirable is long enough to be 

acceptable [Anderson, 2006], and in the remote situation in which someone might 

need to be rescued a means other than a walkway is acceptable. 

 

b. Can the system be designed in such a way that the mean time between circumstances 

in which a walkway would be useful is so rare that other rescue means become ac-

ceptable?  

 

These questions were studied in sufficient detail in the Chicago PRT Design Study1 that it 

was concluded that walkways would not be required except in circumstances such as river 

crossings.  When there is ground underneath the guideway, the preferred alternative rescue 

means would be a fire truck or a cherry picker.  Even when crossing rivers, detailed work on 

analysis of hazards and potential failures and their effects [Stone & Webster, 1991] resulted 

in the conclusion that rescue could best be accomplished by means other than a walkway.  

The study team concluded that PRT systems can be designed to be sufficiently simple and 

reliable that walkways will not be needed. 

 

4. Should the system be dual mode or single mode, i.e., with vehicles captive to the guideway?  

This question has been studied [Irving, 1978; Anderson, 2007b] in sufficient detail to con-

vince us that we should concentrate on single-mode PRT systems.  We considered many is-

sues including 

                                                           
1 Formally, the Northeastern Illinois Regional Transportation Authority PRT Design Study of 1990. 
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a. The effect on community development patterns. 

b. The effect on system cost and ridership. 

c. The effect on capacity. 

d. The effect on those who cannot, should not, or prefer not to drive. 

 

5. Should the vehicles be supported above the guideway or should they hang below?  This is a 

complex tradeoff that I have examined in increasing detail [Anderson, 2008b].  The issues 

are: 

a. Visual impact 

b. System cost 

c. Natural frequency 

d. Ease of switching 

e. Rider security 

f. All-weather operation 

g. Torsion in curves 

h. Motion sickness 

 

6. How should the vehicles be suspended? [Anderson, 2008c] 

 

a. Wheels 

b. Air cushions 

c. Magnetic fields 

 

7. How should the vehicles be propelled? [Anderson, 1994; 2008d] 

 

a. Rotary motors 

b. Linear motors 

i. Induction 

ii. Synchronous 

iii. Air 

iv. Rope 

 

8. What should be the people-carrying capacity of the vehicles? [Anderson, 1986] 

 

a. Understand the size of groups in which people travel. 

b. Understand the ease of taking two or more vehicles. 

c. Understand the effect of vehicle size on system cost. 

d. Need to accommodate wheelchair + attendant, bicycle, baby stroller, or luggage. 

 

9. Assuming electric motors, should they be rotary or linear? [Anderson, 1994] 

 

10. Should the motors be on board the vehicles or at wayside? [Anderson, 2008d] 
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11. If the motors are on board, should they draw power from batteries or power rails? [Ander-

son, 2008d] 

 

All of these tradeoffs and more will affect the cost and performance of the system and should be 

studied very carefully before detailed design is initiated. 

Tradeoffs in PRT Guideway Design 

1. Cross sectional dimensions:  The minimum-weight cross section should be used.  

[Anderson, 1978, Chapter 10; 1997; 2007c] 

2. Material:  Steel, concrete, composite? 

3. Truss or plate or pipe?  

 

PRT Guideway Design Criteria 

1. Vertical and Lateral Design Loads.  This is the only set of criteria considered by Moutoh, 

1984.  One must consider dynamic loading due to vehicles moving at speed, wind loads, 

earthquake loads, longitudinal loads due to braking vehicles, and loads due to street vehicles 

crashing into the support posts, if that is to be permitted.  The best study I have seen on dy-

namic loads is one done in the M. I. T. Mechanical Engineering Department by Snyder, 

Wormley, and Richardson [Snyder, 1975].  In their computer studies, they simulated vehi-

cles of various weights operating at various speeds and various headways, and running over 

guideways of various span lengths. By placing their results in dimensionless form, the use-

fulness was extended considerably.  I studied their results [Anderson, 1978a] and noted that 

the shorter the minimum headway the smaller was the difference between dynamic and 

static deflection, and in the theoretical limit of zero spacing between vehicles the dynamic 

and static deflection are the same, i.e., the guideway cannot tell the difference.  Assuming 

PRT vehicles operating at a minimum headway of half a second, I found that the maximum 

dynamic guideway deflection and stress with vehicles operating at line speed was less than 

the maximum deflection and stress with vehicles nose-to-tail on the guideway.  Therefore, 

the maximum possible vertical load becomes a uniform load and it is easiest to calculate.  

The loading criteria used in the Chicago PRT design study were 

 

1) Fully loaded vehicles nose to tail on span + 30 m/s (70 mph) crosswind. 

2) No vehicles + 54 m/s (120 mph) crosswind. [I now assume 80 m/s (180 mph)] 

 

The maximum wind load on a guideway can be substantially reduced by reducing its drag 

coefficient based on known wind-tunnel data [Hoerner, 1965], [Scraton, 1971]. 

 

2. Longitudinal loads.  The criterion is based on vehicles operating at minimum headway all 

stopping simultaneously at 0.5 g.  I found this load to be less than the maximum wind load. 

 

3. Earthquake load.  There is debate on the maximum horizontal acceleration measured due to 

an earthquake.  In a presentation at a Society of American Military Engineers conference in 

San Diego in the last week of March, 1994, shortly after the Los Angeles earthquake, an 
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Army Major General who had been placed in charge of rebuilding the Los Angeles freeways 

told his audience that the maximum horizontal acceleration measured was 1.6g, which is 

higher than any figure I have seen in print.  The bottom line, though, is that the lighter the 

elevated structure, the easier it is to design foundations to withstand such loads.  I have 

found that for the guideway I designed a horizontal acceleration of the ground of 0.86 g is 

equivalent to a wind load of 80 m/s (180 mph).  A PRT guideway must be designed to the 

local earthquake code, which varies considerably from one region to another.   

 

4. Design stress – The designer must use standard values for the selected material. 

 

a. Specify corrosion protection for the life of the structure. 

b. Prevent water accumulation. 

c. Plan to clean out any bird droppings, which are corrosive. 

d. Design to account for material fatigue over the specified life. 

e. Design to relieve thermal stresses. 

 

5. Maximum allowable deflection.  The AASHTO bridge standard is span/800. 

 

6. Minimum allowable span.  The Chicago PRT design study conclusion:  28 m (90 ft) 

 

7. Ride Comfort  

 

a. Observe the ISO standards for acceleration vs. frequency 

b. Observe the ISO standard acceptable constant acceleration and jerk for normal and 

emergency operation, which are also given in the ASCE APM Standards. 

 

8. System Life.  The Chicago RTA specified 50 years. 

 

9. Compliance with the Americans with Disabilities Act (ADA). 

 

a. Must accommodate a wheelchair with an attendant. 

b. In the Chicago study, the disability community strongly demanded access to every 

vehicle, with the wheelchair facing forward. 

c. Must provide for visual and hearing disabilities. 

 

10. The minimum line headway needs to be specified at the beginning of the design program 

based on detailed site-specific planning studies.  When it is not, as has usually been the case, 

the system may be destined for a limited range of applications.  Based on many independent 

studies we have designed for a minimum headway of half a second. [Anderson, 1994] 

 

11. Design for the expected environment 

 

a. Rain, ice, snow of a given rate of accumulation. 

b. Ambient temperature range, typically -40oC to +50oC. 

c. Lightning protection. 
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d. Sun. 

e. Dust, sand, salt.  

f. Nesting bees, birds, squirrels, etc. 

g. Earthquakes – Design to maximum expected horizontal acceleration at the site. 

h. Fire. [NFPA 130] 

i. Vehicles crashing into posts. [Anderson, 2006, Appendix A] 

j. Interference from other elements of the urban scene. 

k. Ice build-up on power rails due to clear winter night sky. 

 

12. Speed range.  Select the cruising speed to minimize cost per passenger per unit of distance. 

Consider that turn radii, stopping distance, kinetic energy, and the energy needed to over-

come air drag all increase as the square of speed; and that energy use depends on streamlin-

ing, low road resistance, and propulsion efficiency.  Consider that the maximum operational 

speed for acceptable ride comfort is proportional to the guideway natural frequency, which 

depends on guideway stiffness and the type of support. [Anderson, 1997] 

 

13. Costs.  The design team should aim for costs sufficiently low to be recoverable in fares, i.e., 

the system should be designed to be a profitable private enterprise.  Such a conclusion 

clearly cannot be reached without a great deal of development work, but by striving for this 

goal the design team will insure its future. 

 

14. Require a small amount of vibration damping in the guideway. 

 

15. Acoustical noise should be less than the noise of automobiles on streets. 

 

16. Electromagnetic noise generated cannot interfere with existing devices. 

 

17. Communication means must be accommodated. 

 

18. Expansion.  Design so that the system can be expanded indefinitely. 

 

19. Design to minimize the effects of vandalism and sabotage. 

 

a. Assign young engineers to study ways to vandalize the system and how to prevent it. 

b. The spread-out nature of a PRT system provides no inviting target. 

 

My Conclusions [Anderson, 2007c, 2008a, 2008d] 

 

1. Resolving the basic tradeoffs related to the guideway, I reached the following conclusions: 

 

a. The guideway will be mostly elevated. 

b. Single mode. 

c. Supported vehicles. 

d. Wheeled suspension. 
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e. Linear-induction-motor propulsion. 

f. Motors on board, powered via power rails. 

 

2. Before designing the guideway, determine the vehicle maximum weight with careful 

weight-minimization design. 

 

3. Use the optimum guideway cross section for minimum weight and cross sectional area. 

 

a. The optimum guideway is narrower than it is deep. 

b. A vertical chassis is required.   

c. Careful attention must be given to the attachment of the cabin to the chassis.    

 Detailed finite-element analysis gives a practical solution. 

 

4. The minimum-weight, minimum-size guideway is a steel truss. 

 

a. Robotic welding is required for acceptable cost.  

b. Corrosion protection is required. 

c. The guideway should be clamped to the posts for maximum stiffness. 

d. Expansion joints should be placed at the point of zero bending moment in uniformly 

loaded spans. 

 

5. Cover the truss with composite covers, opened 3 in at top, 6 in at bottom, with curve radii at 

top and bottom 1/6th guideway height, hinged at bottom and latched at top, with a thin alu-

minum layer and sound-deadening material on the inside [Anderson, 2008a].  The benefits 

are: 

 

a. The interior of guideway is protected from all but very minimum snow and ice. 

b. The interior is protected from effects of the sun on the tires and other equipment. 

c. Differential thermal expansion is eliminated. 

d. The exterior environment is shielded from electromagnetic and acoustic noise. 

e. The power rails are protected from the winter night sky, which prevents ice accumu-

lation. 

f. Wind drag is 30 % of that on an opened truss. [Scraton, 1971] 

g. The interior of the guideway can be accessed for maintenance. 

h. The appearance of the guideway can be selected to suit the community. 

 

References2 

Anderson, J. E. 1978a.  Transit Systems Theory. Lexington Books, D. C. Heath and Company.   

 Available on www.advancedtransit.org. 

 Chapter 7, Requirements for Safe Operation 

 Chapter 8, Life Cycle Cost and Reliability Allocation. 

 Chapter 9. Redundancy, Failure Modes & Effects, and Reliability Allocation. 

                                                           
2 Papers with no attribution given are internal papers. 



13 
 

 Chapter 10, Guideway Structures. 

 Chapter 11, Design for Maximum Cost Effectiveness. 

Anderson, J. E. 1978b. Get Out on the Guideway and Walk.  Advanced Transit News, 2:5. 

Anderson, J. E.  1986.  Automated Transit Vehicle Size Considerations, Journal of Advanced Transportation, 

20:2:97-105 

Anderson, J. E.  1994. Safe Design of Personal Rapid Transit Systems.  Journal of Advanced Transportation, 

28:1:1-15. 

Anderson, J. E.  1997.  The Design of Guideways for PRT Systems.   

Anderson, J. E. 2000. A Review of the State of the Art of Personal Rapid Transit.  Journal of Advanced 

Transportation, 34:1:3-29. 

Anderson, J. E.  2006.  Failure Modes and Effects Analysis and Minimum Headway in PRT.    

Anderson, J. E.  2007a. Fifteen Rules of Engineering Design.  

Anderson, J. E.  2007b. How does Dual Mode Compare with Personal Rapid Transit?   

Anderson, J. E. 2007c.  The Structural Properties of a PRT Guideway.   

Anderson, J. E. 2008a.  An Intelligent Transportation Network System.    

Anderson, J. E. 2008b. The Tradeoff between Supported vs. Hanging Vehicles.  

Anderson, J. E. 2008c.  Maglev vs. Wheeled PRT.  

Anderson, J. E. 2008d.  Solving Urban Transportation Problems through Innovation.  A video.    

Hamilton, W. R. and Nance, D. K. 1969.  Systems Analysis of Urban Transportation. Scientific 

 American, July 1969. 

Hoerner, F. 1965. Fluid Dynamic Drag. Amazon Books. 

Irving, J. H., Bernstein, H., Olson, C. L., and Buyan, J. 1978.  Fundamentals of Personal Rapid

 Transit, Lexington Books, D. C. Heath and Company, Lexington, MA. 

King, W. J.  1944.  The Unwritten Laws of Engineering. The American Society of Mechanical  

 Engineers.  United Engineering Center. 345 East 47th Street, New York, NY 10017.  

Moutoh, D. U. 1984.  Investigation of Structural Design Criteria for Automated Transit Aerial 

 Guideways.  N. D. Lea & Associates, Inc. Report No. UMTA-IT-06-0311-84-1. 

NSPE. 1954.  Engineers’ Creed.  National Society of Professional Engineers. 

Pushkarev, B. S., Zupan, J. M., and Cumella, R. S.  1982.  Urban Rail in America; An  

 Exploration of Criteria for Fixed-Guideway Transit.  Indiana University Press.   

 Bloomington, Indiana. 

Scraton, C. and Rogers, E. W. E. 1971.  Steady and Unsteady Wind Loading.  Phil. Trans. Roy. 

 Soc. London a. 269:353-379. 



14 
 

Snyder, J. E., III, Wormley, D. N., and Richardson, H. H. 1975.  Automated Guideway Transit 

 Systems Vehicle-Elevated Guideway Dynamics: Multiple-Vehicle Single Span System.  

 Report No. UMTA MA-11-0023-75-1     

Stevens, R. D., Silletto, J. G., Wormley, D. N., and Hedrick, J. K. 1979.  AGT Guideway and 

 Station Technology, Volume 6, Dynamic Model.  Report No. UMTA-IT-06-0152-79-5. 

Stone & Webster. 1991. System Design Report, Section 7, Policy Issues, pp. 113-4.  Personal 

 Rapid Transit Program, Regional Transportation Authority, Chicago, Illinois. 

Zwicky, F. 1962. Morphology of Propulsive Power. Society for Morphological Research,  

 Pasadena, California. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

The ITNS Guideway and its Interface with the Vehicle Chassis 

Contents 

  Page 

1 Guideway Cross section  . . . . . . . . . . . . . . . . . . .  2 

2 U-Frame and Stringers  . . . . . . . . . . . . . . . . . . . . 2 

3 Main-Wheel Running Surfaces  . . . . . . . . . . . . . 3 

4 Copper Sheet  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

5 Running-Surface Assembly . . . . . . . . . . . . . . . . 3 

6 Lower Side Wheels and their Running Surfaces 3 

7 Upper Side Wheels and their Running Surfaces 4 

8 Switch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

9 Power Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

10 Guideway Covers  . . . . . . . . . . . . . . . . . . . . . . . 4 

11 Communication Cable  . . . . . . . . . . . . . . . . . . . . 5 

12 Issues   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

   

Fig. 1 Guideway Cross Section . . . . . . . . . . . . . . . . . . .  6 

Fig. 2 Guideway Elements  . . . . . . . . . . . . . . . . . . . . . . 7 

Fig. 3 Front and Side Views of the ITNS Vehicle  . . . . 8 

 

1. The Guideway Cross section 

 

The guideway design requirements and criteria upon which the design of this guideway is based 

are given in the paper “How to Design a PRT Guideway,” which was presented at the Automated 

People Mover Conference in Atlanta, Georgia, in June 2010.  Detailed calculations that define 

the guideway are given in the document “Structural Properties of the ITNS Guideway.”  Figure 1 

is a drawing of the guideway cross section and the vehicle’s two-inch-wide vertical chassis.  Fig-

ure 2 shows drawings of the three orthogonal views of the guideway.  Figure 2 shows front and 

side views of the vehicle attached to the guideway. 

2. The U-Frame and Stringers 

 

The basic element of the guideway structure is an assembly consisting of vertically oriented 5” × 

9 lb/ft channel sections welded diagonally at the two lower corners to form a U-shape.   One of 

these U-shaped frames is placed every 54 inches along the direction of the guideway.  With a 

sufficiently high production quantity, these U-frames could be stamped out of sheet steel.  The 

internal width of the U-frames is 22 1/8” plus a small manufacturing tolerance, and the distance 

between the top and bottom of the U-frame is 34 1/4”.   In each of the four corners of the U-

frames a cut-out permits installation of a 4-inch OD square or round thin-walled tube, which is 

welded to the U-frames.  In straight sections the wall thickness of these square tubes is 0.174” 

and in curved sections 0.315”, which are standard sizes taken from the Manual of Steel Con-



16 
 

struction.  Use of channel sections for the U-frames provides convenient surfaces to which to at-

tach the power rails, the leaky cable, and the assembly of main-wheel running surfaces.  This as-

sembly of U-shaped frames and tubes will be called the basic guideway structure (BGS).       

3. The Main-Wheel Running Surfaces 

 

Just above the bottom horizontal element of the U-frames, a pair of facing angles 8” wide × 6” 

high × 1/2” thick form the running surfaces for 13 ¼” OD × 4” wide main vehicle-support tires, 

the running surfaces for 6” OD × 2” wide lower-lateral polyurethane support tires, and the reac-

tion surface for a pair of linear induction motors (LIMs) that act against the horizontal surfaces.  

The inner vertical surfaces of this pair of angles, being the running surfaces for the lower set of 

lateral support tires, must be held by means of gage blocks to 21 inches.  The 21-inch dimension 

is determined by the needs of the pair of LIMs.  We will call these the “running-surface angles” 

(RSA).     

4. The Copper Sheet 

 

The LIMs require that a 0.080” thick by10” wide copper sheet be attached to each RSA in such a 

way that 7” of the 10” width be on the top surface.   The copper sheet is wrapped around the in-

side leg of the angle and back 2.5” under the angle.   Since the horizontal leg of the running-sur-

face angles is 8” wide, a 5.5” wide steel-to-steel surface is available for welding.    

5. The Running-Surface Assembly 

 

After attaching the copper sheets, the pair of RSA is assembled by welding 2.5” × 2.5” ×1/4” × 

22” long transverse angles (TA) underneath and perpendicular to the RSA at the half-way point 

between the U-shaped members, and thus 54” apart.   This assembly of RSAs is then laid into the 

already-formed guideway structure.  The running-surface assembly can be either welded3 or 

bolted to the U-frames.  If welded, the RSAs can be welded directly to the bottom element of the 

U-frames along the available 5.5” dimension mentioned above.  If bolted, a 2.5” × 2.5” ×1/4” × 

22” long angle must be welded to each U-frames in a position so that the vertical surface of the 

transverse angle is right next to the vertical surface of the horizontal element of the U-frame 

channel section.   (Except for tolerances, these angles could be welded in place before the RSA 

are attached to the BGS.)  These two vertical surfaces are then bolted together.   

The angles at the half-way point between the U-frames have two functions:  They permit the 

RSA to be combined into an assembly in such a way that the 21” spacing between the inner sur-

faces of the angle pair is maintained accurately, and they reduce twisting of the RSA under the 

load of the main-support tires sufficient to insure adequate ride comfort.    This result has been 

determined by calculation.  

 

                                                           
3 Pressure welding should be used to minimize warping. 
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6. The Lower Side Wheels and their Running Surfaces 

 

The horizontal centerline of the lower side support wheels is 1.5” above the top surface of the 

horizontal leg of the RSA.   

7. The Upper Side Wheels and their Running Surfaces 

 

The upper lateral side wheels run against 4” × 4” × ¼” angles, which are welded to the top of the 

U-frames as shown in Figure 1.  The inner vertical surfaces of the left and right angles must be 

adjusted by means of gage blocks to the 21” dimension mentioned above and positioned directly 

over the 21” dimension in the lower lateral running surfaces.  The horizontal centerline of the up-

per side support wheels is 2” below the top of the 4” × 4” × ¼” angles.  Thus the nominal dis-

tance between the upper and lower centerlines of these side-support tires is 24.5.”      

8. The Switch 

 

The axis of rotation of the switch arm is 2” above the midpoint of the upper and lower side-

wheel centerlines, which places it 12.25” below the top of the U-frame.  The switch wheels are 

4” OD x 1.5” wide polyurethane.  They function against switch rails, which are non-standard 5” 

wide channels formed from ¼” thick steel plate with the vertical outside dimension 2.25”.  The 

running surface of the switch rails must be smooth and vertical.  Because of the close tolerance 

required between the running surface of the switch rail and the upper and lower lateral running 

surfaces, it is likely necessary to split the switch rail on its top surface, adjust the position and 

bolt it in place.  The top of the switch rails is 11.5” below the top of the U-frame.  The switch is 

made bi-stable by means of a leaf spring mounted as shown on the drawing in Figure 1.  There 

will be a pair of snubbers positioned to stop the switch arm in its engaged position on either side 

of the guideway.  Figure 1 shows the switch in the engaged position on the right side.  There will 

also be a pair of proximity sensors appropriately positioned to inform the on-board computer of 

the switch position.  

9. Power Rails 

 

Two 600-volt D.C. power rails are mounted in the space above the switch rails so that the fol-

lowing three distances are equal: 1) the distance between the upper side of the switch rail to the 

lower edge of the lower power rail, 2) the distance between the adjacent edges of the two power 

rails, and 3) the upper edge of the upper power rail and the lower surface of the upper lateral-

wheel support bracket.  The minimum separation of these surfaces is a standard specified by 

electrical manufacturers to avoid arcing.  Use of D.C. vs. A.C. power rails permits conversion of 

utility power to D.C. at wayside, which moves that power conversion equipment from small 

units in each vehicle to large units at wayside.   Providing power from wayside rather than from 

on-board batteries permits substantially higher operating speeds and permits construction of 

guideway networks of any extent with no fear of running out of power.  In diverge sections of 

the guideway there must be power rails on both sides.   
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10. Guideway Covers 

 

Guideway covers are positioned as shown in Figure 1 with curve radii at the four corners of 6”, 

which is needed to minimize the side air-drag coefficient on the guideway, which minimizes the 

wind load on the guideway.   The left and right surfaces of the covers are shown slightly bowed 

out or curved to increase stiffness.  The lower surfaces are sloped downward to the center to per-

mit water runoff.  The covers will be composite with a thin layer of aluminum sprayed on the in-

side to provide electromagnetic shielding.  The covers are hinge attached at the lower edges so 

that they can be swung downward to permit access to the interior of the guideway in the unlikely 

circumstance that that would be necessary.  The upper surfaces are similarly sloped as shown to 

assist in runoff of rain or removal of snow. They are attached at the top with suitable clips to 

keep them firmly in position.  The gap at the top is 3” and at the bottom 6”.  The outer dimen-

sions of the cover from left to right is 36” and from top to bottom 38”.   

 

11. Communication Cable 

 

Communication between each vehicle computer and a wayside computer is provided by means 

of a leaky cable.  The leaky cable and the bracket that holds it in position is located as shown in 

Figure 1.  In branching sections of the guideway there will be leaky cables on both sides.  Cell 

phone technology could be used for communication if it can be guaranteed that there will be no 

interference either by hackers or by an electromagnetic pulse, which seems unlikely. 

 

12. Issues 

 

Two issues must be addressed before the guideway structural analyst can proceed to developed 

final drawings based on computer analysis of the stresses and deflections under agreed loading 

conditions. 

1. Power rails.  Electrical standards determine the minimum distance between the power 

rails and surrounding surfaces.  These distances must be approved by a licensed electrical 

engineer.  It is likely that a third grounding rail will be needed.  We assume that it could 

be a brush operating against the inner upper 6” high surface of the main-support angles.  

It must be approved by a licensed electrical engineer. 

2. Leaky cable.  We believe the positioning and attachment of the leaky cable will be ade-

quate, but it must be approved by a licensed electronics engineer familiar with the proper-

ties of such cables as our primary communication means between the vehicles and way-

side computers. 
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Figure 1.  Guideway Cross Section. 
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Figure 2.  Guideway Elements. 
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Figure 3. Front and Side Views of the ITNS Vehicle. 
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Figure 1.  The Truss Guideway 

1. Introduction 

The purpose of this document is to derive the parameters of the ITNS guideway in the detail that is practical 

using classical, i.e., non-computerized, methods.  The guideway with its covers is designed to meet 37 

requirements.4  Computerized analysis of the structure will likely cause modification of some of the param-

eters, but it is always desirable to begin with a realistic approximation that can easily be checked.  The 

guideway configuration is shown in Figure 1.  It has vertical members every 4.5 feet and is designed for 

90-ft spans.  It is an evolution of a U-shaped guideway design developed by The Aerospace Corporation 

for their PRT system5.  The present design is a truss structure, which reduces the weight per unit length of 

the guideway by a factor of about three (3) compared to a plate or tube guideway.  The running surfaces 

                                                           
4 J. E. Anderson, “An Intelligent Transportation Network System,” April 2015. 

5 Jack H. Irving et al, Fundamentals of Personal Rapid Transit, Lexington Books, D. C. Heath and Company, 1978. 
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and stringers are secured directly to U-frames shown in Figure 2.  Curved sections of the guideway will be 

assembled and welded in a computerized and adjustable jig that will allow any curved section to be built.   

The design of the guideway is summarized in Reference 1.  The main running surfaces are the pair of 

8x6x1/2 inch angles shown in Figure 2.  The half-inch dimension of the angles is specified by the needs of 

the Linear Induction Motors.  The main conclusion of Reference 2 is that the design can be based on a static 

vertical load of loaded vehicles placed nose-to-tail on the guideway because this load surpasses the dynamic 

load of vehicles operating at minimum headway.  Reference 3 shows that ride comfort on a sprung seat is 

satisfactory if the maximum deflection between supports is less than 0.055 in.  Reference 4 shows that the 

maximum deflection will be about 0.023 in.  Reference 5 derives the formula for the midspan deflection.  

Reference 6 shows that any slope discontinuity between guideway sections must be less than about half a 

degree.  Reference 7 develops details of the joint between guideway sections needed to eliminate slope and 

step discontinuities.  Reference 8 shows that the expansion joint in the guideway must be designed to carry 

6% of the maximum bending moment in the guideway.  Reference 9 develops a computer program needed 

to determine maximum wheel loads on the guideway.  Reference 10 specifies the switch position at 2 inches 

above the half-way distance between the upper and lower side wheels and estimates the maximum side-

wheel loads.  Reference 11 calculates properties of a guideway needed to move vehicles at higher speeds. 

2. Description of the Cross Section 

The paper “The ITNS Guideway” includes drawings of the guideway and the vertical chassis, to which are 

attached main-support wheels, lateral stabilization wheels, and switch arms.  The major dimensions are 

shown in Figure 2.   

The elements of the guideway are as follows: 

1) A series of vertically oriented steel channel-section U-shaped frames spaced 54 inches apart and 

machined to the inside left/right dimension of 22” +0.010” to - 0 in the areas where upper and lower 

running surfaces are attached.6  To assemble the guideway, the U-frames are placed in a comput-

erized fixture in correct positions corresponding to the required guideway curves. 

   

2) Lower running surfaces consist of 8x6x1/2” steel angles oriented with the 8” dimension horizontal.  

These angles form a) the running surfaces for 13” OD main support tires, b) the running surfaces 

for 6” OD lower lateral polyurethane tires, and c) the reaction surfaces for the LIMs.  The 6” vertical 

leg of these angles is so stiff that the deflection at the midpoint between U-frames, developed in 

Reference 3, is sufficiently small.   

 

                                                           
6 A steel fabricator has assured me that he can produce the U-frames with the indicated surfaces accurate to about 0.005" using standard 

methods. 
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Figure 2.  The Guideway Cross Section 

3) The reaction surfaces for the LIMs are to be covered with 0.080” thick copper sheets, which are 

10” wide and are wrapped around to the underside of the angles.  

4) Upper running surfaces for 8” OD upper lateral polyurethane tires consist of 4x4x1/4” steel angles.  

They are secured to the upper inside edge of the U-frames.7   

5) Four longitudinal stringers consisting of 4” OD hollow steel tubes welded to the outsides of the U-

frames. 

6) Diagonal truss members welded to the U-frame members to provide the necessary stiffness to the 

guideway.  As developed in Appendix A, these members are placed in the direction that will almost 

always put them in tension rather than compression. 

7) Switch rails welded to the U-frames at the merge and diverge sections of the guideway with entry 

and exit flaring of a length determined by dynamic analysis of the lateral motion of the vehicle into 

and out of each of these sections as developed in Appendix D.  The flare shape is a quadratic, i.e., 

an equation of the form y=kx2.   The length of the flare is proportional to line speed. 

8) Power rails that are to carry 600-volt d. c. current for vehicle propulsion. 

9) Lossy cables for communication between the vehicles and the wayside zone controllers. 

10) Composite covers lined with an aluminum spray. 

 

To provide adequate stiffness to the guideway in both bending and torsion, the guideway is clamped to each 

support post via a bracket that resists bending and twisting moments.8  Expansion joints are placed at the 

20% point in each span where the bending moment is very small.  Each span will typically be 90 feet or 

                                                           
7 This angle has a cross sectional moment of inertia of 3.00 in4.  The maximum deflection under a point load 250P  lb (see Section 5) at the 

center, assuming the beam is clamped at the ends, is 3

/ 192 0.0023",PL EI  which is not enough to cause ride-comfort problems.  

8 This idea was first discussed by Dr. Jack H. Irving, op. cit. page 219. 



26 
 

1080 inches in length, but may vary to avoid underground utilities.  The U-frames, stringers and diagonals 

of a section of guideway between a pair of posts are illustrated in Figure 1.  The support posts are octagonal 

and tapered from 10” at the top to 20” at the base and are fabricated out of 5/16” steel plate, typically 16 ft 

long, but will vary to conform to the topology and to local code. 

3. Loads and Dimensions9 

 The design is based on a vertical load of fully loaded vehicles nose-to-tail on the guideway.10  

The 9-ft-long vehicles r.m.s.11 loaded weigh 1500 lb, giving a uniform load of 14 lb/in. 

 

 A fully loaded vehicle will weigh Wv = 2100 lb. 

 

 With vehicles nose-to-tail on the guideway an additional lateral load due to a 60-mph crosswind 

is assumed as the maximum side load. 

 

 With no vehicles on the guideway, a 180-mph crosswind is assumed as the maximum side load. 

 

 OD = 4” = Outside diameter of the four tube stringers.  The required tube properties are given in 

Table 2. 

 

 h  = 31” = distance between centers of upper and lower stringers 

 

 a  = distance from centers of lower stringers to the neutral axis of the truss cross section. 

 

 nnI  = moment of inertia of the guideway about its neutral axis. 

 

 The U-frames are 6” x 8.2 lb/ft channel sections with a flange width of 1.92” and a moment of 

inertia of 13.1 in4. 

 

 The lower running surfaces are 8 x 6 x 1/2” angles with the longer dimension horizontal, of 

weight 23.2 lb/ft and cross-sectional area 6.80 in4. 

 

 The upper running surfaces are 4 x 4 x ¼” angles, of weight 6.58 lb/ft and cross-sectional area 

1.93 in4. 

 

 Wheel base of vehicle is 84”. 

 

                                                           
9 The properties of all the steel shapes used in this paper are taken from the Manual of Steel Construction, American Institute of Steel Construc-

tion, Third Edition. 
10 See J. E. Anderson, Transit Systems Theory, Section 10.3 for the reasons this is the critical loading condition. 
11 Root Mean Square loading is used because the probability that every vehicle is fully loaded is very small.   
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 Distance between U-frames is 54”. 

 

 b  36” = estimate of the vertical distance between the center of pressure of the wind force and 

the centerline of the upper lateral wheels.  

 

 c  26” = distance between centerlines of the upper and lower lateral wheels. 

 

 pW = 500 lb = weight of test passenger, lb. 

 

 d 20” = lateral off-set of test passenger from vertical centerline of vehicle. 

 

 e = 2” = distance between center of lower lateral wheels and the running surface. 

 

 𝐿𝑠𝑒𝑝 = 30 in lateral separation between the centerlines of the tubular stringers. 

 

 As = cross sectional area of each of the tube stringers 

 

3. The Neutral Axis for Bending in the Vertical Plane 

 

The area moments of the lower tubes and angles about the neutral axis is equal to the area moments of the 

upper tubes and angles about the neutral axis.  Thus 

𝐴𝑠𝑎 + 7.5(0.5)(𝑎 − 4.5) + 6(0.5)(𝑎 − 7.25)

= 𝐴𝑠(ℎ − 𝑎) + 3.75(0.25)(ℎ − 𝑎 + 0.125) + 4(0.25)(ℎ − 𝑎 + 2.125) 

                   

or 

𝑎 =
ℎ(𝐴𝑠 + 1.9375) + 40.867

2𝐴𝑠 + 8.688
 

    

 5. The Moment of Inertia for bending in the vertical plane 

𝐼𝑛𝑛 = (0.8)(2) {𝐴𝑠[𝑎
2 + (ℎ − 𝑎)2] + 7.5(0.5)(𝑎 − 4.5)2 +

1

12
(0.5)63 + 6(0.5)(𝑎 − 7.25)2

+
1

12
(0.25)(3.75)3 + 3.75(0.25)(ℎ − 𝑎 + 0.125)2 + 4(0.25)(ℎ − 𝑎 + 2.125)2}

= 1.6{𝐴𝑠[𝑎
2 + (ℎ − 𝑎)2] + 3.75(𝑎 − 4.5)2 + 10.099 + 3(𝑎 − 7.25)2

+ 0.9375(ℎ − 𝑎 + 0.125)2 + (ℎ − 𝑎 + 2.125)2} 

The factor of 0.8 is included based on advice of Structures Professor Ted Galambos that this reduction is 

needed to calculate the actual stress in and deflection of the truss. 
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6. Design of the U-Frames 

Initially the U-frames can be fabricated by welding three pieces of channel section, which would 

be cut at a 45-deg angle at the two lower corners.  In quantity, these frames can be stamped out 

of steel plate.  About 634 of them are needed for the test system. 

 

 

 

 

 

 

 

 

Figure 3.  The vehicle mounted on the guideway. 

The maximum force on the upper lateral wheel has been calculated by static analysis in the paper 

“The Maximum Side-Wheel Loads, and was found to be 1021 lb.  Dynamic analysis developed 

in the paper “Lateral Dynamics of the ITNS Vehicle” found maximum values of the upper lateral 

wheel load to be 1876 lb.  The lever arm to the lower inside corner of the U-frame is 27” and 

thus the maximum moment is (1876)(27) = 50,700 in-lb. 

The maximum bending stress at the lower corner of the U-frame is 

     
max

Mc
k

I
   

in which k is the stress-concentration factor.  For the U-frame channel given in Section 3 I = 13.1 in4 12 

and c = 3”.  Then 

𝜎𝑚𝑎𝑥 = 𝑘
(50,700 𝑖𝑛𝑙𝑏)(3 𝑖𝑛)

13.1 𝑖𝑛4
= 11,620𝑘 psi 

Mark’s Standard Handbook for Mechanical Engineers, 10th Ed., page 5-5, Figure 5.1.6 IV gives 

k=2.8 for r/d = 0.01, where r = 0.085” and d = 6 x sqrt(2) = 8.49”.  Then maximum stress = 

32,540 psi, which requires high-strength steel.   While stress concentration is very important at a 

sharp corner, the plan will be to weld the U-frames to both the lower tube stringer and the lower 

angle, which will substantially reinforce the corner of the U-frame.  Finite-element analysis will 

                                                           
12 Per Manual of Steel Construction AISC, p. 1-31, this is the I for a 6” x 8.2lb/ft channel and c = 3”. 



29 
 

be performed, and to be sure a U-frame will be loaded to destruction to prove the design.  This 

analysis will also determine the type of steel to be used, likely stronger than mild steel.  In any 

case, I will assume that the above-described channel will be adequate and that the sharp corner, 

the way it will be reinforced, will not be a problem. 

The deflection of the U-frame under the above-calculated maximum load is 

 

∆=
𝐹𝑢(ℎ + 2.25)

3

3𝐸𝐼
=

(1876)(33.25)3

3(29.5)(10)6(13.1)
= 0.059" 

          

Figure 4. The diagonal stiffener 

7. The Diagonal Stiffeners 

Figure 1 illustrates a section of the guideway.  Assume the ends are fixed, as they will be since the guide-

way is clamped to each post.  As shown in Figure 2, the vertical dimension between the centerlines of the 

tube stringers is h = 31”.  The horizontal distance between U-frames is 54”.  The angle  shown in Fig-

ure 4 is 𝜃 = 𝑡𝑎𝑛−1(54/31) = 60.14𝑜.  The load W, shown downward on the right of a U-frame, is half 

the weight of the loaded guideway between the segment shown and a mirror-image segment to the left of 

the next post to the right.  If the distance between support posts is (90)(12) = 1080” then the distance be-

tween the U-frame shown and the mirror image projected from the next post is 1080 – 54 = 1026”.  

The guideway weight is calculated in Section 8, but we must use it here to estimate the required cross sec-

tional area of the diagonal stringers.  The most severe loading condition has fully loaded vehicles nose-to-

tail along the entire span.  This gives a load of 14 lb/in.  The maximum guideway weight, calculated in 

Section 8, is 14.0 lb/in.  Thus we take the maximum load W on a 54” section of guideway closest to a sup-

port post as 

𝑊 = (28
𝑙𝑏

𝑖𝑛
) (
1026 𝑖𝑛

2
) = 14,364 lb 

 

But this load is resisted by a pair of diagonal stringers.  Thus, from Figure 4, the tension in each diagonal 

is / 2cos 1.004T W W  = 14,426 lb.   The diagonal members are selected to be in tension and we 

assume a standard design stress of 15,000 psi.  Thus, the cross sectional area of the diagonal member 

 

31” 

54” 

W 

T 
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needs to be at least 0.962 in2.  The length of the diagonal stiffener is √542 + 312 = 62.27".  An open sec-

tion, such as an angle, is best for the diagonal stringers.     

This angle can be welded to the U-frames with the vertical side on the outside of each U-frame as shown 

in Figure 5.  A 2x2x1/4” angle has a cross sectional area of 1.07 in2 and weighs 3.65 lb/ft.  With a length 

of 62.3" and with steel weighing 0.283 lb/in3 the stringer weighs 18.9 lb or 18.9/54*12 = 4.2 lb/ft of 

guideway.  In a clamped beam under uniform load shear is maximum at the ends and decreases linearly to 

zero at the center of the span.  Thus under uniform load the maximum load the diagonal stiffeners must 

carry decreases linearly to zero at the center of the span, and hence we should specify smaller angles as 

we approach the center. 

The detail of placement and welding of the diagonal is shown in Figure 5.  In this drawing it is assumed 

that the flat side of each of the two C-section U-frames shown is to the left.  The angle is to be cut so that 

it can lie flat against the side of each of the C-section U-frames.  The lower-right end of the diagonal can 

be cut straight across to provide a weld surface on its horizontal side, and the upper-left end can be cut to 

follow the curve of the upper tubular stringer to provide a weld surface there.  Assume conservatively that 

the entire load carried by the welds is in shear.  The shear strength is half the tensile strength, so assume 

the design shear strength to be 7500 psi.  Then with the maximum diagonal tensile load of 14,500 lb, the 

required weld area is 14,500/7500 = 1.93 in2.  Since the weld length is 9.2 inches, the weld width must be 

at least 1.93/9.2 = 0.21 in.   

In some cases, discussed in Appendix A, the load will be asymmetric so some of the diagonal stiffeners 

will be occasionally in compression, in which cases we must consider buckling.  The Euler buckling load 

is  

𝑃𝑐𝑟 = 𝛼𝜋
𝐸𝐼

𝑙2
 

 

 

Figure 5. Diagonal detail showing diagonal weld area. 

in which the dimensionless factor  is 1 for simply supported ends and 4 for clamped ends.  Since the 

ends of our diagonals are welded in place, assume 4.    The smallest moment of inertia for a 2x2x1/4 

angle is 0.141 in4.  If the angle buckles under a compressive load, it will buckle along this axis.  The 

length l of the diagonal as calculated above is 62.27 in. Thus for this angle, 
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𝑃𝑐𝑟 = 4𝜋
29.5(10)6(0.141)

62.272
= 13,480 𝑙𝑏 

A possible distribution of the diagonals with their properties may be as given in Table 1, where the aver-

age angle weight per foot is given.  Assuming the same distribution of angle stiffeners in the bottom of 

the guideway as in the sides, with the inclination of the bottom stiffeners alternating in a zigzag pattern, 

the weight of diagonal stiffeners per lineal inch of guideway is 

2.43 𝑙𝑏/𝑓𝑡

12 𝑖𝑛/𝑓𝑡
[2√1 + (

31

54
)
2

+√1 + (
30

54
)
2

] = 0.699 𝑙𝑏/𝑖𝑛 

We see that in all cases, the maximum tension in each diagonal is less than the buckling load.  Moreover, 

it is shown in Appendix A that in no loading case or vehicle position will the compression in any of the 

angles be close to the buckling load. 

Table 1. Properties of Diagonal Stiffeners   

 Span 1080 in 

 Maximum load on guideway 14 lb/in 

 Guideway weight 14 lb/in 

 Vertical distance between stringers 31 in 

 Longitudinal distance between U-Frames 54 in 

 Length of stiffener 62.27 in 

 Angle, vertical to diagonal 1.050 radians 

 Design stress 15,000 psi 

 Modulus of Elasticity 29,500,000 psi 

Gdwy Length Maximum Tension Required Commercially Area Weight Radius Moment Buckling 

Section Supported Load in Area available of  lb/ft of of Load 

 in lb Stiffener in^2 angle Angle  Gyration Inertia lb 

      lb     in^2   in in^4   

1 1026 14364 14426 0.962 L2x2x3/8 1.37 4.65 0.386 0.2041 19518 

2 918 12852 12907 0.860 L2x2x1/4 0.944 3.21 0.387 0.1414 13519 

3 810 11340 11389 0.759 L2x2x1/4 0.944 3.21 0.387 0.1414 13519 

4 702 9828 9870 0.658 L2x2x3/16 0.722 2.46 0.389 0.1093 10447 

5 594 8316 8352 0.557 L2x2x3/16 0.722 2.46 0.389 0.1093 10447 

6 486 6804 6833 0.456 L2x2x1/8 0.491 1.67 0.391 0.0751 7177 

7 378 5292 5315 0.354 L2x2x1/8 0.491 1.67 0.391 0.0751 7177 

8 270 3780 3796 0.253 L2x2x1/8 0.491 1.67 0.391 0.0751 7177 
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9 162 2268 2278 0.152 L2x2x1/8 0.491 1.67 0.391 0.0751 7177 

10 54 756 759 0.051 L2x2x1/8 0.491 1.67 0.391 0.0751 7177 

      Average: 2.43    

8. The guideway weight per unit of length 

Weight of 4 Stringers   

1 2 3 4 

4" O.D. x 0.174 

wall 

4" O.D. x 0.233 

wall 

4" O.D. x 0.291 

wall 

4" O.D. x 0.349 

wall 

37.6 48.8 59.2 68.8 

lb/ft lb/ft lb/ft lb/ft 

 

Upper and lower angle running surfaces1: 2(23.2 + 6.58) = 59.6 lb/ft. 

Weight of U-frame = 8.2 lb/ft (2 h +26)/12 = 8.2(88)/12 = 60.2 lb. 

Weight of U-frames per foot of guideway = 60.2/4.5 = 13.4 lb/ft. 

Weight of diagonals = 0.699 lb/inx12 = 8.40 lb/ft of guideway length. 

Weight of guideway covers and brackets = 
3

in126in 3/16 0.043lb/in 12in/ft 12.2 lb/ft.     

Weight of power rails = 6 lb/ft 

Weight of copper reaction sheets = 20x0.080x12x0.33 lb/in3 = 6.34 lb/ft 

Total guideway weight = Stringer weight + 59.6 + 13.4 + 8.40 + 12.2 + 12.34 = Stringer weight + 106 

lb/ft 

 

9. Maximum deflection of loaded guideway 

The guideway is clamped at the posts.  Therefore, the maximum deflection is 

∆𝑚𝑎𝑥=
(𝑤𝑔 +𝑤𝑣)𝑆𝑝𝑎𝑛

4

384𝐸𝐼𝑛𝑛
 

    

where, assuming fully loaded vehicles nose to tail, the vehicle weight is 14 lb/in. 

 

10. Maximum bending stress due to vertical load 

  
   22

max max, , ,
12 12

g v

nn nn

w w L h aMc wL
M c h a

I I
 

 
         
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11. Maximum lateral wind loading on the unloaded guideway per unit length  

 

𝐹𝑤𝑖𝑛𝑑 =
𝜌𝑔

2𝑔
𝑉𝑤𝑖𝑛𝑑
2 𝐶𝐷(ℎ + 6 𝑖𝑛) 

where 
30.075lb/ft , 180mph 264ft/sec, 0.8wind Dg V C     .  This drag coefficient assumes that 

the guideway is covered with 6” radii at the top and bottom of the covers.13  Thus 

𝐹𝑤𝑖𝑛𝑑 =
0.075

𝑙𝑏
𝑓𝑡3

(264𝑓𝑡/𝑠𝑒𝑐)2(0.8)(31 + 6 𝑖𝑛)

64.4
𝑓𝑡
𝑠𝑒𝑐2

(
1 𝑓𝑡

12 𝑖𝑛
)
2

= 16.7 𝑙𝑏/𝑖𝑛 

 

12. Lateral Moment of Inertia of Guideway 

 

The moment of inertia against a side-wind load is 

𝐼𝑦𝑦 = (0.8)(2) [2𝐴𝑠(15)
2 + 6(

1

2
) (
21.5

2
)
2

+
1

12
(0.5)(7.5)3 + 7.5(0.5) (

21 − 7.5

2
)
2

+ 4(0.25) (13 −
1

8
) +

1

12
(0.25)(3.75)3 + (3.75)(0.25)152]

= 1.6(450𝐴𝑠 + 346.7 + 17.6 + 170.9 + 12.9 + 1.1 + 211) = 720𝐴𝑠 + 1216 

 

13. Bending stress due to side wind 

 

𝜎𝑚𝑎𝑥 =
𝑀𝑐

𝐼𝑦𝑦
=
𝐹𝑤𝑖𝑛𝑑𝐿

2

12𝐼𝑦𝑦

37𝑖𝑛

2
𝑝𝑠𝑖 

where L is the span, typically 1080 in. 

 

14. Numerical results related to guideway bending  

 

The above equations are solved in an Excel program with the following results.  Note that ASHTO stand-

ards permit a ratio of span to maximum deflection of no less than 800:1 and APM   Standards require no 

less than 1000:1. These results show that the smallest wall thickness, 0.116 in, is satisfactory for straight 

guideways, and that the choice between square and round tubes can be made by the fabricator.  Additional 

analysis is needed to determine the guideway properties in torsion and in curves. 

                                                           
13 C. Scraton and E. W. E. Rodgers, “Steady and Unsteady Wind Loading,” Phil. Trans. Roy. Soc. London. A. 269(1971) 353-379. 
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                   Table 2a.  Properties of the ITNS Guideway with Square-Tube 

Stringers     

Modulus   of Elasticity 29,500,000 29,500,000 29,500,000 29,500,000 29,500,000 psi 

Span Length 1080 1080 1080 1080 1080 in 

Tube Stringer OD 4 4 4 4 4 in 

Tube Wall Thickness 0.116 0.174 0.233 0.291 0.349 in 

Tube Cross Sectional Area 1.77 2.58 3.37 4.1 4.78 in^2 

Tube Weight 6.46 9.40 12.2 14.8 17.2 lb/ft 

h 31 31 31 31 31 in 

a 12.74 13.06 13.31 13.50 13.65 in 

Guideway Weight 132 144 155 165 175 lb/ft 

Vehicle RMS Gross Weight 168 168 168 168 168 lb/ft 

Maximum Wind Speed 180 180 180 180 180 mph 

Maximum Operational Wind Speed 60 60 60 60 60 mph 

Sidewind Loading 230 230 230 230 230 lb/ft 

Ivertical 3144 3784 4405 4976 5507 in^4 

Ihorizontal 2490 3074 3642 4168 4658 in^4 

Maximum Bending  Stress:       

Vertical 14105 11963 10498 9490 8747 psi 

Horizontal 13849 11221 9469 8275 7405 psi 

Maximum Vertical Deflection 0.954 0.824 0.733 0.670 0.623 in 

Span/Maximum Deflection 1132 1310 1473 1612 1734   

       

                   Table 2b.  Properties of the ITNS Guideway with Round-Tube 

Stringers     

Modulus   of Elasticity 29,500,000 29,500,000 29,500,000 29,500,000 29,500,000 psi 

Span Length 1080 1080 1080 1080 1080 in 

Tube Stringer OD 4 4 4 4 4 in 

Tube Wall Thickness 0.116 0.174 0.233 0.291 0.349 in 

Tube Cross Sectional Area 1.42 2.09 2.76 3.39 4.00 in^2 

Tube Weight 4.82 7.13 9.40 11.56 13.64 lb/ft 

h 31 31 31 31 31 in 
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a 12.57 12.88 13.12 13.32 13.48 in 

Guideway Weight 125 135 144 152 161 lb/ft 

Vehicle RMS Gross Weight 168 168 168 168 168 lb/ft 

Maximum Wind Speed 180 180 180 180 180 mph 

Maximum Operational Wind Speed 60 60 60 60 60 mph 

Sidewind Loading 230 230 230 230 230 lb/ft 

Ivertical 2862 3399 3924 4421 4901 in^4 

Ihorizontal 2235 2722 3201 3657 4098 in^4 

Maximum Bending  Stress:       

Vertical 15296 13065 11498 10373 9515 psi 

Horizontal 15431 12672 10774 9430 8416 psi 

Maximum Vertical Deflection 1.026 0.891 0.795 0.725 0.671 in 

Span/Maximum Deflection 1053 1212 1359 1490 1609   

 

15. Twist of the guideway due to a sidewise moment 

If  is the angle of twist at a certain point x along the guideway, measured from one of the support posts, 

the twist per unit length is14  

𝑑𝜃

𝑑𝑥
=
𝑀(𝑥)

𝐺𝐼𝑝
 

      

Assume the guideway is subjected to a moment m per unit of length, so that the total moment on a guide-

way of length L is M = mL.  Then at a point a distance x from one of the posts, from free-body considera-

tions the moment is 𝑀(𝑥) = 𝑚 (
1

2
𝐿 − 𝑥) so that  

 1

2

p

m L xd

dx GI

 
  

Assume the guideway is clamped at the posts so that 𝜃 = 0 𝑎𝑡 x = 0 𝑎𝑛𝑑 𝑥 = 𝐿.  Then, integrating, 

𝜃 =
𝑚(𝐿𝑥 − 𝑥2)

2𝐺𝐼𝑝
 

Thus, the maximum twist, at 𝑥 =
1

2
𝐿 is 

                                                           
14 S. Timoshenko, Strength of Materials, Part I and Part II, 2nd Ed., D. Van Nostrand and Company, 1940. 
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𝜃𝑚𝑎𝑥 =
𝑚𝐿2

8𝐺𝐼𝑝
 

From Section 6 the maximum side force on each upper wheel is 1876 lb, and the moment arm is 27”.  

Since the U-frames are 54 inches apart, the moment per unit length is m = (1876)(27)/54 = 938 in-lb/in.  

The polar moment of inertia is given15 for four tube sizes.  G = 29,500,000/2.6 = 11,350,000 psi.  Hence 

with a span of 90(12) 1080L   ” we obtain the following maximum twist angles, varied by the OD and 

wall thickness of the stringers.   

Stringer Di-

mensions 

4”ODx0.174” 

wall 

4”ODx0.233” 

wall 

4”ODx0.291” 

wall 

4”ODx0.349” 

wall 

4, inpI  27.0 33.2 41.4 44.93 

max , deg  
9.5 7.8 6.2 5.7 

     

16. Deflection of a Curved Guideway 

This analysis is carried out in Appendix B where the maximum deflection at the center point of a span is 

calculated for a range of span lengths and guideway curve radii, with conclusions given there.   

 

17. The Guideway Natural Frequency 

From Marks’ Standard Handbook for Mechanical Engineers, 10th Ed., page 3-73 the fundamental natural 

frequency of a beam clamped at both ends is  

𝑓1 =
1

2𝜋
(1.506𝜋)2√

𝐸𝐼𝑔

𝑤𝐿4
= 3.563√

𝐸𝐼𝑔

𝑤𝐿4
 

in which the modulus of elasticity for steel is E = 29.5(10)6psi and g = 32.174 ft/sec2.  For span length L= 

90 ft, we obtain the following values for the fundamental natural frequency for vertical motion. 

Stringer 4”ODx0.174” 

wall 

4”ODx0.233” 

wall 

4”ODx0.291” 

wall 

4”ODx0.349 

wall 

Moment of Inertia, in4 3784 4405 4976 5507 

Guideway weight, lb/in 12.0 12.9 13.75 14.58 

                                                           
15 See the internal paper “The Polar Moment of Inertia of the ITNS Guideway” 
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√
𝐼

𝑤
 

17.8 18.48 19.02 19.44 

1f , Hz 
5.80 6.02 6.20 6.34 

With 60-ft spans the natural frequencies will be higher by the ratio (90/60)2 = 2.25.  The forcing fre-

quency is due to the motion of vehicles across the span.  With vehicles moving half a second apart, the 

forcing frequency would be 2 Hz, which is only a third of the fundamental natural frequency, which 

means, from the theory of vibrations, that amplification due to passage of vehicles will be small.  Moreo-

ver, since we use asynchronous control, the spacings of vehicles will not be uniform, which will cause 

damping of any vibrations.  The phenomenon is similar to commanding a company of men to proceed out 

of step when crossing a bridge to void destructive amplifications. 

 

18. The Critical Speed 

The maximum deflection in a beam clamped at both ends, which is the way this guideway will be 

mounted, is 

∆𝑚𝑎𝑥=
𝑤𝐿4

384𝐸𝐼
 

    

in which w is the weight of the loaded guideway per unit of length, L is the distance between posts, E is 

the modulus of elasticity, and I is the guideway vertical moment of inertia.  The vertical motion of the 

passenger will be 

𝑦(𝑡) =
1

2
∆𝑚𝑎𝑥𝑠𝑖𝑛(2𝜋𝑓𝑡) 

in which f = V/L is the frequency of motion, V is the speed, and t is time.  Differentiating twice, the maxi-

mum vertical acceleration experienced by the passengers is 

𝑎𝑚𝑎𝑥(𝑓) = 2𝜋
2∆𝑚𝑎𝑥𝑓

2 

     

in which, in the region of interest, we will find in Appendix C that the maximum comfort acceleration is a 

function of .f   For the conditions given in Appendix C, we find that the critical speed for the guideway 

properties listed in Table 2 with the smallest stringers is 130 mph, and for the largest stringers 159 mph.   

These results assume that the guideway is built flat.  Suppose, however, that each span is built with cam-

ber such that when the guideway rests on the support posts under the force of its weight it lies flat.  Then 

suppose a vehicle of gross weight W moves at speed V across the beam.  The maximum deflection of a 

clamped beam under a central point load W is   

∆𝑚𝑎𝑥=
𝑊𝐿3

192𝐸𝐼
=
2𝑊

𝑤𝐿
×
𝑤𝐿4

384𝐸𝐼
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Using the data that produced Table 2, the factor 2W/wL = 2(2100)/132/90 =0.354, and, from the equation 

for crV given in Appendix C, the critical speed could be increased by a factor up to 0.354-0.4 = 1.52, which 

would be higher than any critical speed of interest.  Thus the guideway specified by Table 2 does not im-

pose a speed limit.  The more likely cause of a speed limit results from the fact that the thrust required to 

overcome air drag is proportional to the square of speed, which, for the same guideway will require mo-

tors larger in proportion to the increased thrust.   

The practical conclusion is that to move at speeds upward of say 100 mph, higher-powered vehicles are 

needed, which divides the problem into two classes of vehicles: one set for urban speeds and a second set 

for inter-city speeds.  Both, however, can operate on the same guideway.   

 

Appendix A.  Compression in the Diagonals 

It is important to determine if there will be any condition in which some of the diagonals could be sub-

ject to high enough compressive loads to buckle.  Knowing the sign of shear on the guideway cross 

section under uniform load, we have placed the diagonals in the direction that will place them in ten-

sion when the load is uniform.   We need to determine if there can be loading conditions that may 

place some of the diagonals in compression.   To set the ground work, it is necessary to first determine 

the magnitude and distribution of shear when the guideway is under uniform load. 

The Guideway with a Uniform Load Only 

 

Consider a beam of length L clamped at both ends and subject to a uniform load w lb/in.  The verti-

cal reaction force at each end is / 2.R wL   The moment M must be applied at each end to force 

the slope there to zero.  Let x be the coordinate along the beam with 0x  at the left end and x L at 

the right end.  Let  y x be the deflection of the beam.  The differential equation for beam deflection 

is 
2 2

2
( )

2

d y wx
EI M x M Rx

dx
     

in which E is the modulus of elasticity and I is the moment of inertia.  Integrating once, the slope is 

given by 
2 3

2 2 6

dy wL x wx
EI Mx

dx
    

Because of symmetry, the slope is zero at the center of the beam.  Thus 

 
2

21
.

2 4 24 12

wL L L
M w wL    

Integrating once more, the deflection of the beam is 

 

 
2 2 3 4 2

2 22
24 12 24 24

w L x Lx x wx
y L Lx x

EI

 
      

 
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from which the maximum deflection at the center / 2x L is the well-known value 

 

4

max
384

wL
y

EI
  

 

Note that the bending moment can now be written in the form 

 

2 2

( )
12 2 2

wL wL wx
M x x    

We see that the values of x at which the moment is zero are solutions of the quadratic equation 

 
2

2 0
6

L
x Lx    

Thus, the moment is zero at the points 

 

1 1
1 0.211, 0.789

2 3

x

L

 
    

 
 

i.e., the moment is zero at the point 21% from each end of the beam, which makes it the logical place 

for an expansion joint. 

 

The shear force in the beam is the derivative of the moment.  Thus 

 

( )
2

L
Shear x w x

 
   

 
 

Thus Shear goes from 
2

wL
 at the left end of the beam to 0  at the center to 

2

wL
 at the right end. 

 

The Guideway with a Point Load added to the Uniform Load 

 

Now consider the same beam subject to a point load P at a point a from the left end.  In this case let 

the empty weight of the beam per unit of length be .ew   Also, in this case, the left and right end mo-

ments ,L RM M are in general different and the left and right end reactions ,L RR R are in general dif-

ferent.  The differential equation for the beam is 

 
22

2
( )

2

e
L L

w xd y
EI M x M R x P x a

dx
       

 

in which the notation 〈𝑥 − 𝑎〉 = 𝑥 − 𝑎 𝑖𝑓 𝑥 ≥ 𝑎 but 0 𝑖𝑓 𝑥 < 𝑎.  Integrating once 

 



40 
 

232

2 6 2

e
L L

P x aw xdy x
EI M x R

dx


     

 

Since the slope is zero at the right end of the beam, we have 

 

 
22

2 6 2

eL
L

P L aw LR L
M

L


    

Integrating once more we have 

 

𝐸𝐼𝑦 =  𝑀𝐿
𝑥2

2
− 𝑅𝐿

𝑥3

6
+ 𝑤𝑒

𝑥4

24
+ 𝑃

〈𝑥 − 𝑎〉3

6
 

 

Since the deflection is zero at the right end, we have a second equation for .LM  Thus 

 

 
32

23 12 3

eL
L

P L aw LR L
M

L


    

 

Equating the two formulae for LM and multiplying by 6/L we get 

 

𝑅𝐿 =
𝑤𝑒𝐿

2
+ 𝑃 (1 −

𝑎

𝐿
)
2

(1 + 2
𝑎

𝐿
) 

 

The shear in the beam is 

 

𝑆(𝑥, 𝑎) =
𝑑𝑀(𝑥)

𝑑𝑥
= −𝑅𝐿 +𝑤𝑒𝑥 + 𝑃

𝑑

𝑑𝑥
〈𝑥 − 𝑎〉 

 

where  
𝑑

𝑑𝑥
〈𝑥 − 𝑎〉 = 1 if 𝑥 > 𝑎, otherwise 0.  Substituting for RL 

 

𝑆(𝑥, 𝑎) = −
𝑤𝑒𝐿

2
(1 −

2𝑥

𝐿
) − 𝑃 [𝐴 −

𝑑

𝑑𝑥
〈𝑥 − 𝑎〉] 

where  

 

𝐴 = (1 −
𝑎

𝐿
)
2

(1 + 2
𝑎

𝐿
) = (1 − 2

𝑎

𝐿
+
𝑎2

𝐿2
) (1 + 2

𝑎

𝐿
) = 1 − 3

𝑎2

𝐿2
+ 2

𝑎3

𝐿3
= 1 −

𝑎2

𝐿2
 (3 − 2

𝑎

𝐿
) 

 

Note that 𝐴 = 1 when 𝑎 = 0, 𝐴 =
5

32
when 𝑎 = 𝐿/4 and  𝐴 =

1

2
when 𝑎 =

𝐿

2
.   

If x > a  

𝑆(𝑥, 𝑎) = −
𝑤𝑒𝐿

2
(1 −

2𝑥

𝐿
) + 𝑃(1 − 𝐴) = −

𝑤𝑒𝐿

2
(1 −

2𝑥

𝐿
) + 𝑃

𝑎2

𝐿2
 (3 − 2

𝑎

𝐿
) 
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Thus, at x/L = ½, S is positive at the center of the guideway.  This means that one or more of the diagonals will 

be in compression.  With one vehicle at the center of the span, a/L = ½, so positive shear there is equal to one 

half the vehicle weight.  Now suppose this vehicle is trailed at one minimum headway by a vehicle of the same 

weight.  Suppose the speed is 30 mph or 44 ft/sec and the minimum headway is 0.5 sec.  Then the second vehi-

cle would be 22 ft behind the first.  With a span of 90 ft, this is close to a quarter of the span, implying a/L = ¼, 

in which case 1 – A = 5/32.   So with these two vehicles on the span, the maximum shear at the center would 

be P(1/2 + 5/32) = 0.656P.   With a vehicle gross weight of 2100 lb, the maximum shear would be 

0.656(2100) = 1378 lb.  As shown in Section 7, the compressive force in the diagonal would be greater by the 

factor 
√542+312

31
= 2.009.   Thus, the maximum compressive force in the diagonal brace would be 

(2.009)(1378) = 2768 lb, which compares with the buckling load given in Table  1, Section 7 of 7177 lb.  Since 

this calculation gives the highest compressive force in any of the diagonals, it is clear that none of the diago-

nals will buckle. 
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The Guideway-Support Posts 
 

We have specified that the support posts be thin-walled, octagonal, tapered steel.  The preferred 

manufacturer is Millerbernd of Winsted, Minnesota.  With their equipment, it is much less ex-

pensive to manufacture octagonal posts rather than round posts.  In this paper, we develop their 

properties. 

 

Cross sectional Moment of Inertia of a Solid Octagonal Cross Section 

 

Let the post diameter be D and the length of each of the eight equal sides be s.  Then,  

 

𝑠 =
𝐷

1 + √2
(
1 − √2

1 − √2
) = 𝐷(√2 − 1),        𝑠2 = 𝐷2(3 − 2√2), 𝑠4 = 𝐷4(17 − 12√2)  

 

Establish an x-y coordinate system with origin at the center of the post.   Then consider the first 

quadrant of the cross section, which is divided into three parts.  Thus 

 

𝐼

4
= ∫ 𝑦2 (

𝑠

2
) 𝑑𝑦 + ∫ 𝑦2 (

𝐷

2
−
𝑠

2
) 𝑑𝑦 + ∫ 𝑦2 (

𝐷

2
− 𝑦)𝑑𝑦

𝐷
2

𝑠
2

𝑠
2

0

𝐷/2

0

=
𝑠

6
(
𝐷

2
)
3

+
1

6
(𝐷 − 𝑠) (

𝑠

2
)
3

+
𝐷

6
[(
𝐷

2
)
3

− (
𝑠

2
)
3

] −
1

4
[(
𝐷

2
)
4

− (
𝑠

2
)
4

]

=
1

48
[𝑠𝐷3 + 𝐷𝑠3 − 𝑠4 + 𝐷4 − 𝐷𝑠3 −

48

64
(𝐷4 − 𝑠4)] =

1

48
(
𝐷4

4
+ 𝑠𝐷3 −

𝑠4

4
) 

 

𝐼 =
𝐷4

48
(1 + 4√2 − 4 − 17 + 12√2) =

(4√2 − 5)

12
𝐷4 

 

 

The moment of inertia of the cross section of a hollow cross section of material thickness t, is 

 

𝐼 =
(4√2 − 5)

12
[𝐷4 − (𝐷 − 2𝑡)4] 

 

Bending stress due to Side Wind 

 

The bending stress is given by the well-known formula 

 

𝜎 =
𝑀𝑐

𝐼
 

 

where 𝑐 =
𝐷

2
.  Thus, for our post 
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𝜎 =
𝑀

0.876𝑡𝐷2
 

 

We have determined that the value of D at the base of the post should be 24 inches, and that  

t = 5/16 in.  With 𝜎 = 15,000 𝑝𝑠𝑖, the maximum moment is 

 

                           𝑀 = (15,000 𝑝𝑠𝑖)(0.876)(
5

16
")(24)2

1 𝑓𝑡

12 𝑖𝑛
= 197,000 ft-lb. 

 

Assuming 17.5 ft to the center of the guideway, the maximum wind force per foot on a 90-ft sec-

tion of guideway is 

 

197,000

17.5(90)
= 125

𝑙𝑏

𝑓𝑡
. 

  

The wind force on a guideway of depth H per foot is given by 

 

𝐹𝑤𝑖𝑛𝑑 =
𝜌𝑔

2𝑔
𝐶𝐷𝐻𝑉𝑤𝑖𝑛𝑑

2 =
(0.075

𝑙𝑏
𝑓𝑡3
)

64.4 𝑓𝑡/𝑠𝑒𝑐2
(0.6)(3.25 𝑓𝑡)𝑉𝑤𝑖𝑛𝑑

2 =
𝑉𝑤𝑖𝑛𝑑
2

440
= 125 

 

𝑉𝑤𝑖𝑛𝑑𝑚𝑎𝑥 = √(125)(440) = 235 𝑓𝑡/ sec = 160 𝑚𝑝ℎ 

 

The specified maximum wind in Chicago was 100 mph and in Florida 120 mph. 

 

Bending Stress due to Vertical Guideway Loading 

 

The bending moment at the support of a uniformly loaded beam is 

𝑀 =
1

12
𝑤𝐿2 

 

Where L = 90 ft is the span and w = 150 + 122 = 272 lb/ft.  Thus 

 

                                                           𝑀 =
272×902

12
= 183,600 ft-lb, 

 

which is 7% less than the 197,000 ft-lb that would give a maximum stress of 15,000 psi. 

 

 

Shear Stress due to Twisting of the Post 

 

The twisting moment at a post due to side wind is 
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𝑀𝑡𝑤𝑖𝑠𝑡 =
𝑤𝑤𝑖𝑛𝑑𝐿

2

12
 

 

With a side wind of 120 mph or 176 ft/sec, 

 

𝑤𝑤𝑖𝑛𝑑 =
(176)2

440
= 70.4 𝑙𝑏/𝑓𝑡 

 

Thus, with L = 90 ft 

 

                                                           𝑀𝑡𝑤𝑖𝑠𝑡 =
70.4(90)2

12
= 47,520 ft-lb. 

 

𝑆ℎ𝑒𝑎𝑟𝑆𝑡𝑟𝑒𝑠𝑠 × 𝐴𝑟𝑒𝑎 × 𝑅𝑎𝑑𝑖𝑢𝑠 = 𝑀𝑡𝑤𝑖𝑠𝑡 
 

𝑆ℎ𝑒𝑎𝑟𝑆𝑡𝑟𝑒𝑠𝑠 =
47,520 × 12𝑖𝑛𝑙𝑏

8𝑠𝑡 × 𝐷/2
=
570,000(1 + √2)

4(5/16)𝐷2
=
1,101,000

𝐷2
 

 

Assume the taper in the post is 2:1, i.e., D = 12 in at the top of the post.  Then the maximum 

shear stress is 7,646 psi, which is acceptable for mild steel.  

 

Savings in Steel with Tapered Post 

 

𝑉𝑜𝑙𝑢𝑚𝑒𝑆𝑎𝑣𝑒𝑑 =
8𝑡𝐿

1 + √2
[𝐷(0) −

3

4
𝐷(0)] =

2𝑡𝐿𝐷(0)

(1 + √2)
=
2(5/16)(16 × 12)(24)

1 + √2

= 1193𝑖𝑛3 ×
0.284𝑙𝑏

𝑖𝑛3
= 339𝑙𝑏. 

 

The Deflection of a Tapered Post 

 

The moment equation for a tapered column of length L under a point load P at the end is 

 

𝐸𝐼𝑦" = 𝐸 {
(4√2 − 5)

12
[𝐷4 − (𝐷 − 2𝑡)4]}

𝑑2𝑦

𝑑𝑥2
= 𝑃(𝐿 − 𝑥) = 𝑃𝐿 (1 −

𝑥

𝐿
) 

  

Let 

 

𝛼 =
4√2 − 5

12
,   𝐷4 − (𝐷 − 2𝑡)4 = 8𝑡𝐷3 − 24𝑡2𝐷2 + 32𝑡3𝐷 − 16𝑡4 ≈ 8𝑡𝐷2(𝐷 − 3𝑡) 

 

in which for our post 
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𝐷(𝑥) = 𝐷(0) − [𝐷(0) − 𝐷(𝐿)]
𝑥

𝐿
= 𝐷(0) {1 − [1 −

𝐷(𝐿)

𝐷(0)
]
𝑥

𝐿
} ,

𝐷(𝐿)

𝐷(0)
=
1

2
 

Thus 

𝐷(𝑥) = 𝐷(0) (1 −
𝑥

2𝐿
) 

 

Let 𝑢 = 1 −
𝑥

2𝐿
, 𝑑𝑢 = −

𝑑𝑥

2𝐿
, 𝐷𝑜 = 𝐷(0).  Then 

 

8𝛼𝑡𝐸𝐷𝑜
3𝑢2 (𝑢 −  

3𝑡

𝐷𝑜
)
1

4𝐿2
𝑑2𝑦

𝑑𝑢2
= 𝑃𝐿[1 − 2(1 − 𝑢)] 

Let 

𝑘 =
𝑃𝐿3

2𝛼𝑡𝐸𝐷𝑜
3 , 𝛽 =

3𝑡

𝐷𝑜
 

Then 

𝑑2𝑦

𝑑𝑢2
= 𝑘

(2𝑢 − 1)

𝑢3 − 𝛽𝑢2
= 𝑘 [

2

𝑢(𝑢 − 𝛽)
−

1

𝑢2(𝑢 − 𝛽)
] ≅ 𝑘 (

2

𝑢2
−
1

𝑢3
) 

  

Then 

𝑑𝑦

𝑑𝑢
= 𝑘 (−

2

𝑢
+
1

2𝑢2
) + 𝐶1 

 

When 𝑥 = 0, 𝑢 = 1 and 
𝑑𝑦

𝑑𝑢
= 0.   Thus 

 

𝐶1 = 𝑘 (2 −
1

2
) =

3

2
𝑘,

𝑑𝑦

𝑑𝑢
= 𝑘 (

3

2
−
2

𝑢
+
1

2𝑢2
) 

 

𝑦 = 𝑘 [
3

2
− 2𝑙𝑛(𝑢) −

1

2𝑢
] + 𝐶2 

 

When 𝑢 = 1, 𝑦 = 0.  Thus 

 

𝐶2 = −𝑘 

 

Thus, 

 

𝑦 =
𝑘

2
[1 −

1

𝑢
− 4𝑙𝑛(𝑢)] 

When 𝑥 = 𝐿, 𝑢 =
1

2
.  Thus 
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𝑦(𝐿) = 𝑘[2𝑙𝑛(2) − 1] = 0.386𝑘 =
0.386𝑃𝐿3

2𝛼𝑡𝐸𝐷𝑜
3 = 3.53

𝑃𝐿3

𝐸𝑡𝐷𝑜
3 =

3.53(16 × 12)3𝑃

29.5(10)6(5/16)(24)3

= 0.000196𝑃 = 0.000196(125)(90) = 2.2 in. 

 
The Base Plate 

 

Let the base of the post be welded to a 2-in-thick square steel plate 36 in on each side secured to 

its foundation with four bolts spaced 30 in apart.  Then, to resist a bending moment of 200,000 

ft-lb, each bolt will be subject to a normal force of 

 

𝐹𝑏𝑜𝑙𝑡 =
1

2

200,000 𝑓𝑡𝑙𝑏

2.5 𝑓𝑡
= 40,000 𝑙𝑏 

 

For A307 steel bolts a tolerable design stress is 30,000 psi.  Thus the root diameter d of each bolt 

must be at least 

𝜋
𝑑2

4
=
40,000

30,000
, 𝑑 ≥ 1.4 in 

 

The maximum shear stress in the base plate must be determined by finite-element analysis. 
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Ride Comfort in a Vehicle moving on a Flexible Surface 

 

Abstract 

 

This paper treats the problem of the requirements for ride comfort as a vehicle moves at 

constant speed along a flexible running surface that is supported at fixed, equal distances.  

The model used permits vertical and pitch motion, and compares with a standard comfort 

value the vertical acceleration of a passenger modeled as a point at its center of gravity and 

riding on a sprung and damped seat.  The solution depends on thirteen parameters: the wave 

length and amplitude of deflection of the running surface, the wheelbase of the vehicle, its 

radius of gyration, the position of its center of gravity, the empty weight of the vehicle, the 

elasticity and damping of the tires, the speed, the horizontal position of the passenger, the 

weight of the passenger, and the passenger-seat spring constant and damping ratio.  The 

equations of motion are solved analytically and results are presented for a useful range of 

parameters, thus providing information needed for design.  With a midspan deflection of 

0.055 in and reasonable passenger-seat stiffness, the vertical accelerations that will be ex-

perienced by the passenger are well below the comfort limit. 

 

1. Introduction 

 

A flexible running surface of an elevated ITNS system is supported at equal intervals 𝜆 along the 

direction of motion.  Therefore, there will be a certain amount of up-down motion as a vehicle 

passes.  The purpose of this analysis is to estimate the tolerable amount of deflection of the running 

surface as determined by the oscillating vertical acceleration felt by the passengers.  The tolerable 

vertical acceleration is given in the following Figure 3-1, which is taken from the International 

Standards Organization.  The stiffness k and damping ratio 𝜁 of the support tires is taken into 

account and the passenger is supported by a seat with a given stiffness 𝑘𝑠 and damping ratio 𝜁𝑠.   
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2. Problem Definition 

 
Figure 1. Notation used in analysis of a vehicle moving over a flexible guideway. 

 

The notation used is shown in Figure 1.  Assume the vehicle moves to the right as a rigid body at 

a speed V with its center of gravity (c. g.) measured from a fixed point x = 0 as 

 

      𝑥 = 𝑥𝑐𝑔 = 𝑉𝑡.                                                                   (1) 

 

We take a z coordinate positive upward, and a pitch angle 𝜃, positive in the counterclockwise di-

rection.  The z and 𝜃 coordinates relate to a smooth, flat, horizontal reference plane placed so 

that when 0z   and 𝜃 = 0 the undeflected tires just touch the reference plane.  The external 

forces on the vehicle are the tire forces F1 and F2 on the rear and front pairs of wheels, respec-

tively, and the force Fp of the passenger on its seat, which is a distance xp forward of the rear tire 

contact point.  The center of gravity of the empty vehicle is at a distance x1 forward of the rear- 

tire contact point, and at a distance x2 aft of the front-tire contact point, so the wheelbase L is x1 

+ x2.  Let 𝑥1𝑝 ≡ 𝑥1 − 𝑥𝑝.  The horizontal drag forces are balanced by the thrust of the motor.  

The internal paper “Deflection of the Running Surface” shows that with the current design, a 

midspan deflection between supports 54 inches apart of 0.023 inch can be expected with half-

inch thick angles.  The question here is: “Is this adequate?”  The conclusion of this paper is that 

ride comfort is more than acceptable if the midspan deflection is 0.055”.  Thus we can use the 

half-inch angle. 

 

3. Deflections 

 

Let the running surface be described by 

𝑧𝑠 = 𝑧𝑜𝑒
2𝜋𝑖𝑥𝑐𝑔/𝜆 = 𝑧𝑜𝑒

𝑖𝜔𝑡 

          (2) 

where 𝜆 is the wave length of a sinusoidally varying running surface and 2zo is the deflection 

from peak to trough.  In equation (2) 
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𝜔 = 2𝜋
𝑉

𝜆
 

          (3) 

and 

𝑓 =
𝑉

𝜆
 

            (4) 

is called the “crossing frequency.” 

 

When the vehicle is moving along with its c. g. bouncing up and down an amount 𝑧(𝑡) and rocking 

back and forth at an angle 𝜃(𝑡) the deflections of the rear and front tires, respectively, using equa-

tion (2) are given by the equations 

 

𝛿1 = −𝑧 + 𝑥1𝜃 + 𝑧𝑜𝑒
2𝜋𝑖(𝑥𝑐𝑔−𝑥1)/𝜆 = −𝑧 + 𝑥1𝜃 + 𝑧𝑜𝑒

−2𝜋𝑖𝑥1𝑒𝑖𝜔𝑡 

�̇�1 = −�̇� + 𝑥1�̇� + 𝑖𝜔𝑧𝑜𝑒
−2𝜋𝑖𝑥1𝑒𝑖𝜔𝑡 

         (5) 

𝛿2 = −𝑧 − 𝑥2𝜃 + 𝑧𝑜𝑒
2𝜋𝑖(𝑥𝑐𝑔+𝑥2)/𝜆 = −𝑧 − 𝑥2𝜃 + 𝑧𝑜𝑒

2𝜋𝑖𝑥2𝑒𝑖𝜔𝑡 

�̇�2 = −�̇� − 𝑥2�̇� + 𝑖𝜔𝑧𝑜𝑒
2𝜋𝑖𝑥2𝑒𝑖𝜔𝑡 

         (6) 

The vertical position of the unloaded passenger seat is at 

 

𝑧𝑠𝑒𝑎𝑡 = 𝑧𝑠𝑒𝑎𝑡0 + Δ𝑧 − 𝑥1𝑝𝜃, �̇�𝑠𝑒𝑎𝑡 = Δ�̇� − 𝑥1𝑝�̇� 

(7) 

The vertical position of the passenger, represented as a point, is at 𝑧𝑝 < 𝑧𝑠𝑒𝑎𝑡, which means that 

the spring force of the seat is proportional to   𝑧𝑠𝑒𝑎𝑡 − 𝑧𝑝. 

 

The static balance of forces is obtained by taking the static moment about both the front and rear 

tire contact points.  Thus 

 

𝐹1𝐿 = 2𝑘𝛿1𝐿 = 𝑊𝑥2 +𝑊𝑝(𝑥1𝑝 + 𝑥2)   

𝐹2𝐿 = 2𝑘𝛿2𝐿 = 𝑊𝑥1 +𝑊𝑝𝑥𝑝 

2𝑘(𝛿1 + 𝛿2) = 𝑊 +𝑊𝑝 

𝛿𝑚 =
𝛿1 + 𝛿2
2

=
𝑊𝑔𝑟𝑜𝑠𝑠

4𝑘
 

(8) 

4. The Forces and Equation of Motion 

 

The force-deflection relationship of each of the pair of front and back tires is linear, each with a 

spring constant k and damping constant c.  Thus, the forces on the rear and front pair of tires are 

given respectively by 

 

𝐹1 = 2𝑘𝛿1 + 2𝑐�̇�1 ≡ 2𝑘(𝛿𝑠𝑡𝑎𝑡𝑖𝑐1 + Δ𝛿1) + 2𝑐Δ�̇�1 
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      (9) 

𝐹2 = 2𝑘𝛿2 + 2𝑐�̇�2 ≡ 2𝑘(𝛿𝑠𝑡𝑎𝑡𝑖𝑐2 + Δ𝛿2) + 2𝑐Δ�̇�2 

                                                             (10)  

The downward force of the passenger on the seat is 

 

𝐹𝑝 = 𝑘𝑠(𝑧𝑠𝑒𝑎𝑡 − 𝑧𝑝) + 𝑐𝑠(�̇�𝑠𝑒𝑎𝑡 − �̇�𝑝) 

(11) 

The equations of motion of the vehicle are 

 
𝑊

𝑔
�̈� = −𝑊 + 𝐹1 + 𝐹2 − 𝐹𝑝 = 2𝑘(Δ𝛿1 + Δ𝛿2) + 2𝑐(∆�̇�1 + ∆�̇�2) − 𝐹𝑝 

          (12) 
𝑊

𝑔
𝑟𝑔
2�̈� = 𝐹2𝑥2 − 𝐹1𝑥1 + 𝐹𝑝𝑥1𝑝 = 2𝑘(∆𝛿2𝑥2 − ∆𝛿1𝑥1) + 2𝑐(Δ�̇�2𝑥2 − Δ�̇�1𝑥1) + 𝐹𝑝𝑥1𝑝 

          (13) 

in which gr is the radius of gyration of the vehicle and it is assumed that the static tire forces 

equal the weight of the vehicle and passenger.  The equation of motion of the passenger is   

    
𝑊𝑝

𝑔
�̈�𝑝 = −𝑊𝑝 + 𝑘𝑠(𝑧𝑠𝑒𝑎𝑡 − 𝑧𝑝) + 𝑐𝑠(�̇�𝑠𝑒𝑎𝑡 − �̇�𝑝) 

= 𝑘𝑠(Δ𝑧 − 𝑥1𝑝𝜃 − 𝑧𝑝) + 𝑐𝑠(Δ�̇� − 𝑥1𝑝�̇� − �̇�𝑝) 

(14) 

in which it is assumed that the static force of the seat on the passenger is balanced by the passen-

ger weight. 

 

4. The Solution 

 

 The solution of equations (12), (13) and (14) for oscillatory motion can be expressed as 

 

∆𝑧 = 𝑧𝑚𝑒
𝑖𝜔𝑡, 𝜃 = 𝜃𝑚𝑒

𝑖𝜔𝑡,       𝑧𝑝 = 𝑧𝑝𝑚𝑒
𝑖𝜔𝑡 

    (15)  

where the subscript m indicates the maximum value measured from the mean position.  Substitute 

the solutions (15) and the variable part of the deflections (5), (6), and (8) into the equations of 

motion (12), (13) and (14) and define 

 

𝜔𝑛
2 =

4𝑘𝑔

𝑊
,   2𝜁𝜔𝑛 =

𝑐𝑔

𝑊
 

𝜔𝑠𝑣
2 =

𝑘𝑠𝑔

𝑊
, 2𝜁𝑠𝜔𝑠𝑣 =

𝑐𝑠𝑔

𝑊
, 𝜔𝑠𝑒𝑎𝑡

2 =
𝑘𝑠𝑔

𝑊𝑝
,        2𝜁𝑠𝜔𝑠𝑒𝑎𝑡 =

𝑐𝑠𝑔

𝑊𝑝
 

         (17) 

After dividing by i te   and W/g, equations (12) and (13) become 
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−𝜔2𝑧𝑚 = −(
𝜔𝑛
2

2
+ 4𝜍𝜔𝑛𝑖𝜔) [2𝑧𝑚 + (𝑥2 − 𝑥1)𝜃𝑚 − 𝑧𝑜 (𝑒

𝑖2𝜋
𝑥2
𝜆 + 𝑒−𝑖2𝜋

𝑥1
𝜆 )]

− (𝜔𝑠𝑣
2 + 2𝑖𝜔𝜁𝑠𝜔𝑠𝑣)(𝑧𝑚 − 𝑥1𝑝𝜃𝑚 − 𝑧𝑝𝑚) 

       (18) 

−𝜔2𝑟𝑔
2𝜃𝑚 = −(

𝜔𝑛
2

2
+ 4𝜁𝜔𝑛𝑖𝜔) [𝑧𝑚(𝑥2 − 𝑥1) + 𝜃𝑚(𝑥2

2 + 𝑥1
2) − 𝑧𝑜 (𝑥2𝑒

2𝜋𝑖
𝑥2
𝜆 − 𝑥1𝑒

−2𝜋𝑖
𝑥1
𝜆 )]

+ (𝜔𝑠𝑣
2 + 2𝑖𝜔𝜁𝑠𝜔𝑠𝑣)(𝑧𝑚 − 𝑥1𝑝𝜃𝑚 − 𝑧𝑝𝑚)𝑥1𝑝 

            (19) 

After dividing by Wp/g and 𝑒𝑖𝜔 equation (14) becomes 

 

−𝜔2𝑧𝑝𝑚 = (𝜔𝑠𝑒𝑎𝑡
2 + 2𝑖𝜔𝜁𝑠𝜔𝑠𝑒𝑎𝑡)(𝑧𝑚 − 𝑥1𝑝𝜃𝑚 − 𝑧𝑝𝑚) 

(20) 

Let  

𝑃 ≡ 𝜔𝑛
2 (
𝑥1
2 + 𝑥2

2

2
) − 𝜔2𝑟𝑔

2 + 𝜔𝑠𝑣
2 𝑥1𝑝

2  

         (21) 

𝑄 ≡ 𝜔𝑛
2 (
𝑥2 − 𝑥1
2

) − 𝜔𝑠𝑣
2 𝑥1𝑝 

(22) 

 𝑅 ≡ 4𝜁𝜔𝑛𝜔(𝑥2 − 𝑥1) − 2𝜁𝑠𝜔𝑠𝑣𝜔𝑥1𝑝 

(23) 

𝑆 ≡ 4𝜁𝜔𝑛𝜔(𝑥1
2 + 𝑥2

2) + 2𝜁𝑠𝜔𝑠𝑣𝜔𝑥1𝑝
2  

     (24) 

Then, equations (18), (19) and (20) become 

 

(𝜔𝑛
2 − 𝜔2 + 8𝑖𝜔𝜁𝜔𝑛 + 𝜔𝑠𝑣

2 + 2𝑖𝜔𝜁𝑠𝜔𝑠𝑣)𝑧𝑚 + (𝑄 + 𝑖𝑅)𝜃𝑚 − (𝜔𝑠𝑣
2 + 2𝑖𝜔𝜁𝑠𝜔𝑠𝑣)𝑧𝑝𝑚

= (
𝜔𝑛
2

2
+ 4𝑖𝜔𝜁𝜔𝑛) 𝑧𝑜 (𝑒

𝑖2𝜋
𝑥2
𝜆 + 𝑒−𝑖2𝜋

𝑥1
𝜆 ) 

(25) 

(𝑄 + 𝑖𝑅)𝑧𝑚 + (𝑃 + 𝑖𝑆)𝜃𝑚 + (𝜔𝑠𝑣
2 + 2𝑖𝜔𝜁𝑠𝜔𝑠𝑣)𝑥1𝑝𝑧𝑝𝑚

= (
𝜔𝑛
2

2
+ 4𝑖𝜔𝜁𝜔𝑛) 𝑧𝑜 (𝑥2𝑒

𝑖2𝜋
𝑥2
𝜆 − 𝑥1𝑒

−𝑖2𝜋
𝑥1
𝜆 ) 

            (26) 

               𝜔𝑠𝑒𝑎𝑡(𝜔𝑠𝑒𝑎𝑡 + 2𝑖𝜔𝜁𝑠)(𝑧𝑚 − 𝑥1𝑝𝜃𝑚) + [𝜔
2 − 𝜔𝑠𝑒𝑎𝑡(𝜔𝑠𝑒𝑎𝑡 + 2𝑖𝜔𝜁𝑠)]𝑧𝑝𝑚 = 0  

          (27) 

We are interested in the amplitude of the vertical acceleration of the passenger,  

 

|�̈�𝑝𝑚| = 𝜔𝑠𝑒𝑎𝑡
2 |𝑧𝑝𝑚| 

           (28) 
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We must solve equations (25), (26) and (27) for 𝑧𝑝𝑚.  To do so without excessive algebra, let 

these three equations be represented as follows: 

 

𝐴 𝑧𝑚 + 𝐵𝜃𝑚 + 𝐶𝑧𝑝𝑚 = 𝑅1     

𝐷𝑧𝑚 + 𝐸𝜃𝑚 + 𝐹𝑧𝑝𝑚 = 𝑅2  

 𝐺𝑧𝑚 + 𝐻𝜃𝑚 + 𝐾𝑧𝑝𝑚 = 0 

(29) 

in which 

𝐴 = 𝜔𝑛
2 − 𝜔2 + 𝜔𝑠𝑣

2 + 2𝑖𝜔(4𝜁𝜔𝑛 + 𝜁𝑠𝜔𝑠𝑣)    

𝐵 = 𝑄 + 𝑖𝑅   

𝐶 = −𝜔𝑠𝑣(𝜔𝑠𝑣 + 2𝑖𝜔𝜁𝑠)   

𝐷 = 𝐵   

𝐸 = 𝑃 + 𝑖𝑆  

𝐹 = −𝐶𝑥1𝑝  

𝐺 = 𝜔𝑠𝑒𝑎𝑡(𝜔𝑠𝑒𝑎𝑡 + 2𝑖𝜔𝜁𝑠)  

𝐻 = −𝐺𝑥1𝑝   

𝐾 = 𝜔2 − 𝐺 

𝑅1 = 𝑧𝑜𝜔𝑛 (
𝜔𝑛
2
+ 4𝑖𝜔𝜁) (𝑒𝑖2𝜋

𝑥2
𝜆 + 𝑒−𝑖2𝜋

𝑥1
𝜆 ) 

𝑅2 = 𝑧𝑜𝜔𝑛 (
𝜔𝑛
2
+ 4𝑖𝜔𝜁) (𝑥2𝑒

𝑖2𝜋
𝑥2
𝜆 − 𝑥1𝑒

−𝑖2𝜋
𝑥1
𝜆 ) 

 

The third of equations (29) can be written as 

 

𝐺𝑧𝑚 = −𝐻𝜃𝑚 − 𝐾𝑧𝑝𝑚 

 

Multiply the first two of equations by G and substitute for 𝐺𝑧𝑚 to get 
 

−𝐴 (𝐻𝜃𝑚 + 𝐾𝑧𝑝𝑚) + 𝐺𝐵𝜃𝑚 + 𝐺𝐶𝑧𝑝𝑚 = 𝐺𝑅1     

−𝐷(𝐻𝜃𝑚 + 𝐾𝑧𝑝𝑚) + 𝐺𝐸𝜃𝑚 + 𝐺𝐹𝑧𝑝𝑚 = 𝐺𝑅2  

or 

(𝐺𝐵 − 𝐴𝐻)𝜃𝑚 + (𝐺𝐶 − 𝐴𝐾)𝑧𝑝𝑚 = 𝐺𝑅1   

(𝐺𝐸 − 𝐷𝐻)𝜃𝑚 + (𝐺𝐹 − 𝐷𝐾)𝑧𝑝𝑚 = 𝐺𝑅2 

Cross multiply and subtract: 

 

                                      (𝐺𝐸 − 𝐷𝐻)[(𝐺𝐵 − 𝐴𝐻)𝜃𝑚 + (𝐺𝐶 − 𝐴𝐾)𝑧𝑝𝑚 = 𝐺𝑅1]  

(𝐺𝐵 − 𝐴𝐻)[(𝐺𝐸 − 𝐷𝐻)𝜃𝑚 + (𝐺𝐹 − 𝐷𝐾)𝑧𝑝𝑚 = 𝐺𝑅2] 

[(𝐺𝐸 − 𝐷𝐻)(𝐺𝐶 − 𝐴𝐾) − (𝐺𝐵 − 𝐴𝐻)(𝐺𝐹 − 𝐷𝐾)]𝑧𝑝𝑚 = 𝐺[(𝐺𝐸 − 𝐷𝐻)𝑅1 − (𝐺𝐵 − 𝐴𝐻)𝑅2] 

or 
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𝑧𝑝𝑚 = 𝐺
(𝐺𝐸 − 𝐷𝐻)𝑅1 − (𝐺𝐵 − 𝐴𝐻)𝑅2

(𝐺𝐸 − 𝐷𝐻)(𝐺𝐶 − 𝐴𝐾) − (𝐺𝐵 − 𝐴𝐻)(𝐺𝐹 − 𝐷𝐾)
 

(30) 

Each of the terms in equation (30) has a real part and an imaginary part.  Use the subscript r for 

the real part and i for the imaginary part, and take into account the trigonometric identity

cos siniae a i a   .  The terms in equation (30), with the coefficient on the right side shown first, 

are  

Ψr + 𝑖Ψ𝑖 ≡ 𝜔𝑛𝜔𝑠𝑒𝑎𝑡 (
𝜔𝑛
2
+ 4𝑖𝜔𝜁) (𝜔𝑠𝑒𝑎𝑡 + 2𝑖𝜔𝜁𝑠)

= 𝜔𝑛𝜔𝑠𝑒𝑎𝑡 [
𝜔𝑛𝜔𝑠𝑒𝑎𝑡
2

− 8𝜔2𝜁𝜁𝑠 + 𝑖𝜔(4𝜁𝜔𝑠𝑒𝑎𝑡 + 𝜁𝑠𝜔𝑛)] 

 

(𝐺𝐸 − 𝐷𝐻) = (𝐺𝑟 + 𝑖𝐺𝑖)(𝐸𝑟 + 𝑖𝐸𝑖) − (𝐷𝑟 + 𝑖𝐷𝑖)(𝐻𝑟 + 𝑖𝐻𝑖) = 

(𝐺𝑟𝐸𝑟 − 𝐺𝑖𝐸𝑖 − 𝐷𝑟𝐻𝑟 + 𝐷𝑖𝐻𝑖) + 𝑖(𝐺𝑖𝐸𝑟 + 𝐺𝑟𝐸𝑖 − 𝐷𝑟𝐻𝑖 − 𝐷𝑖𝐻𝑟) 

≡ 𝐺𝐸𝐷𝐻𝑟 + 𝑖𝐺𝐸𝐷𝐻𝑖 
(𝐺𝐵 − 𝐴𝐻) = (𝐺𝑟𝐵𝑟 − 𝐺𝑖𝐵𝑖 − 𝐴𝑟𝐻𝑟 + 𝐴𝑖𝐻𝑖) + 𝑖(𝐺𝑖𝐵𝑟 + 𝐺𝑟𝐵𝑖 − 𝐴𝑟𝐻𝑖 − 𝐴𝑖𝐻𝑟) 

≡ 𝐺𝐵𝐴𝐻𝑟 + 𝑖𝐺𝐵𝐴𝐻𝑖 
(𝐺𝐶 − 𝐴𝐾) = (𝐺𝑟𝐶𝑟 − 𝐺𝑖𝐶𝑖 − 𝐴𝑟𝐾𝑟 + 𝐴𝑖𝐾𝑖) + 𝑖(𝐺𝑖𝐶𝑟 + 𝐺𝑟𝐶𝑖 − 𝐴𝑟𝐾𝑖 − 𝐴𝑖𝐾𝑟)

≡ 𝐺𝐶𝐴𝐾𝑟 + 𝑖𝐺𝐶𝐴𝐾𝑖 

                  (𝐺𝐹 − 𝐷𝐾) = (𝐺𝑟𝐹𝑟 − 𝐺𝑖𝐹𝑖 − 𝐷𝑟𝐾𝑟 + 𝐷𝑖𝐾𝑖) + 𝑖(𝐺𝑖𝐹𝑟 + 𝐺𝑟𝐹𝑖 − 𝐷𝑟𝐾𝑖 − 𝐷𝑖𝐾𝑟)  

≡ 𝐺𝐹𝐷𝐾𝑟 + 𝑖𝐺𝐹𝐷𝐾𝑖 

𝑒𝑖2𝜋
𝑥2
𝜆 + 𝑒−𝑖2𝜋

𝑥1
𝜆 = 𝑐𝑜𝑠2𝜋

𝑥2
𝜆
+ 𝑐𝑜𝑠2𝜋

𝑥1
𝜆
+ 𝑖 (𝑠𝑖𝑛2𝜋

𝑥2
𝜆
− 𝑠𝑖𝑛2𝜋

𝑥1
𝜆
) ≡ 𝛼𝑟 + 𝑖𝛼𝑖 

𝑥2𝑒
𝑖2𝜋

𝑥2
𝜆 − 𝑥1𝑒

−𝑖2𝜋
𝑥1
𝜆 = 𝑥2𝑐𝑜𝑠2𝜋

𝑥2
𝜆
− 𝑥1𝑐𝑜𝑠2𝜋

𝑥1
𝜆
+ 𝑖 (𝑥2𝑠𝑖𝑛2𝜋

𝑥2
𝜆
+ 𝑥1𝑠𝑖𝑛2𝜋

𝑥1
𝜆
) ≡ 𝛽𝑟 + 𝑖𝛽𝑖 

 

Thus, equation (30) can be written in the form 

 

𝑧𝑝𝑚 = 𝑧𝑜(Ψr + 𝑖Ψ𝑖) 

×
[(𝐺𝐸𝐷𝐻𝑟 + 𝑖𝐺𝐸𝐷𝐻𝑖)(𝛼𝑟 + 𝑖𝛼𝑖) − (𝐺𝐵𝐴𝐻𝑟 + 𝑖𝐺𝐵𝐴𝐻𝑖)(𝛽𝑟 + 𝑖𝛽𝑖)]

(𝐺𝐸𝐷𝐻𝑟 + 𝑖𝐺𝐸𝐷𝐻𝑖)(𝐺𝐶𝐴𝐾𝑟 + 𝑖𝐺𝐶𝐴𝐾𝑖) − (𝐺𝐵𝐴𝐻𝑟 + 𝑖𝐺𝐵𝐴𝐻𝑖)(𝐺𝐹𝐷𝐾𝑟 + 𝑖𝐺𝐹𝐷𝐾𝑖)
 

𝑁𝑢𝑚𝑟 = 𝐺𝐸𝐷𝐻𝑟𝛼𝑟 − 𝐺𝐸𝐷𝐻𝑖𝛼𝑖 − 𝐺𝐵𝐴𝐻𝑟𝛽𝑟 + 𝐺𝐵𝐴𝐻𝑖𝛽𝑖 

𝑁𝑢𝑚𝑖 = 𝐺𝐸𝐷𝐻𝑟𝛼𝑖 + 𝐺𝐸𝐷𝐻𝑖𝛼𝑟 − 𝐺𝐵𝐴𝐻𝑟𝛽𝑖 − 𝐺𝐵𝐴𝐻𝑖𝛽𝑟 

𝐷𝑒𝑛𝑟 = 𝐺𝐸𝐷𝐻𝑟 𝐺𝐶𝐴𝐾𝑟 − 𝐺𝐸𝐷𝐻𝑖 𝐺𝐶𝐴𝐾𝑖 − 𝐺𝐵𝐴𝐻𝑟 𝐺𝐹𝐷𝐾𝑟 + 𝐺𝐵𝐴𝐻𝑖 𝐺𝐹𝐷𝐾𝑖 

𝐷𝑒𝑛𝑖 = 𝐺𝐸𝐷𝐻𝑟 𝐺𝐶𝐴𝐾𝑖 + 𝐺𝐸𝐷𝐻𝑖 𝐺𝐶𝐴𝐾𝑟 − 𝐺𝐵𝐴𝐻𝑟 𝐺𝐹𝐷𝐾𝑖 − 𝐺𝐵𝐴𝐻𝑖  𝐺𝐹𝐷𝐾𝑟 

𝑧𝑝𝑚 = 𝑧𝑜(Ψr + 𝑖Ψ𝑖)
𝑁𝑢𝑚𝑟 + 𝑖𝑁𝑢𝑚𝑖
𝐷𝑒𝑛𝑟 + 𝑖𝐷𝑒𝑛𝑖

×
𝐷𝑒𝑛𝑟 − 𝑖𝐷𝑒𝑛𝑖
𝐷𝑒𝑛𝑟 − 𝑖𝐷𝑒𝑛𝑖

 

 

= 𝑧𝑜(Ψr + iΨi)
𝑁𝑢𝑚𝑟𝐷𝑒𝑛𝑟 + 𝑁𝑢𝑚𝑖𝐷𝑒𝑛𝑖 + 𝑖(𝑁𝑢𝑚𝑖𝐷𝑒𝑛𝑟 − 𝑁𝑢𝑚𝑟𝐷𝑒𝑛𝑖)

𝐷𝑒𝑛𝑟2 + 𝐷𝑒𝑛𝑖
2  

= 𝑧𝑜
𝛹𝑟𝑁𝑢𝑚𝐷𝑒𝑛𝑟𝑟𝑖𝑖 −𝛹𝑖𝑁𝑢𝑚𝐷𝑒𝑛𝑖𝑟𝑟𝑖 + 𝑖[𝛹𝑟𝑁𝑢𝑚𝐷𝑒𝑛𝑖𝑟𝑟𝑖 +𝛹𝑖𝑁𝑢𝑚𝐷𝑒𝑛𝑟𝑟𝑖𝑖]

𝐷𝑒𝑛𝑟2 + 𝐷𝑒𝑛𝑖
2  

(31) 
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The ISO ride-comfort standard is given in terms of the root-mean-square (r.m.s.) acceleration, 

which is the peak acceleration divided by 2 .  Thus the absolute value of the r.m.s. acceleration 

of the passenger c.g. in g’s can be expressed as 

 

|�̈�𝑝|𝑟𝑚𝑠
𝑔

=
𝜔𝑠𝑒𝑎𝑡
2 𝑧𝑜

𝑔√2
(

 
√𝑁𝑟2 + 𝑁𝑖

2

Denr2 + Deni
2

)

  

    (32) 

Equation (32), with the notation defined is programmed for numerical solution in the Appendix.  

Since �̈�𝑝 is proportional to the amplitude of the sinusoidal variation in the running surface,
oz , we 

calculate equation (32) for one value and the reader can easily determine �̈�𝑝 for other values.   

 

5. Discussion 

 

Results obtained by running the program given in the Appendix are tabulated below for twelve 

of the thirteen parameters listed first, and results are given for a range of speeds.  The first set of 

results is for a ‘best’ set of parameter.  Note that the calculated passenger acceleration is far be-

low the comfort limits, which are computed via a function listed at the end of the program, and 

based on ISO standards for a 25-minute ride. 

 

For the second set of results, I have increased the seat stiffness by a factor of 10.  In this case ride 

comfort exceeds the ISO standard, showing that seat suspension is essential to adequate ride 

comfort. 

 

For the third set of results, seat stiffness is restored to the previous value, but the weight of the 

passenger is reduced to 50 lb.  In this case the ride-comfort standard is exceeded only at the low-

est speed.  By reducing the seat stiffness to 400 lb/in, passenger acceleration reduces to 0.119 g, 

which is below the standard. 

 

For the fourth set of results, the vehicle c. g. and the passenger are both moved forward to the 

midpoint between the front and rear tires.  At the lowest speeds, passenger acceleration is in-

creased slightly, but it is still much below the standard with a 200 lb passenger. 

 

Any other combination of parameters can be tried, but are left to the systems engineering team. 

 

PARAMETERS USED TO DETERMINE RIDE COMFORT 

 Units are lb, in 

Vehicle empty weight . . . . . . . . . . .  1200 

Passenger weight . . . . . . . . . . . . . . .   200 

Vehicle radius of gyration . . . . . . . .    40 

Tire stiffness  . . . . . . . . . . . . . . . . . .  1500 

Tire damping ratio . . . . . . . . . . . . . .     0.3 
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Seat stiffness  . . . . . . . . . . . . . . . . . .   800 

Seat damping ratio . . . . . . . . . . . . . .     0.3 

Distance between running surface supports     54 

Distance between front and rear tires  . . . . .    80 

Distance of vehicle c.g. from rear tires . . . .    24 

Distance of passenger forward of rear tires .   16 

Midspan deflection of running surface  . . .     0.055 

 

Vehicle Speed  Frequency  Passenger Acceleration  Comfort Limit 

     mph            Hz              g's                    g's 

      10          3.259            0.027               0.214 

      15          4.889            0.009               0.180 

      20          6.519            0.005               0.180 

      25          8.148            0.003               0.182 

      30          9.778            0.002               0.210 

      35         11.407            0.001               0.242 

      40         13.037            0.001               0.278 

      45         14.667            0.001               0.321 

      50         16.296            0.001               0.369 

      55         17.926            0.001               0.425 

      60         19.556            0.000               0.490 

 

PARAMETERS USED TO DETERMINE RIDE COMFORT 

         Units are lb, in 

 

Vehicle empty weight . . . . . . . . . . .  1200 

Passenger weight . . . . . . . . . . . . .   200 

Vehicle radius of gyration . . . . . . . .    40 

Tire stiffness . . . . . . . . . . . . . .  1500 

Tire damping ratio . . . . . . . . . . . .     0.3 

Seat stiffness . . . . . . . . . . . . . .  8000 

Seat damping ratio . . . . . . . . . . . .     0.3 

Distance between running surface supports     54 

Distance between front and rear tires . .           80 

Distance of vehicle c.g. from rear tires             24 

Distance of passenger forward of rear tires      16 

Midspan deflection of running surface . .     0.055 

 

  Vehicle Speed   Frequency   Passenger Acceleration   Comfort Limit 

mph         Hz                g's                     g's 

      10          3.259            0.672               0.214 

      15          4.889            0.542               0.180 

      20          6.519            0.302               0.180 
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      25          8.148            0.156               0.182 

      30          9.778            0.091               0.210 

      35         11.407            0.059               0.242 

      40         13.037            0.042               0.278 

      45         14.667            0.031               0.321 

      50         16.296            0.024               0.369 

      55         17.926            0.019               0.425 

      60         19.556            0.016               0.490 

 

PARAMETERS USED TO DETERMINE RIDE COMFORT 

         Units are lb, in 

 

Vehicle empty weight . . . . . . . . . . .  1200 

Passenger weight . . . . . . . . . . . . .    50 

Vehicle radius of gyration . . . . . . . .    40 

Tire stiffness . . . . . . . . . . . . . .  1500 

Tire damping ratio . . . . . . . . . . . .     0.3 

Seat stiffness . . . . . . . . . . . . . .   800 

Seat damping ratio . . . . . . . . . . . .     0.3 

Distance between running surface supports     54 

Distance between front and rear tires  . .    80 

Distance of vehicle c.g. from rear tires      24 

Distance of passenger forward of rear tires   16 

Midspan deflection of running surface  . .     0.055 

 

  Vehicle Speed  Frequency  Passenger Acceleration  Comfort Limit 

     mph            Hz              g's                 g's 

      10          3.259            0.386               0.214 

      15          4.889            0.136               0.180 

      20          6.519            0.054               0.180 

      25          8.148            0.029               0.182 

      30          9.778            0.018               0.210 

      35         11.407            0.012               0.242 

      40         13.037            0.009               0.278 

      45         14.667            0.007               0.321 

      50         16.296            0.005               0.369 

      55         17.926            0.004               0.425 

      60         19.556            0.004               0.490 
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PARAMETERS USED TO DETERMINE RIDE COMFORT 

         Units are lb, in 

 

Vehicle empty weight . . . . . . . . . . .  1200 

Passenger weight . . . . . . . . . . . . .   200 

Vehicle radius of gyration . . . . . . . .    40 

Tire stiffness . . . . . . . . . . . . . .  1500 

Tire damping ratio . . . . . . . . . . . .     0.3 

Seat stiffness . . . . . . . . . . . . . .   800 

Seat damping ratio . . . . . . . . . . . .     0.3 

Distance between running surface supports     54 

Distance between front and rear tires  . .    80 

Distance of vehicle c.g. from rear tires      40 

Distance of passenger forward of rear tires   40 

Midspan deflection of running surface  . .     0.055 

 

  Vehicle Speed  Frequency  Passenger Acceleration  Comfort Limit 

     mph            Hz              g's                 g's 

      10          3.259            0.025               0.214 

      15          4.889            0.012               0.180 

      20          6.519            0.007               0.180 

      25          8.148            0.005               0.182 

      30          9.778            0.004               0.210 

      35         11.407            0.003               0.242 

      40         13.037            0.002               0.278 

      45         14.667            0.002               0.321 

      50         16.296            0.001               0.369 

      55         17.926            0.001               0.425 

      60         19.556            0.001               0.490 

 

Appendix 

 
'This program "RIDECOMF.BAS" calculates the vertical accelera-

tion of a 

'passenger riding in an ITNS vehicle on a flexible guideway. 

'Units are inch, pound, seconds 

 

DEFDBL A-Z 

DEFINT I 

DECLARE FUNCTION Acomfort (f) 

g = 32.174      'ft/s^2 

Pi = 4 * ATN(1) 

CLS 

W = 1200        'empty weight of vehicle, lb 
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Wp = 200        'weight of passenger, lb 

rg = 40         'in, radius of gyration of vehicle 

k = 1500        'tire stiffness, lb/in 

Zeta.tire = .3  'tire damping ratio 

k.seat = 800    'seat stiffness, lb/in 

Zeta.seat = .3  'seat damping ratio 

Lambda = 54     'distance between supports, in 

Wheelbase = 80  'in 

Veh.cg = .5 * Wheelbase 'Position of vehicle c.g. forward of 

rear tire 

xp = .5 * Wheelbase     'Position of passenger forward of rear 

tire 

MidspanDeflection = .055 

zo = MidspanDeflection / 2 

 

PRINT "PARAMETERS USED TO DETERMINE RIDE COMFORT" 

PRINT "         Units are lb, in" 

PRINT 

PRINT "Vehicle empty weight . . . . . . . . . . .  "; 

PRINT USING "####"; W 

PRINT "Passenger weight . . . . . . . . . . . . .  "; 

PRINT USING "####"; Wp 

PRINT "Vehicle radius of gyration . . . . . . . .  "; 

PRINT USING "####"; rg 

PRINT "Tire stiffness . . . . . . . . . . . . . .  "; 

PRINT USING "####"; k 

PRINT "Tire damping ratio . . . . . . . . . . . .  "; 

PRINT USING "####.#"; Zeta.tire 

PRINT "Seat stiffness . . . . . . . . . . . . . .  "; 

PRINT USING "####"; k.seat 

PRINT "Seat damping ratio . . . . . . . . . . . .  "; 

PRINT USING "####.#"; Zeta.seat 

PRINT "Distance between running surface supports   "; 

PRINT USING "####"; Lambda 

PRINT "Distance between front and rear tires  . .  "; 

PRINT USING "####"; Wheelbase 

PRINT "Distance of vehicle c.g. from rear tires    "; 

PRINT USING "####"; Veh.cg 

PRINT "Distance of passenger forward of rear tires "; 

PRINT USING "####"; xp 

PRINT "Midspan deflection of running surface  . .  "; 

PRINT USING "####.###"; MidspanDeflection 

PRINT 

 

Omega.n = SQR(4 * k * g / W) 

Omega.seat = SQR(k.seat * g / Wp) 

Omega.sv = SQR(k.seat * g / W) 
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x1 = Vehcg              'distance from rear tire to vehicle c.g. 

x2 = Wheelbase - x1     'distance from front tire to vehicle 

c.g. 

x1p = x1 - xp           'distance of pasenger behind vehicle 

c.g. 

 

PRINT "  Vehicle Speed  Frequency  Passenger Acceleration  Com-

fort Limit" 

PRINT "     mph            Hz              g's                 

g's" 

 

FOR I = 10 TO 60 STEP 5 'vehicle speed in mph 

V = I * 88 / 60         'vehicle speed, ft/sec 

Omega = 2 * Pi * V / (Lambda / 12)      'Radial forcing fre-

quency 

Frequency = Omega / 2 / Pi 

Term = x1 ^ 2 + x2 ^ 2 

P = .5 * Omega.n ^ 2 * Term - Omega ^ 2 * rg ^ 2 + Omega.sv ^ 2 

* x1p ^ 2 

Q = .5 * Omega.n ^ 2 * (x2 - x1) - Omega.sv ^ 2 * x1p 

R = 2 * Omega * (2 * Zeta.tire * Omega.n * (x2 - x1) - Zeta.seat 

* Omega.sv * x1p) 

S = 2 * Omega * (2 * Zeta.tire * Omage.n * Term + Zeta.seat * 

Omega.sv * x1p ^ 2) 

 

Ar = Omega.n ^ 2 - Omega ^ 2 + Omega.sv ^ 2 

Ai = 2 * Omega * (4 * Zeta.tire * Omega.n + Zeta.seat * 

Omega.sv) 

Br = Q 

Bi = R 

Cr = -Omega.sv ^ 2 

Ci = -2 * Omega.sv * Omega * Zeta.seat 

Dr = Br 

Di = Bi 

Er = P 

Ei = S 

Fr = -Cr * x1p 

Fi = -Ci * x1p 

Gr = Omega.seat ^ 2 

Gi = 2 * Omega * Omega.seat * Zeta.seat 

Hr = -Gr * x1p 

Hi = -Gi * x1p 

Kr = Omega ^ 2 - Gr 

Ki = -Gi 

 

Term = Omega.n * Omega.seat 
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Psi.r = Term * (Term / 2 - 8 * Omega ^ 2 * Zeta.tire * 

Zeta.seat) 

Psi.i = Term * Omega * (4 * Zeta.tire * Omega.seat + Zeta.seat * 

Omega.n) 

 

GEDHr = Gr * Er - Gi * Ei - Dr * Hr + Di * Hi 

GEDHi = Gi * Er + Gr * Ei - Dr * Hi - Di * Hr 

 

GBAHr = Gr * Br - Gi * Bi - Ar * Hr + Ai * Hi 

GBAHi = Gi * Br + Gr * Bi - Ar * Hi - Ai * Hr 

 

GCAKr = Gr * Cr - Gi * Ci - Ar * Kr + Ai * Ki 

GCAKi = Gi * Cr + Gr * Ci - Ar * Ki - Ai * Kr 

 

GFDKr = Gr * Fr - Gi * Fi - Dr * Kr + Di * Ki 

GFDKi = Gi * Fr + Gi * Fr - Dr * Ki - Di * Kr 

 

Alpha.r = COS(2 * Pi * x2 / Lambda) + COS(2 * Pi * x1 / Lambda) 

Alpha.i = SIN(2 * Pi * x2 / Lambda) - SIN(2 * Pi * x1 / Lambda) 

Beta.r = x2 * COS(2 * Pi * x2 / Lambda) - x1 * COS(2 * Pi * x1 / 

Lambda) 

Beta.i = x2 * SIN(2 * Pi * x2 / Lambda) + x1 * SIN(2 * Pi * x1 / 

Lambda) 

 

Num.r = GEDHr * Alpha.r - GEDHi * Alpha.i - GBAHr * Beta.r + 

GBAHi * Beta.i 

Num.i = GEDHr * Alpha.i + GEDHi * Alpha.r - GBAHr * Beta.i - 

GBAHi * Beta.r 

Den.r = GEDHr * GCAKr - GEDHi * GCAKi - GBAHr * GFDKr + GBAHi * 

GFDKi 

Den.i = GEDHr * GCAKi + GEDHi * GCAKr - GBAHr * GFDKi - GBAHi * 

GFDKr 

 

NumDen.rrii = Num.r * Den.r + Num.i * Den.i 

NumDen.irri = Num.i * Den.r - Num.r * Den.i 

 

Nr = Psi.r * NumDen.rrii - Psi.i * NumDen.irri 

Ni = Psi.r * NumDen.irri + Psi.i * NumDen.rrii 

 

Coeff = Omega.seat ^ 2 * zo / g / SQR(2) 

RMSPassAccel = Coeff * SQR(Nr ^ 2 + Ni ^ 2) / (Den.r ^ 2 + Den.i 

^ 2) 

 

PRINT "     "; I; 

PRINT USING "##########.###"; Frequency; 

PRINT USING "#############.###"; RMSPassAccel; 

ComfortAccel = Acomfort(Frequency) 
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PRINT USING "################.###"; ComfortAccel 

NEXT I 

 

FUNCTION Acomfort (f) 

  IF f < 1 THEN 

     Acomfort = .36 

  ELSEIF f < 4 THEN 

     ex = (f - 1) / 3 

     Acomfort = .36 / 2 ^ ex 

  ELSEIF f < 8 THEN 

     Acomfort = .18 

  ELSE 

     ex = (f - 8) / 8 

     Acomfort = .18 * 2 ^ ex 

  END IF 

END FUNCTION 
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Deflection of the Running Surface 

 

 
Figure 1. Load on Angle Running Surface 

 

The main support wheels of the ITNS vehicle run on a pair of steel angles supported a distance 

L apart.  The problem we address here relates to the need to move the main-support tires inward 

enough to allow space for a communication (leaky) cable between the vertical side of the angle 

and the outer side of the tire, and to determine the angle thickness needed to maintain the vertical 

acceleration below the ISO Comfort Standard.  Moving the tires inward increases the deflection 

due to twist of the angle.  The purpose of this paper is to determine the angle thickness and posi-

tion of the tire load P that will keep the vertical acceleration below the ISO comfort limit.  

 

The Deflection of the Angle under the Wheel Load  

 

The deflection is due to a combination of bending and torsion.  From the paper “Deflection of a 

Continuous Beam resting on Regularly-Spaced Simple Supports under a Concentrated Load” 

the deflection at the midpoint between simple supports holding up a continuous beam is  

 

∆= 0.2573
𝑃𝐿3

48𝐸𝐼
 

 

in which the modulus of elasticity for steel is E = 29.5(10)6 psi.  I is the moment of inertia of the 

angle.   

 

From page 270 of Timoshenko Strength of Materials: Part II the twist per unit of length of a 

large aspect-ratio cross section is 

 

𝜃 =
𝑀𝑡

1
3 𝑏𝑐

3𝐺
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in which b is the sum of the lengths of the two legs (𝑏 = 8+6 = 14"), c is the angle thickness, 

and G is the shear modulus, 11.5(10)6 psi for steel.  
𝐸

𝐺
= 2(1 + 𝜇),where 𝜇 is the Poisson’s Ra-

tio.  If a is the distance between the applied load P and the outer edge of the angle and 𝑥𝑝is the 

distance between the neutral axis of the angle and the outer edge of the angle, the torsional mo-

ment is 

 

                           𝑀𝑡 = 𝑃(𝑎 − 𝑥𝑝) 

 

The angle of twist per unit length due to torsion is then 

 

𝜃 =
3𝑃(𝑎 − 𝑥𝑝)

𝑏𝑐3𝐺
 

 

The deflection of the angle under the load P due to torsion is 

 

∆𝑡𝑜𝑟𝑠𝑖𝑜𝑛= 𝜃
𝐿

2
(𝑎 − 𝑥𝑝) =

3𝑃𝐿(𝑎 − 𝑥𝑝)
2

2𝑏𝑐3𝐺
 

 

Thus, the total deflection is  

 

∆𝑡𝑜𝑡𝑎𝑙=
𝑃𝐿

2𝐸
[
𝐿2

93.28𝐼
+
6(1 + 𝜇)(𝑎 − 𝑥𝑝)

2

𝑏𝑐3
] 

 

in which for steel  𝜇 = 0.283.  The maximum load on one wheel will be about 500 lb, and the 

distance between supports is L = 54 inches. 

 

From the Manual of Steel Construction, with the 6 in leg of the angle vertical we find 

 

Angle thickness, c, in I, in4 xp, in 

0.5000 21.7 0.425 

0.5625 24.1 0.476 

 

For the half-inch thick angle 

 

∆𝑡𝑜𝑡𝑎𝑙=
500(54)

2(29.5)(10)6
[

542

93.28(21.7)
+
6(1.283)(3.75 − .425)2

14(0.5)3
] 

= 0.0004576(1.441 + 48.63) = 0.0229" 
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Deflection of a Continuous Beam resting on Regularly-Spaced  

Simple Supports under a Concentrated Load 

 
P 

 

 

         M2    M1             M1                                        M2 

Figure 1.  Sections of a Continuous Beam 

 

Consider a continuous beam having many sections each of length l, three of which are shown in 

Figure 1.  The beam is supported on simple supports at each break point.   One point load P is 

applied on the middle span, at the left and right of which moment M1 is applied.  Thus the con-

figuration is symmetric about the load P.  The beams are connected by the condition that the 

slopes must be continuous. 

 

1. The Loaded Beam  

 

From structural mechanics, the structural rigidity EI, where E is the modulus of elasticity and I is 

the area moment of inertia of the beam, multiplied by the curvature of the beam is equal to the 

applied moment.  For small deflections, the curvature can be taken as the second derivative of 

the deflection.  Let the deflection be y and the coordinate in the direction of the beam be x with x 

= 0 at the left support.  Thus, for the loaded beam, where the reactions at the left and right sup-

ports are each P/2,  

𝐸𝐼𝑦′′ = 𝑀1 −
1

2
𝑃𝑥 + 𝑃〈𝑥 − 𝑙/2〉 

(1) 

in which 〈𝑥 −
𝑙

2
〉 = 𝑥 −

𝑙

2
 𝑖𝑓 𝑥 −

𝑙

2
> 0 and 〈𝑥 −

𝑙

2
〉 = 0 if 𝑥 − 𝑙/2 ≤ 0.    Integrating once 

 

𝐸𝐼𝑦′ = 𝑀1𝑥 −
𝑃𝑥2

4
+ 𝑃

〈𝑥 − 𝑙/2〉2

2
+ 𝐶 

(2) 

in which C is a constant.  Integrating again 

 

𝐸𝐼𝑦 = 𝑀1
𝑥2

2
−
𝑃𝑥3

12
+ 𝑃

〈𝑥 − 𝑙/2〉3

6
+ 𝐶𝑥 

(3) 

which meets the condition that the deflection y is zero at x = 0.  The deflection is also zero at  

x = l.  Thus 

𝐸𝐼𝑦(𝑙) = 0 = 𝑙 [𝑀1
𝑙

2
−
𝑃𝑙2

12
+
𝑃𝑙2

48
+ 𝐶] 

(4) 

The mid-span deflection 𝑦(𝑙/2) ≡ 𝛿 is therefore 
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𝐸𝐼𝛿 = 𝑀1
𝑙2

8
−
𝑃𝑙3

96
− (𝑀1

𝑙

2
−
𝑃𝑙2

12
+
𝑃𝑙2

48
)
𝑙

2
 

 

or  

𝛿 =
𝑃𝑙3

48𝐸𝐼
−
𝑀1𝑙

2

8𝐸𝐼
 

(5) 

Thus, with M1 = 0, we get the well-known formula for the deflection of a simple beam under a 

point load.  The slope at the left end of this beam is 

 

𝐸𝐼𝑦′(0) = 𝐶 =
𝑃𝑙2

16
−𝑀1

𝑙

2
 

(6) 

2. The First Unloaded Beams 

 

Now consider the first unloaded span to the left of the loaded span.  Applying the same structural 

theory we get 

 

𝐸𝐼𝑦′′ = 𝑀2 + (
𝑀1 −𝑀2

𝑙
) 𝑥 

(7) 

in which (
𝑀1−𝑀2

𝑙
) is the downward reaction at the left end of this beam.  Integrating once 

 

𝐸𝐼𝑦′ = 𝑀2𝑥 + (
𝑀1 −𝑀2

𝑙
)
𝑥2

2
+ 𝐶 

(8) 

Integrating again 

 

𝐸𝐼𝑦 = 𝑀2
𝑥2

2
+ (
𝑀1 −𝑀2

𝑙
)
𝑥3

6
+ 𝐶𝑥 

(9) 

Since y = 0 at both ends of this beam, we have for the right end 

 

𝑀2
𝑙

2
+ (
𝑀1 −𝑀2

𝑙
)
𝑙2

6
+ 𝐶 = 0 

or 

𝐶 = −
1

3
𝑀2𝑙 −

1

6
𝑀1𝑙 

(10) 

Thus, 



66 
 

𝐸𝐼𝑦′ = 𝑀2 (𝑥 −
𝑥2

2𝑙
−
𝑙

3
) + 𝑀1 (

𝑥2

2𝑙
−
𝑙

6
) 

Thus 

 

𝐸𝐼𝑦′(0) = −
1

3
𝑀2𝑙 −

1

6
𝑀1𝑙 and 𝐸𝐼𝑦

′(𝑙) =
1

6
𝑀2𝑙 +

1

3
𝑀1𝑙 

(11) 

 

The slope at the right end of this beam must be equal to the slope at the left end of the loaded 

beam.  Thus, using equations (11) and (6) 

  

1

3
𝑀2𝑙 +

1

6
𝑀1𝑙 =

𝑃𝑙2

16
−𝑀1

𝑙

2
 

or 

 

1

3
(2𝑀1 +𝑀2) =

𝑃𝑙

16
 

or  

𝑀1 = −
1

2
𝑀2 +

3

32
𝑃𝑙 

(12) 

Then, substitute M1 from equation (12) into equation (5) to get 

 

𝛿 =
𝑃𝑙3

48𝐸𝐼
−
𝑀1𝑙

2

8𝐸𝐼
=
𝑃𝑙3

48𝐸𝐼
+
𝑀2𝑙

2

16𝐸𝐼
−

9𝑃𝑙3

48 × 16𝐸𝐼
=
7

16
×
𝑃𝑙3

48𝐸𝐼
+
𝑀2𝑙

2

16𝐸𝐼
 

(13) 

 

If M2 = 0, i.e., if there is only one unloaded beam on each side of the loaded beam, the deflection 

is reduced to 7/16th of the value with only the single beam. 

 

3. Second Unloaded Beams 

 

If there is a next beam on each side of the middle three, i.e., a total of five beams, the slope at the 

left end of the three beams must equal the slope at the right end of the right hand beam.  From 

equation (11), for this second beam 

 

𝐸𝐼𝑦′(0) = −
1

3
𝑀3𝑙 −

1

6
𝑀2𝑙 and 𝐸𝐼𝑦

′(𝑙) =
1

6
𝑀3𝑙 +

1

3
𝑀2𝑙 

  (14) 

Thus, at the position of M2 we have 

 

−
1

3
𝑀2𝑙 −

1

6
𝑀1𝑙 =

1

6
𝑀3𝑙 +

1

3
𝑀2𝑙 
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or 

𝑀1 + 4𝑀2 +𝑀3 = 0 

(15) 

This is the well-known theorem of three moments. 

 

Substituting for M1 from equation (12), we get 

 

−
1

2
𝑀2 +

3

32
𝑃𝑙 + 4𝑀2 +𝑀3 = 0 

or 

𝑀2 = −
3

7
(
3

32
𝑃𝑙 + 𝑀3) 

(16) 

By substituting equation (16) into equation (13) we get 

 

𝛿 =
7

16
×
𝑃𝑙3

48𝐸𝐼
+
𝑀2𝑙

2

16𝐸𝐼
=
7

16
×
𝑃𝑙3

48𝐸𝐼
−

𝑙2

16𝐸𝐼
× (

9

7 × 32
𝑃𝑙 +𝑀3) =

71

224
×
𝑃𝑙3

48𝐸𝐼
−
𝑀3𝑙

2

16𝐸𝐼
 

(17) 

 

Thus, by adding one set of beams on each side of the loaded beam, the deflection decreases to 

0.4375 of its value with only the loaded beam, and by adding two sets of beams the deflection 

reduces to 0.3170 of its value with only the loaded beam. 

 

4. Third Unloaded Beams 

 

In this case there will be seven beams, three on each side of the loaded beam.  For this case, the 

three-moment theorem gives 

𝑀2 + 4𝑀3 +𝑀4 = 0 

  (18) 

Substituting for M2 from equation (16) we get 

 

−
3

7
(
3

32
𝑃𝑙 + 𝑀3) + 4𝑀3 +𝑀4 = 0 

or 

𝑀3 =
7

25
(
9

224
𝑃𝑙 − 𝑀4) 

(19) 

𝛿 =
71

224
×
𝑃𝑙3

48𝐸𝐼
−
𝑀3𝑙

2

16𝐸𝐼
=
71

224
×
𝑃𝑙3

48𝐸𝐼
−

𝑙2

16𝐸𝐼
×
7

25
(
9

224
𝑃𝑙 − 𝑀4) 

=
13

50
×
𝑃𝑙3

48𝐸𝐼
+
7

25
×
𝑀4𝑙

2

16𝐸𝐼
= 0.260 ×

𝑃𝑙3

48𝐸𝐼
+
7

25
×
𝑀4𝑙

2

16𝐸𝐼
 

(20) 
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5. Fourth Unloaded Beams 

 

In this case there will be nine beams, four on each side of the loaded beam.  For this case, the 

three-moment theorem gives 

𝑀3 + 4𝑀4 +𝑀5 = 0 

  (21) 

Substituting for M3 from equation (19) we get 

 

7

25
(
9

224
𝑃𝑙 − 𝑀4) + 4𝑀4 +𝑀5 = 0 

or 

𝑀4 = −
25

93
(
63

5600
𝑃𝑙 + 𝑀5) 

(22) 

Substituting into equation (20) gives 

 

𝛿 = 0.260 ×
𝑃𝑙3

48𝐸𝐼
−
7

25
×

𝑙2

16𝐸𝐼
×
25

93
(
63

5600
𝑃𝑙 + 𝑀5) = 0.2575 ×

𝑃𝑙3

48𝐸𝐼
−

7

16 × 93

𝑀5𝑙
2

𝐸𝐼
 

 

6. Fifth Unloaded Beams 

 

In this case there will be eleven beams, five on each side of the loaded beam.  For this case, the 

three-moment theorem gives 

𝑀4 + 4𝑀5 +𝑀6 = 0 

  (23) 

Substituting for M4 from equation (22) we get 

 

−
25

93
(
63

5600
𝑃𝑙 + 𝑀5) + 4𝑀5 +𝑀6 = 0 

or 

𝑀5 = 0.2680 (
21

31 × 224
𝑃𝑙 − 𝑀6) 

(24) 

𝛿 = 0.2575 ×
𝑃𝑙3

48𝐸𝐼
−

7𝑙2

16 × 93𝐸𝐼
× 0.2680 (

21

31 × 224
𝑃𝑙 − 𝑀6) 

= 0.2573 ×
𝑃𝑙3

48𝐸𝐼
+ 0.00126

𝑀6𝑙
2

𝐸𝐼
 

(25) 

7. Sixth Unloaded Beams 

 

In this case there will be thirteen beams, six on each side of the loaded beam.  For this case, the 

three-moment theorem gives 
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𝑀5 + 4𝑀6 +𝑀7 = 0 

  (26) 

Substituting for M5 from equation (24) we get 

 

0.2680 (
21

31 × 224
𝑃𝑙 −𝑀6) + 4𝑀6 +𝑀7 = 0 

or 

 

𝑀6 = −0.2680 × (0.00081𝑃𝑙 +𝑀7) 
(27) 

 

𝛿 = 0.2573 ×
𝑃𝑙3

48𝐸𝐼
− 0.00126

𝑙2

𝐸𝐼
× 0.2680 × (0.00081𝑃𝑙 +𝑀7) 

= 0.2573 ×
𝑃𝑙3

48𝐸𝐼
− 0.00034

𝑀7𝑙
2

𝐸𝐼
 

(28) 

which agrees to four decimal places with the previous value. 

 

# Beams Reduction in 𝛿 

1 1 

3 0.4375 

5 0.3170 

7 0.2600 

9 0.2575 

11 0.2573 

13 0.2573 
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The Deflection at the End of a Continuous Beam 

 

 

 

                       

 

Figure C-1. A beam with many equally spaced supports loaded at the end. 

Consider the continuous beam of Figure C-1 which is simply supported at equal spacing l and 

subject to a load P at the right end.  We want to determine the deflection under the load.  From 

statics we get two equations, one vertical force balance, and one moment-balance equation.   

Thus 

           1

1 1

and 0
n n

i iP R P iR         (1) 

Solution in the first segment 

The differential equation for deflection in the first segment (to the right of 1R ) and its solution, 

assuming 0x  at 1R , is 

    

 

 

"

2
' '

1

2 3
'

1

3
'

1

2

2 6

3

EIy P l x

x
EIy EIy P lx

x x
EIy EIy x P l

Pl
EIy l EIy l

 

 
   

 

 
   

 

 

     (2) 

Thus, the desired deflection is 

    

3
'

1( )
3

Pl
y l y l

EI
          (3) 

In which the well-known solution for the cantilever beam is obtained by setting 
'

1 0.y   

 

 

R1 R2 R3 R4 R5 R6 R7 

P 
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Solution in the second segment 

The differential equation for the deflection in the second segment of the beam and its solution, 

assuming that 0x  at the beginning of the second segment, is 

   

   "

1

2 2
' '

2 1

2 3 2 3
'

2 1

2

2
2 2

2
2 6 2 6

EIy P l x R l x

x x
EIy EIy P lx R lx

x x x x
EIy EIy x P l R l

   

   
       

   

   
       

   

   (4) 

Evaluating equations (4) at x l we get 

 

    

   

"

2
' ' '

1 2 1

3
'

2 1

( )

( ) 3
2

0 5 2
6

EIy l Pl

l
EIy l EIy EIy P R

l
EIy l EIy l P R



   

   

     (5) 

Substituting the third of equations (5) into the second, we get 

             
2 2 2

'

1 1 1 1

1
5 2 3 2

6 2 2 3

l l l
EIy P R P R P R

 
       

 
   (6) 

Substituting equation (6) into equation (3) 

   

3 3

1 1

1 1
2 3

3 2 3 2

l l
P R P P R

EI EI

   
        

   
    (7) 

The Case of a Two-Segment Beam 

In this case equations (1) reduce to  

     
1 2

2

1 2

R R P

R P

R P

 

 

 

 

 

Then from equation (7) 

          

3 3

2
3 1.5

Pl Pl

EI EI
        (8) 
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which is twice the value for a cantilever beam. 

 

Solution in the third segment 

The differential equation for the deflection in the third segment of the beam  and its solution, as-

suming that 0x  at the beginning of the third segment, is  

 

  

     "

1 2

2 2 2
' '

3 1 2

2 3 2 3 2 3
'

3 1 2

3 2

3 2
2 2 2

3 2
2 6 2 6 2 6

EIy P l x R l x R l x

x x x
EIy EIy P lx R lx R lx

x x x x x x
EIy EIy x P l R l R l

     

     
           

     

     
           

     

  (9) 

Evaluating equations (9) at x l we get 

   

 

 

   

"

1

2
' ' '

2 3 1 2

3
'

3 1 2

( ) 2

( ) 5 3
2

0 8 5 2
6

EIy l P R l

l
EIy l EIy EIy P R R

l
EIy l EIy l P R R

 

    

    

    (10) 

Substituting the third of equations (10) into the second we get 

   
   

 

2 2
' 2 2

2 1 2 1 2

2

1 2

8 5 2 5 3
6 2

7 4
6

l l
EIy Pl R l R P R R

l
P R R

      

  

   (11) 

Substituting equation (11) into the third of equations (5) 

  

   
2 2

'

2 1 1 2 1

1 2

0 5 2 7 4 5 2
6 6

or

6 12

l l
EIy P R P R R P R

R R P

       

 

   (12) 

 

The Case of a Three-Segment Beam 

If there are only three segments before the beam ends, equations (1) become 
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1 2 3

2 32

R R R P

R R P

  

  
 

Multiply the first of these equations by 2 and subtract from the second.  The result is 

    1 22 3R R P   

Subtracting this equation from equation (12) gives 

     
1

9

4
R P  

Substituting this value of 1R into equation (7) gives 

          

3 3 39 15
3

3 8 8 3 1.6

Pl Pl Pl

EI EI EI

 
     

 
    (13) 

Solution in the fourth segment 

If there is a fourth segment, the differential equation for the deflection of the fourth segment and 

its solution, assuming that 0x  at the beginning of the fourth segment, is  

 

       "

1 2 3

2 2 2 2
' '

4 1 2 3

2 3 2 3 2 3 2 3
'

4 1 2 3

4 3 2

4 3 2
2 2 2 2

4 3 2
2 6 2 6 2 6 2 6

EIy P l x R l x R l x R l x

x x x x
EIy EIy P lx R lx R lx R lx

x x x x x x x x
EIy EIy x P l R l R l R l

       

       
               

       

       
               

       

 (14) 

Evaluating equations (14) at x l we get 

   

 

 

   

"

1 2

2
' ' '

3 4 1 2 3

3
'

4 1 2 3

( ) 3 2

( ) 7 5 3
2

0 11 8 5 2
6

EIy l P R R l

l
EIy l EIy EIy P R R R

l
EIy l EIy l P R R R

  

     

     

   (15) 

Substituting the third of equations (15) into the second gives 

 

  

   

 

2 2
'

3 1 2 3 1 2 3

2

1 2 3

11 8 5 2 7 5 3
6 2

10 7 4
6

l l
EIy P R R R P R R R

l
P R R R

         

   

  (16) 
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Substituting equation (16) into the third of equations (10) gives 

 

   
2 2

'

3 1 2 1 2 3 1 2

1 2 3

8 5 2 10 7 4 8 5 2 0
6 6

or

18 12 6 0

l l
EIy P R R P R R R P R R

P R R R

          

   

  (17) 

The Case of a Four-Segment Beam 

If the beam ends at 4R we have, from equations (1), (12) and (17), the following four equations 

for the four reactions: 

    

1 2 3 4

2 3 4

1 2

1 2 3

2 3

6 12

12 6 18

R R R R P

R R R P

R R P

R R R P

   

   

 

  

     (18) 

Multiply the first of these equations by 3 and subtract it from the second.  The result is 

     1 2 33 2 4R R R P        

Subtract this equation from the fourth of equations (18).  The result is 

     1 29 4 14R R P       (19) 

Multiply the third of equations (18) by four and subtract equation (19).  The result is 

     
1

34

15
R P   

Substitution of this value of 1R into equation (7) gives      

   

3 3 31 34 28
3

3 2 15 15 3 1.607

l Pl Pl
P P

EI EI EI

 
      

 
   (20) 

Solution in the fifth segment 

The differential equation for the deflection of the fifth segment of the beam and its solution, 

assuming that 0x  at the beginning of the fifth segment, is 
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         "

1 2 3 4

2 2 2 2 2
' '

5 1 2 3 4

2 3 2 3 2 3 2 3
'

5 1 2 3

5 4 3 2

5 4 3 2
2 2 2 2 2

5 4 3 2
2 6 2 6 2 6 2 6

EIy P l x R l x R l x R l x R l x

x x x x x
EIy EIy P lx R lx R lx R lx R lx

x x x x x x x x
EIy EIy x P l R l R l R l

         

         
                   

         

     
             

     

2 3

4
2 6

x x
R l

   
    

   

 

            (21) 

Evaluating equations (21) at x l we get 

   

 

 

   

"

1 2 3

2
' ' '

4 5 1 2 3 4

3
'

5 1 2 3 4

( ) 4 3 2

( ) 9 7 5 3
2

0 14 11 8 5 2
6

EIy l P R R R l

l
EIy l EIy EIy P R R R R

l
EIy l EIy l P R R R R

   

      

      

  

 (22) 

Substituting the third of equations (22) into the second gives 

 

   

 

2 2
'

4 1 2 3 4 1 2 3 4

2

1 2 3 4

14 11 8 5 2 9 7 5 3
6 2

13 10 7 4
6

l l
EIy P R R R R P R R R R

l
P R R R R

           

    

 (23) 

Substituting equation (23) into the third of equations (15) gives 

   

   
2 2

'

4 1 2 3 1 2 3 4 1 2 3

1 2 3 4

11 8 5 2 13 10 7 4 11 8 5 2 0
6 6

or

24 18 12 6 0

l l
EIy P R R R P R R R R P R R R

P R R R R

             

    

  

            (24) 

The Case of a Five-Segment Beam 

If the beam ends at 5R we have, from equations (1), (12), (17) and (24), the following five equa-

tions for the five reactions: 
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1 2 3 4 5

2 3 4 5

1 2

1 2 3

1 2 3 4

2 3 4

6 12

12 6 18

18 12 6 24

R R R R R P

R R R R P

R R P

R R R P

R R R R P

    

    

 

  

   

    (25) 

Multiply the first of these equations by 4 and subtract it from the second.  The result is 

    1 2 3 44 3 2 5R R R R P         

Subtract this equation from the fifth of equations (25).  The result is 

    1 2 314 9 4 19R R R P             (26)  

Multiply the fourth of equations (25) by four and subtract equation (26).  The result is 

     1 234 15 53R R P       (27) 

Multiply the third of equations (25) by 15 and subtract equation (27).  The result is 

     
1

127

56
R P   

Then equation (7) becomes      

   

3 3 31 127 209
3

3 2 56 112 3 1.60766

l Pl Pl
P P

EI EI EI

 
      

 
   (28) 

The Case of a Six-Segment Beam 

From equation (25) we can see the pattern, which permits us to write down the equations for the 

reactions in the six-segment beam without the tedium of solving the differential equations.  Thus, 

the reaction equations for the six-segment beam are  

1 2 3 4 5 6

2 3 4 5 6

1 2

1 2 3

1 2 3 4

1 2 3 4 5

2 3 4 5

6 12

12 6 18

18 12 6 24

24 18 12 6 30

R R R R R R P

R R R R R P

R R P

R R R P

R R R R P

R R R R R P

     

     

 

  

   

        

 (29) 
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Thus, multiply the first of equations (29) by 5 and subtract the second.  The result is 

1 2 3 4 55 4 3 2 6R R R R R P         (30) 

 

Subtract equation (30) from the last of equations (29).  The result is 

1 2 3 419 14 9 4 24R R R R P        (31) 

Multiply the second from the last of equations (29) by 4 and subtract equation (31).  The result is 

1 2 353 34 15 72R R R P        (32) 

Multiply the 4th of equations (29) by 15 and subtract equation (32).  The result is 

1 2127 56 198R R P        (33) 

Substitute for 2R in equation (33) from the third of equations (29).  The result is 

 1 1

1

127 56 12 6 198

198 56 12 474

56 6 127 209

R P R P

R P P

  

 
  

 

 

Substitute this value of 1R into equation (7) to give 

3 3 31 474 780
3

3 2 209 418 3 1.60769

l Pl Pl
P P

EI EI EI

 
      

     (34) 

So, we see that we can take for the end deflection of a beam with an indefinite number of seg-

ments as  

 

(35) 

 

which is the information sought by this analysis, and is close to the Fibonacci ratio 1.618. 

 

 

 

 

3 3

1.866
3 1.608

Pl Pl

EI EI
    
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The Deflection of a Curved Beam 

 

Figure 1.  The Notation used in Analysis of a Curved Beam. 

1. The Problem and the Solution Method 
 

 Consider the beam diagrammed in Figure 1 of length L between supports and curved to a radius R.  

The beam is clamped at both ends and is subject to a uniform load w per unit of length applied downward 

and three point loads representing vehicles.  One of these vehicles, of weight N1 is at the center of the span, 

and a pair of vehicles of weight N2 is spaced equally distance to the left and right of the center of the span.  

Only the vehicle on the left is shown.  The distance between these vehicles is VTh, where V is the vehicle’s 

speed and Th is the time headway.  Additional vehicles at distances from mid-span of 2, 3, 4, etc. times VTh 

can be added later.  This arrangement preserves the symmetry of the solution about the midpoint.  



79 
 

 The objective of this analysis is to determine the deflection at the center of the guideway under the 

vehicle load N1.  Figure 1 shows the notation used.  An orthogonal x-y-z reference frame has its origin at 

the left post, with the x-axis extending to the right through the right post, y downward in the direction of 

the deflection we wish to calculate, and z with a right-handed reference frame points horizontally and up-

ward in the figure.  The radius line from the center of curvature to the left post and the radius line at mid-

span are separated by the angle 

      .
2

L

R
             (1.1) 

The vehicle weight N2 is at the angular position 
2N from the centerline, where 

2
/ / ,N h viVT R iD R    

where i is the number of headway length from the center point.  A differential element of the guideway of 

weight wRd at the angular distance  from the centerline is shown and an arbitrary point  along the 

guideway is shown.  From statics, the upward reaction force at each post is 

 1 2 1 2

1 1

2 2
RF wL N N wR N N              (1.2) 

We will neglect the centrifugal force produced by the motion of each vehicle because 1) it is limited to the 

unbalanced fraction of the weight of each car, 2) the lateral acceleration is limited by ride comfort to the 

value 

 tan / cos tan6 0.2 / cos6 0.31o o

H la g a g g             (1.3) 

and 3) because the lever arm for its moment is much smaller than the lever arm due to the vehicle weight 

acting downward 

The solution method is derived by Timoshenko.16 It is to apply Castigliano’s 1875 Theorem, which 

says that the partial derivative of the strain energy U in a beam with respect to a point load P is the deflection 

 under the load, i.e.,  

       
U

P






                 (1.4) 

Conveniently, we place a vehicle of weight N1 at the center point where we want the deflection.   

Note from Figure 1 that at the clamped left end of the beam the moment vector is indicated by a horizontal 

component Mxo in the direction of the x-axis and a horizontal and transverse component Mzo.  Both must be 

positive in the directions shown to balance the loads on the guideway.   Mxo is determined by statics, but 

Mzo is statically indeterminate, and must be determined by the principle of least work17, which for a clamped, 

non-moving support requires that  

                                                           
16 S. Timoshenko, Strength of Materials, Part I, Elementary Theory and Problems, Section 69, The Theorem of 

Castigliano , pp. 308-320. 

17 Ibid. Section 70. Application of Castigliano’s Theorem in Solution of Statically Indeterminate Problems, pp. 320-

330. 
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0
zo

U

M





         (1.5) 

As a guide, the corresponding solution for a straight beam is given in Section 6.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The Integrals Used. 

 
2. The Moments 
 

By examining Figure 1 we see that the statically determinant moment is given by the equation 
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
         (2.1) 

When R  the beam straightens and from equation (1.1) 0.  The expansion of equation 

(2.1) into the first two terms of its infinite series is 
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in which Dv = VTh is the above-mentioned distance between vehicles, and equation (1.1) has been used.  We 

expected this result because as 0  Mxo becomes a purely torsional moment and vanishes since in a 

straight beam the applied forces have no torsional component.  From Section 6 the term in brackets in the 

right-hand expression of equation (2.2) is the bending moment at each end of a straight clamped-clamped 

beam subject to a uniform load w and the indicated point loads.  For Mzo the limit result must reduce to this 

quantity as 0, which we will see below. 

From Figure 1 the bending moment Mb at an angular distance   from the center point of the guideway is 

       

   
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   

      


      (2.3) 

in which if 0, 0.Q Q    Note that for small   and taking into account that the coordinate along the 

beam is then  x R   , equation (2.3) reduces to equation (6.1).   

The torsional moment Mt at any point   is given by 
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
           (2.4)  

        

3. Calculation of the Statically Indeterminate Moment 
 

The strain energy in the beam is given by the equation18 

2 2

0

2
2 2

b t

p

M M
U Rd

EI GI


  
   

 
                     (3.1) 

in which EI and GIp are the bending and torsional rigidities, respectively.  From equation (1.5), the principal 

of least work leads to  

                                                           
18 Ibid. Chapter X, “Energy of Strain.” 
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       
0 0
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b t b t
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 
  

    
  

               (3.2) 

in which the derivatives come from equations (2.3) and (2.4) and in which 

  
p

EI

GI
                  (3.3) 

Substitute equations (2.3) and (2.4) into equation (3.2).  We get 
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     (3.4) 

Perform the integrations per Figure B-2, multiply by 2, and introduce without loss of generality the notation 

sin , cosS C                    (3.5) 

Then, with cancelations where needed, 
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     (3.6) 

Solve for Mzo, the statically indeterminate moment: 
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           (3.7) 

Substitute for FRR from equation.  Then 
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Substitute for Mxo from equation.  Then   
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Following equation (2.2), consider the series expansion of equation (3.4) as   becomes very small. 
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which agrees with the solution for a straight beam given by equation (6.4) and for the N2 term with equation 

(7.9 ).  Compare also with equation (2.2). 

 

4. Calculation of the Deflection 
 

 The deflection at the center of the beam can be found from equation (1.4), in which we set P = 

N1.  Note that N1 appears only in the terms Mxo, Mzo, and FR.  Therefore, we can write 
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Taking into account equation (1.5), this equation reduces to 
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        (4.2) 

The strain energy U is given by equation (3.1).  Using equation (3.3) the differential of U can be written 

in the form   
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in which, from equations (2.3) and (2.4) respectively we have 
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and from equations (2.1) and (1.2) respectively, we have 
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Substituting equations (2.3) and (2.4) into equation (4.6) we get 
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Integrating, using the integrals of Figure B-2, after some reduction we get 
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in which 
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After substituting equation (1.2) we get 
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Finally, after substituting for Mxo from equation (2.1) and for Mzo from equation (3.5) we get  
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For small   the coefficients reduce to 
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(4.13)

  

       

 

All three of the limit deflections agree with the solution for a straight beam, which is given by equation 

(6.5), and for the third term by equation (7.13).   
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5. The Numerical Solution 
 

Equation (4.9) is solved numerically by means of the program given following the following two graph, 

the first calculated for vehicle spacing corresponding to 0.5 sec headway and the second for 1 sec head-

way.  All of the parameters used are given near the beginning of the program.  Cases for which the ratio 

of span to deflection much above 1000 are overdesigned, and cases for which the span/deflection ratio is 

much under 1000 are under designed.   This conclusion follows a recent people-mover specification that 

requires a span/deflection ratio of at least 1000.  On the other hand, AASHTO specifies a deflection no 

more than 1/800, so there is some design flexibility.  Note that with half-second headway, 90-ft spans in 

curves can be used if the curve radius is above about 140, which with a horizontal comfort acceleration 

given by equation (1.3) corresponds to a cruising speed of 25 mph or 41 km/hr or higher.  If 90-ft spans 

are to be used with curve radii corresponding to lower speeds, the curved guideway section must be sup-

ported at the center of the span.  Such configurations were modeled in the 1991 Chicago RTA PRT design 

study. 
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'This program CURVGDWY.BAS calculates the properties of a curved 

guideway 

DEFDBL A-Z 

DIM SoverD(0 TO 6) AS DOUBLE 

'INPUT PARAMETERS 

dpr = 45 / ATN(1)               'degrees per radian 

AcclGrav = 32.174               'acceleration of gravity, 

ft/sec^2 

Modulus = 29500000              'modulus of elasticity of steel, 

psi 

PoissonRatio = .287 

ShearMod = .5 * Modulus / (1 + PoissonRatio)   'psi 

BendMomOfI = 4930               'Guideway vertical moment of in-

ertia, in^4 

PolarMoment = .8 * 41.38        'Guideway polar moment of iner-

tia, in^4 

GdwyWgt = 162                   'guideway weight, lb/ft 

GdwyWgt = GdwyWgt / 12          'guideway weight, lb/in 

VehWgt = 1800                   'fully loaded vehicle weight, lb 

Headway = .5#                   'time headway, sec 

BankAngle = 6 / dpr             'radians 

'DERIVED PARAMETERS 

TwoEI = 2 * Modulus * BendMomOfI   'lb-in^2 

Beta = (Modulus / ShearMod) * BendMomOfI / PolarMoment  '383.3 

N1 = VehWgt 

N2 = VehWgt 
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HorzAccl = AcclGrav * (TAN(BankAngle) + .2 / COS(BankAngle)) 

'ft/sec^2 

 

CLS 

OPEN "CURVGDWY.ASC" FOR OUTPUT AS #1 

FOR R = 50 TO 550 STEP 4        'guideway radius, ft, 125 points 

   Speed = SQR(R * HorzAccl)    'ft/sec 

   Dveh = Speed * Headway * 12  'minimum vehicle spacing, in 

   Radius = 12 * R              'guideway radius, in 

 

 

   'LOAD COEFFICIENTS 

   DcoefW = GdwyWgt * Radius ^ 4 / TwoEI      'in 

   DcoefN1 = .5 * N1 * Radius ^ 3 / TwoEI     'in 

   DcoefN2 = N2 * Radius ^ 3 / TwoEI          'in 

   j = 0 

   FOR L = 40 TO 100 STEP 10     'span, ft, 7 points 

       Span = 12 * L            'span, in 

 

       Theta = .5 * Span / Radius    'radians 

       Sth = SIN(Theta) 

       Cth = COS(Theta) 

 

       'Calculate the dimensionless coefficients 

       Denominator = (1 + Beta) * Theta + (1 - Beta) * Sth * Cth 

       Term = 2 * (Beta + 1) + (Beta - 1) * Cth ^ 2 

       CMwNum = (1 + Beta) * Theta ^ 2 * Sth - Term * (Sth - 

Theta * Cth) 

       CMw = CMwNum / Denominator 

       Term = Theta * Sth - (1 + Cth ^ 2) * (1 - Cth) 

       CMN1Num = Sth * (Theta - Sth * (1 - Cth)) + Beta * Term 

       CMN1 = CMN1Num / Denominator 

 

       Term = Theta + Sth * Cth + Sth ^ 3 - 2 * Sth 

       Cx = Theta - Sth * Cth - Sth ^ 3 + Beta * Term 

       Term = (2 - Sth ^ 2) * (1 - Cth) - Theta * Sth 

       Cz = Sth * (Sth - Theta - Sth * Cth) + Beta * Term 

       Term = -Sth + Theta * (Cth + Sth ^ 2) 

       Term = 2 * (Theta - Sth) - 2 * Sth * (1 - Cth) + Term 

       CF = Theta * Cth - Sth * (1 - Theta * Sth) + Beta * Term 

       Term = Theta * Sth * (1 + Cth) - Theta ^ 2 + 4 * (1 - 

Cth) - 3 * Sth ^ 2 

       Cw = (2 - Theta * Sth) * (1 - Cth) - Sth ^ 2 + Beta * 

Term 

 

       'Guideway deflection due to guideway weight, in 
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       Term = Cw + Theta * CF + (Sth - Theta * Cth) * Cx + CMw * 

Cz 

       Defl.w = DcoefW * Term 

 

       'Guideway deflection due to load N1 at middle of guide-

way, in 

       Term = CF + (1 - Cth) * Cx + CMN1 * Cz 

       Defl.N1 = DcoefN1 * Term 

 

       'Deflection due to multiple values of N2, in 

       Defl.N2 = 0 

       FOR i = 1 TO 10          '10 is higher than will be 

reached 

          Dv = i * Dveh         'distance from center of span to 

vehicle i 

          IF Dv > Span / 2 THEN EXIT FOR 'include only vehicles 

on span 

          Phi = Dv / Radius     'angle of vehicle i from center 

of span 

          CPhi = COS(Phi) 

          SPhi = SIN(Phi) 

          Term1 = (Beta + 1) * (Theta * Sth - Phi * SPhi) 

          Term2 = Beta * (1 + Cth ^ 2) + Sth ^ 2 

          CMN2 = (Term1 - Term2 * (CPhi - Cth)) / Denominator 

 

          Term = 2 * (1 - CPhi) - Phi * SPhi 

          Term = 3 * SPhi - 2 * Phi - Phi * CPhi + Sth * Term 

          CN2 = SPhi - Phi * (CPhi + SPhi * Sth) + Beta * Term 

          Term = CF + CN2 + (CPhi - Cth) * Cx + CMN2 * Cz 

          Defl.N2 = Defl.N2 + Term 'sum all vehicles on span 

       NEXT i 

       Defl.N2 = DcoefN2 * Defl.N2      'deflection, in 

 

       'Total deflection of guideway, in 

       Deflection = Defl.w + Defl.N1 + Defl.N2 

       SoverD(j) = Span / Deflection 'dimensionless 

       PRINT USING "######"; R; L; i; 

       PRINT USING "#####.#"; Speed * 60 / 88; 

       PRINT USING "####.###"; Defl.w; Defl.N1; Defl.N2; Defl.N1 

+ Defl.N2; 

       PRINT USING "######.#"; SoverD(j) 

       'IF L > 69 AND L < 71 THEN SLEEP 

       j = j + 1 

   NEXT L 

   WRITE #1, R, SoverD(0), SoverD(1), SoverD(2), SoverD(3), 

SoverD(4), SoverD(5), SoverD(6) 

   'SLEEP 
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NEXT R 

CLOSE #1  

 

6. Deflection of a Straight Beam by Castigliano’s Method 

 

Consider a straight beam of length L clamped at both ends and under a uniform load w, a 

point load N1 at the center and a pair of loads N2 spaced a distance D to the left and right of the 

center load, making the problem symmetric about the midpoint.  The upward reaction force at 

each end of the beam is thus ½(wL +N1) + N2.  If the coordinate along the beam, x, is measured 

from the left end of the beam, the moment in the beam is 

  2

1 2 2

1 1
( ) / 2

2 2
oM x M wL N N x wx N x L D

 
         

  (6.1) 

in which oM is the statically indeterminate moment at the ends of the beam.   

The strain energy in the beam is 

/ 2 2

0

2
2

L
M

U dx
EI

          (6.2) 

oM is determined by the principal of least work, which states that 

/ 2 / 2

0 0

2 2
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o o

U M
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 
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Substituting equation (6.1) 
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By Castigliano’s Theorem the deflection at the center of the beam is 
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                      (6.5) 

which is a well-known result. 

 

7. Deflection of a Clamped Beam by under a Point Load by Integration 

 

 

                                                              

 

 

 

Consider a beam of length L clamped at both ends and subject to a point load P at a distance a 

from the left end.  Thus b = L – a.  From statics we balance the forces in the vertical direction 

and the moments about one end — we take the left end.  Then we find the following two equa-

tions for the four unknowns: 

1 2R R P                       (7.1) 

         1 2 2M R L M Pa            (7.2) 

 

R1 R2 

M1 M2 

L 

a b P 
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Since the problem is statically indeterminate we find the necessary additional two equations by 

solving for the slope and deflection of the beam.  Thus 

 

  1 1

22

1 1

32 3

1 1

if 0 then 0.

2 2

2 6 6

EIy M x M R x P x a Q Q

x ax
EIy M x R P

x ax x
EIy M R P

       


   


  

     (7.3) 

Since   0y L   we have 

2

1 1
2 2

L b
M R P

L
           (7.4)  

Since   0y L   we have  

3

1 1 23 3

L b
M R P

L
           (7.5) 

Equating (7.4) and (7.5) we have  

 

 
 

2 3

1 1 2

22 2

1 2 3 3

2 2 3 3

31
6 3 3 2

2 3

L b L b
R P R P

L L

b a bb b b
R P P a b b P

L L L L

  

 
      

 

       (7.6) 

 

Substituting into equation (7.1) we get 

 
 

 

2

3 2 2 3 2 3

2 3 3

2

3

3
3 3 3

3

b a b P
R P P a a b ab b ab b

L L

a b a
P

L


       




     (7.7) 

Substituting equation (7.6) into equation (7.5) we get 

     2 2 2 2

1 3 2

3 3

2 2 2

b a b a b a bL b b ab
M P P P P

L L L L L L

   
     

 
      (7.8) 
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This is the moment at the left end, called Mzo in Section 3.  But there we applied a pair of loads 

N1, one a distance Dv to the left of the center point, and another a distance Dv to the right of the 

center point.  In this case, the moment at the left (or right) end would be 

 
2 2

2 2 2 2

2 2 2

2 2 2

2 2 2 2

4 4
1 1

4 4

end v v v v

v v

ab ba P P L L L L
M P P ab b a D D D D

L L L L

P L D PL D
L

L L L

   
            

   

   
      

   

     (7.9) 

which, in the N2 term, agrees with equations (3.7) and (6.4). 

Substituting equations (7.7) and (7.8) into equation (7.2) we get 

 

 

22

2 1 2 2 2

2
2 2 2

2 2

3

3 2

a b aab
M M R L Pa P P Pa

L L

Pa ba
b a b a a ab b P

L L


     

        

          (7.10) 

Now let a = L/2 – D where D > 0.  Then, the deflection at x = L/2, from the third of equations 

(7.3) is 

      

 
 

 

32 3

1 1

22 2 3
3

2 3

2 2 3 3 2 2 3

22

23

2 6 6

3

2 8 48 48

6 3 3 3
48

3
3 3

2 48 48 2 2 2

1 2 1 4
192

x ax x
EIy M R P

b a bL ab L L P
EIy P P b a

L L

P
ab ab b b b a ba a

Pa b aL P L L L
y D D D

EI EI

PL D D

EI L L


  

 
    

 

        

     
          

     

   
     

   

    (7.11) 

With D = 0 we get the well-known formula for the deflection of a clamped beam under a concen-

trated load at the center.  Now let a = L/2 + D where D > 0.  Then from the third of equations 

(7.3) the deflection at the center is 
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 

 
 

 
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1 1 2 3

2
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23
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3
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3 3 4
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b a bL x x ab L L
EIy M R P P

L L

Pb a bP
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P L L L P L
D D D D L D

L PL D D
y

EI L L

 
    

 


   

     
            

     

     
       

     

    (7.12) 

which is the same as equation (7.11) as must be expected.  With a pair of point load at a distance 

2

L
x D   the center deflection is  

23

1 2 1 4
2 96

L PL D D
y

EI L L

     
       

     
      (7.12) 

Note that 

2 2

2

2 2

2 2

2 3 2

2 3 2

1 2 1 4 1 4 4 1 4

1 4 4 4 1 4 4

1
1 12 16 1 4 3 4 0 if

2

D D D D D

L L L L L

D D D D D

L L L L L

D D D D D

L L L L L

      
           

      

 
      

 

 
        

 

 

Thus, equation (9.12) can be written in the form 

3 2

2
1 4 4 3

2 96

L PL D D
y

EI L L

    
      

           (7.13)

 

which with P = N2 agrees with equation (6.5).  
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The Critical Speed 

 

The above figure is taken from the International Standards Organization maximum oscillatory 

acceleration as a function of frequency that will be comfortable to the passengers riding in a ve-

hicle.   The frequency of motion is given by  

 

      
V

f
L

      

 (1) 

 

in which V is the speed of travel over a flexible guideway and L is the distance between sup-

port posts.  The vertical displacement felt by a passenger is 

 

        max

1
sin 2

2
y t ft      (2) 

 

Where max is the mid-span deflection of the guideway from the posts and t is time.  Differentiat-

ing twice with respect to t , the maximum vertical acceleration is  
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2 2

max max2a f       (3) 

 

The above chart gives the root-mean-square (rms) value of acceleration, which is less by the 

square root of 2.  Thus 

 

     
2 2

max2rmsa f                 (4) 

 

If and the post spacing is 90L  ft, 90 ft/sec 61.4 mph,V   and if 4 Hzf  the speed is

360 ft/sec 245 mphV   .   Critical speeds of interest will be between these two values, for 

which the comfort acceleration is linearly decreasing in the above log-log plot.  Thus 

 

    

       

   
   

1

4 1

ln ln ln ln 1

ln ln
in which  

ln 4 ln 1

rms rms

rms rms

a a m f

a a
m

    

 
 

  

            (5) 

 

Although  ln 1 0 we keep this form to clarify units in the final equation. 

From the above chart, let us use the curve for 1-hour duration of the acceleration.  Then we see 

from the chart that 
1 4

2 22.4 m/s and 1.2 m/s .rms rmsa a    Thus 

        
 

 

 

4

1

ln
ln 2 1

ln 4 2ln 2 2

rms

rms

a

a
m

 
 
 
                 (6) 

 

From the properties of logarithms, equation (5) becomes 

 

          
 1

1 1

ln ln ln
1 1

1Hz

rms

mf f
a m m

rms rms rms

f
a e a e a

    
     

    
 

    
 

         (7) 

From the middle form of equations (7) we see that if we set 4Hzf  that 
4
.rms rmsa a   By substi-

tuting equation (7) into equation (4) we obtain 
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 

 

   

1

1

1

2
22

max

2

22

max

1

2

22
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2 1Hz
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1 2 1Hz
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m
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m
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m
rmscr

f f
a

af

aVf

L











   
    

   

 
 

  

 
   

  

          (8) 

For the lightest tube stringer max

1ft m
0.925in 0.3048

12in ft
     0.0235m  and for the largest 

tube stringer max

1m
0.734in 0.0186m.

39.37in
      Thus 

  

0.4
2

2 2

2.4m/s
2.21 / s 2.21(90ft/s) 199ft/s 136mph,

2 0.0236m/s
cr

L
V L

s 

 
     

 
 

and for the largest stringer, 149mph.crV   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 
 

The Polar Moment of Inertia of the ITNS Guideway 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-1.  A Segment of the Guideway 

Figure B-1 is intended to be a three-dimensional view of an idealized model of a segment of our 

guideway, meaning that it is a segment between a pair of U-frames space a distance L apart.  The 

7 members of the segment are depicted as lines representing their centroids.  Realizing that the 

eye can visualize an object intended to be three-dimensional in two ways, I intend that the U-

frame lower and to the left is in the foreground.  I assume in this analysis that the U-frame in the 

background is fixed but that the four stringers labeled 1, 2, 3, 4 are continuous beams, meaning 

that, from Appendix C the deflection at the end of each of these four beams due to a side load P

is  

3

1.608

PL

EI
        (1) 

Any contribution of the diagonals to torsional rigidity will be very small because of their orienta-

tion and small stiffness in bending.  The moments of inertia 1 4 2 3and .I I I I    The three ele-

ments of the U-frame in the foreground are labeled 5, 6, and 7.  For them 5 6 7.I I I   They are 

of height h and width .b   The four corners of the U-frame are labeled A, B, C, and D.  The U-

2 

1 

3 

4 

P 

P 

L 

b 

h 

5 

6 7 

A 

B C 

D 
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frame in the foreground is subjected to a pair of equal and opposite forces of magnitude P pro-

ducing a clockwise twisting moment on the guideway of magnitude Ph .  The object of this anal-

ysis is to determine the relationship between the twisting moment and the angle of twist.   

To solve the problem, we separate the elements and the corners into a series of 11 free-body dia-

grams.  Thus 

 

Figure B-2. The Moment Diagram for a Section of Guideway. 
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From the free-body diagrams shown in Figure B-2, we have the following equations of statics, 

 

1 5 2 3 4 5

5 1

1 2 3 4

6 1 2 5 3 4 4

1 2 3 4 1 4

0

P P P P P P P

P P P

P P P P

M M M P h M M P h

M M M M P P P h

      

  

   

      

      

   (2) 

which can be verified by considering the whole U-frame as a free-body diagram.  Assume the 

deflections of the four joints are positive to the right and denoted by , , ,a b c d    .  While twist 

will cause some vertical displacement, it does not enter into this analysis.  Using equation (1) 

3
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1

3

2

2

3

3

2

3

4

1

1.608
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EI

P L

EI

P L

EI

P L

EI

 

 

 

 

     (3) 

in which the moments of inertia I of the members 1 and 4 are less than the moment of inertia of 

the members 2 and 3.  The moments of inertia are the sums of the values for the stringers and the 

running surfaces.  Let the twist angles of each of the four stringers, positive clockwise, be de-

noted by  

1 2 3 4, , ,   
  

Then, these angles are given in terms of the end moments by the equations 

     

1
1

1

2
2

2

3
3

2

4
4

1

p

p

p

p

M L

GI

M L

GI

M L

GI

M L

GI

















      (4) 
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in which L is the distance between U-frames, G is the shear modulus, and Ip is the sum of  the 

polar moments of inertia of the stringer and running surface. 

Consider the three elements of the U-frame, which are numbered 5, 6, and 7.  Each is subject to 

both an end load and an end moment.  Thus, if the distance along the beam element is x, begin-

ning at x =  0 and ending at x = l, the equations for the moment, slope, and deflection are 

 "

2
' '

2 2 3
'

(0)
2

(0) (0)
2 2 6

EIy M P l x

x
EIy EIy Mx P lx
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EIy EIy EIy x M P l

  

 
    

 

 
     

 

   (5) 

Thus, the slope and deflection at x = l  are 

2
' '

2 3
'

( ) (0)
2

( ) (0) (0)
2 3

Ml Pl
y l y

EI EI

Ml Pl
y l y y l

EI EI

  

         (6) 

Apply these equations to the vertical U-frame elements 5 and 7.  Thus  
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P hM h

EI EI
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EI EI
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EI EI
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EI EI

 


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

  

     

  

     

    (7) 

For element #6 

 2 3 1 5 2

5

c b

b
M P h M

EI
    

      (8) 

There is an equation for the vertical displacements of joints B and C, but it is not of interest here.  

Now substitute equations (3) and (4) into equations (7) and (8), using equations (2), to get 



104 
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   (9) 

Equations (9) form a set of 8 equations in 8 unknowns.  They can be arranged in the following 

form.  In so doing the second and fourth equations are multiplied by the ratio Ip1/Ip2. 

 

1 1 1 1

1 2 1

5 2 5 5

2 2
1 1 1 1 1 1

1 2 1 22 2

5 2 1 5 2 5

1 1 1

4 3 4

5 2 5

1 1
1

2 2

1 1 1 1 1

2 1.608 3 1.608 3

1
1 0

2

1

2

p p p p

p

p p p p p p

p

p p p

p

I I I Ih G h G h G
M M Ph Ph

L E I I L E I L E I

I I I I I Ih G L G h G L G h G
M M Ph P h Ph

L E I I h E I L E I h E I L E I

I I Ih G h G
M M P h

L E I I L E I

 
    

 

 
     

 

 
    

 

2 2
1 1 1 1 1

4 3 4 32 2

5 2 1 5 2

5 5
1 2 3 1

2 2

1 1 1
0

1.608 3 1.608

1

p p p p p

p

p p

I I I I Ih G L G h G L G
M M P h P h

L E I I h E I L E I h E I

I IE L E L
M M M Ph Ph

G b I G b I

 
     

 

 
      
 

 

(10) 

Let 
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Using the notation of equations (11) equations (10) are simplified to 
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   (12) 

in which we have substituted the sixth of equations (9)  into the fourth of equations (10).  We can 

solving the first and second of equations (12) for M1 and M2 and the third and fourth for M4 and 

M3.  Note that the solution of the third and fourth of equations (12) are obtained by substituting 

subscript 4 for 1, the subscript 3 for 2, and by setting P = 0.  The solutions can be written in the 

form 

1 11 1 12 2 1

2 21 1 22 2 2

4 11 4 12 2

3 21 4 22 2

M a Ph a P h a Ph

M a Ph a P h a Ph

M a P h a P h

M a P h a P h

  

  

 

 
     (13) 

in which 

   

 

 

 

 

 

3 1 3 1 1
11 12 1

1 1 2 1

3 1 1 1 3 1 1 11
21 22 2

2 1 2 1 2 2 1

6 21 1
, ,

3 2 2 3 2

12 1 4 2 1 4
, ,

6 2 2 6 2

m m m I m
a a a

m m I m

m m m m m m m mI
a a a

m m m m I m m

     
       

       

    
  

  
 (14) 

Substitute the moments from equation (13) into the fifth of equations (12).  The result is 

     11 4 21 1 12 22 2 4 21 4 1 4 21 1 1 1a m a P a a P m a P a m a P               
  (15) 

From the seventh and eighth of equations (9) 

 1

2 1 42
P P P  

      (16) 

Substitute equation (16) into equation (15).  The result can be written in the form 
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11 1 14 4 1c P c P c P 
      (17) 

in which 

   

 

 

1

11 11 4 21 12 222

1

14 4 21 12 222

1 1 4 2

1 1

1 1

c a m a a a

c m a a a

c a m a

     

  

        (18) 

Substitute the moment equations (13) into the last of equations (9).  The result, after substituting 

equation (16), can be written in the form 

 21 1 4 2c P P c P 

      (19) 

in which 

21 11 21 12 22 2 1 21 , 1c a a a a c a a       
    (20) 

The solution of simultaneous equations (17) and (19) is 

 

 

1 21 2 14
1

21 11 14

11 2 21 1
4

21 11 14

c c c c
P P

c c c

c c c c
P P

c c c

 
  

 

 
  

 

     (21) 

By substituting equations (21), the sixth of equations (9), and equation (16) into equations (3) we 

have the sidewise displacements of the four joints of Figure C-1.  From them the twist angle of a 

guideway segment of length L is 

 
2

.
2

a d c

h

   
        (22) 

The Torsional Stiffness of the Guideway 

From equations (4) the polar moment of inertia for the entire guideway is  

 

2( / ) 2

/ / / / 2 /
p

a d c

M P G h h L
I

G L L G P P P
  

         (23) 
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With the upper force in Figure B-1 to the right and the lower force to the left, we can expect the 

deflections of the joints A and D to be positive, but the deflection of the joints C and D to be 

negative.  Therefore, there will be a point at a distance a above the joints C and D at which the 

sidewise deflection will be zero.  From simple geometry,  

 

 
   

 

1

12

2

1

2

or

or

a d c
a d c

c

a d c

a a h
h a a

a h

  
      



 
        

   (24) 

The Numerical Solution 

For steel 
629.5(10) psi.E 

 

 
1

, Poisson's Ratio = 0.30 for steel
2 1

G

E



 


 

From Section 3 of the main paper 

54", 31", 28"L h b    

For the tubular stringers, the bending and polar moments of inertia about the neutral axis are 

        
44 , 2 , 4" outside diameter, wall thickness

64
pI OD OD t I I OD t

        
   

For the 4x4x1/4” upper angle running surfaces, the moments of inertia for sidewise deflection is, 

from the Manual of Steel Construction, 3.00 in4.  For the 8x6x1/2” lower angle running surfaces 

44.4 in4. 

The centroids of the upper angle running surface and the tubular stringer are at the same height 

in the guideway, but the centroid of the lower angle is 4.472” above the centroid of the lower 

tubular stringers.  Since the distance between the upper and lower tubular stringers is 31”, we 

will diminish the moment of inertia of the lower angles by the factor (31-4.472)/31 = 0.856.  

Therefore, we take the effective moment of inertia of the lower angles as 0.856(44.4) = 38.0 in4.  

The moment of inertia of the channel cross-sections of the U-frames is 8.89 in4. 

The polar moment of inertia of an angle is19 

 

                                                           
19 S. Timoshenko, Strength of Materials, Part II, 2nd Ed., D. van Nostrand Company, Inc.  1941. 
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  3

1 2

1

3
pI s s t t    

in which s1 and s2 are the two sides and t is the thickness.  Thus, for the upper running surfaces 

 
3

41 1
4 4 1/ 4 0.0404in

3 4
pI

 
    

   

For the lower running surfaces 

 
3

41 1
8 6 1/ 2 0.5625 in .

3 2
pI

 
    

   

Results obtained in an Excel Spreadsheet follow: 

          Solution for Twist of the Guideway           

Modulus of Elasticity of Steel = 29,500,000 29,500,000 29,500,000 29,500,000 psi 

Poisson’s ratio for Steel = 0.30 0.30 0.30 0.30  

E/G = 2.60 2.60 2.60 2.60  

Shear Modulus for Steel = 11,346,154 11,346,154 11,346,154 11,346,154 psi 

                                                                          L = 54 54 54 54 in 

h = 26 26 26 26 in 

b = 28 28 28 28 in 

Stringer OD = 4 4 4 4.5 in 

Stringer wall thickness = 0.174 0.233 0.315 0.315 in 

Stringer moment of inertia = 2.048 2.682 3.515 5.071 in^4 

Stringer polar moment of inertia = 4.096 5.364 7.030 10.143 in^4 

Moment of inertia of upper angles = 3.00 3.00 3.00 3.00 in^4 

Effective moment of inertia of lower angles = 38.00 38.00 38.00 38.00 in^4 

Moment of inertia of U-frame, I5 = 8.89 8.89 8.89 8.89 in^4 

I1 = 5.05 5.68 6.51 8.07 in^4 

I2 = 40.05 40.68 41.51 43.07 in^4 

Polar moment of upper running surfaces = 0.0404 0.0404 0.0404 0.0404 in^4 
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Polar moment of lower running surfaces = 0.5625 0.5625 0.5625 0.5625 in^4 

Ip1 = 4.1363 5.4042 7.0701 10.1832 in^4 

Ip2 = 4.6584 5.9263 7.5923 10.7054 in^4 

      

m1 = 0.0862 0.1126 0.1473 0.2121  

m2 = 0.8879 0.9119 0.9312 0.9512  

m3 = 0.8454 0.9813 1.1197 1.3017  

m4 = 9.5691 7.5218 5.8714 4.1640  

      

a11 = 0.7967 0.9113 1.0200 1.1449  

a12 = 0.1022 0.1298 0.1637 0.2205  

a1 = 0.0138 0.0178 0.0229 0.0320  

a21 = 1.0232 1.1735 1.3358 1.5705  

a22 = 0.2400 0.3006 0.3774 0.5129  

a2 = 0.0317 0.0401 0.0509 0.0708  

      

c11 = -6.7996 -5.5272 -4.2165 -2.4572  

c14 = 9.9617 9.0424 8.1133 6.9061  

c1 = 0.7148 0.7210 0.7291 0.7441  

c21 = 3.1621 3.5152 3.8969 4.4488  

c2 = 1.0179 1.0223 1.0280 1.0388  

Denominator = -53.0011 -51.2152 -48.0474 -41.6557  

      

P1/P = 0.1487 0.1310 0.1145 0.0928  

P4/P = 0.1732 0.1598 0.1494 0.1408  

P2/P = -0.1610 -0.1454 -0.1319 -0.1168  

P3/P = -0.1610 -0.1454 -0.1319 -0.1168  
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L^3/1.608/E = 0.003320 0.003320 0.003320 0.003320 in^5/lb 

DeltaA/P = 0.0000978 0.0000765 0.0000583 0.0000381 In/lb 

DeltaD/P = 0.0001139 0.0000934 0.0000761 0.0000579 in/lb 

DeltaB/P = -0.0000133 -0.0000119 -0.0000105 -0.0000090 in/lb 

Twist angle per lb = 0.00000458 0.00000372 0.00000299 0.00000219 radians/lb 

Polar Moment of Inertia of Guideway = 26.99 33.23 41.38 56.43 in^4 

a/h = 0.1442 0.1623 0.1861 0.2306  

      

M1/Ph = 0.1487 0.1560 0.1612   

M2/Ph = 0.1591 0.1574 0.1518   

M3/Ph = 0.1545 0.1645 0.1739   

M4/Ph = 0.2159 0.2313 0.2493   

      

P = 709 709 709  lb 

M1 = 2741 2876 2972  in-lb 

M2 = 2932 2902 2798  in-lb 

M3 = 2847 3032 3206  in-lb 

M4 = 3980 4263 4595  in-lb 

      

Shear Stress1 = 1338 1072 845  psi 

Shear Stress2 = 1432 1082 796  psi 

Shear Stress3 = 1390 1131 912  psi 

Shear Stress4 = 1943 1590 1307  psi 
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Ride Comfort over Slope Discontinuity 

 
Abstract 

 

The acceleration experienced by a passenger riding in an ITNS vehicle is derived and pre-

sented in graphical form.  The problem required the solution of four second-order nonlinear 

differential equations for vertical motion of the vehicle, pitch motion of the vehicle, for-

ward motion of the vehicle and vertical motion of the passenger.  These differential equa-

tions are solved by a numerical technique, which is presented.  A time step of 0.00001 

seconds was used which is practical because double-precision numbers are used.  The re-

sults show that with a slope discontinuity of half of a degree, the passenger acceleration 

will be around one eighth of a g, somewhat greater or less depending on the seat stiffness.  

Seat stiffness of about 200 lb/in is about right.   The damping ratio should be in the range 

of 0.3 to 0.5.  Higher tire stiffness does not increase passenger acceleration significantly.  

A negative slope change does not change the amplitude of the passenger acceleration.  

Moving the passenger back increases the passenger acceleration by a small amount. 

 

Figure 1.  Vehicle engaging a Slope Discontinuity. 

 

Introduction 

 

The problem addressed is to determine the maximum vertical acceleration of a passenger in an 

ITNS vehicle as the vehicle passes over a slope discontinuity and therefore the maximum slope 

discontinuity that can be permitted.   Figure 1 gives the essential features of the vehicle. 

 

 

 

 



112 
 

Notation and Geometry 

 

 Motion is referred to an orthogonal reference frame x-z, where x is horizontal and z verti-

cal. 

 The rear wheel is called wheel #1 and the front wheel is called wheel #2. 

 The radius of each undeflected tire is R. 

 An upward dynamic force is applied to the two rear tires  𝐹1 = 2𝑘𝛿1 + 2𝑐�̇�1 where 𝑘  

is the tire stiffness is and 𝑐 is the tire damping coefficient.  𝛿1 is the tire deflection and 

�̇�1 is the time rate of the deflection.  The dot indicates the time derivative. 

 Similarly, the upward force on the two front tires is 𝐹2 = 2𝑘𝛿2 + 2𝑐�̇�2.  

 In body coordinates, in which the x-body axis lies along the line connecting the rear and 

front axles, the center of gravity of the vehicle is a distance 𝑧̅ above that line. 

 The center of gravity of the vehicle of empty weight W is marked c. g. and is a distance 

zcg above the x-axis. 

 The angle between the x–axis and the x –body axis is the small angle 𝜃. 

 The motion of the vehicle is given in terms of 𝑧𝑐𝑔(𝑡) and 𝜃(𝑡).   

 The rear-wheel axle is a distance 𝑥1behind the vehicle c. g. in body coordinates. 

 The front-wheel axle is a distance 𝑥2 in front of the vehicle c. g. in body coordinates. 

 The sum 𝑥1 + 𝑥2 = 𝐿, the wheelbase. 

 The rear tire is deflected an amount 𝛿1 and the front tire is deflected an amount 𝛿2. 

 At time t = 0  𝑅 − 𝛿1 = 𝑧𝑐𝑔 − 𝑧̅ − 𝑥1𝜃, 𝑅 − 𝛿2 = 𝑧𝑐𝑔 − 𝑧̅ + 𝑥2𝜃.   

 Thus 

𝛿1 = 𝑅 + 𝑧̅ − 𝑧𝑐𝑔 + 𝑥1𝜃,        𝛿2 = 𝑅 + 𝑧̅ − 𝑧𝑐𝑔 − 𝑥2𝜃  

 �̇�1 = −�̇�𝑐𝑔 + 𝑥1�̇�, �̇�2 = −�̇�𝑐𝑔 − 𝑥2�̇� 

 Note that 𝛿1 − 𝛿2 = 𝐿𝜃 is greater than zero if the rear tire has deflected more than the 

front tire, which must be the case. 

 

 The undeflected passenger seat is a distance 𝑧𝑠𝑒𝑎𝑡 above the rear axle in body coordi-

nates. 

 The passenger has deflected the seat by an amount 𝛿𝑝. 

 The passenger is a point mass of weight 𝑊𝑝 locate at a vertical distance 𝑧𝑝 < 𝑧𝑠𝑒𝑎𝑡. 

 The downward dynamic force of the passenger on the seat is 𝐹𝑠 = 𝑘𝑠𝛿𝑝 + 𝑐𝑠�̇�𝑝 in which 

𝑘𝑠is the seat stiffness and 𝑐𝑠is the seat damping factor. 

 The passenger seat is a distance 𝑥𝑝 forward of the rear axle. 

 The z-coordinate of the undeflected passenger seat is  

𝑧𝑠 = 𝑧𝑐𝑔 − 𝑧̅ + 𝑧𝑠𝑒𝑎𝑡 − 𝑥1𝑝𝜃,       �̇�𝑠 = �̇�𝑐𝑔 − 𝑥1𝑝�̇�  where 𝑥1𝑝 ≡ 𝑥1 − 𝑥𝑝. 

 The deflection of the seat due to the weight of the passenger is 𝛿𝑝 = 𝑧𝑠 − 𝑧𝑝.  
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 The initial seat deflection is 𝛿𝑝 =
𝑊𝑝

𝑘𝑠
 or  𝑧𝑝 = 𝑧𝑠 −

𝑊𝑝

𝑘𝑠
. 

 In Figure 1, the front wheel has passed a step discontinuity 𝜑𝑚𝑎𝑥 in the slope of the run-

ning surface. 

 As a result of the slope discontinuity, the vehicle tips up the mentioned small angle 𝜃 

from the x-axis.  

 Since the front wheel has passed over the slope discontinuity, the force 𝐹2 makes an angle 

𝜑 with the z-axis and hence, since angle 𝜑 is very small, there is a component of the force  

𝐹2𝑠𝑖𝑛𝜑 ≅ 𝐹2𝜑 opposing the motion of the vehicle. 

 The length of the tire contact area is determined by the Pythagorean Theorem: 

𝑅2 = (𝑅 − 𝛿)2 + (0.5𝐿𝑐𝑜𝑛𝑡𝑎𝑐𝑡)
2, or  0.5𝐿𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = √2𝑅𝛿 − 𝛿2.   We are interested in               

the segment of the circumference of the tire between first contact and the half way point 

to the last contact, which is 𝐶(𝛿) = 𝑅 ∗ 𝐴𝑇𝑁 (
√2𝑅𝛿−𝛿2

𝑅−𝛿
).  

 The vehicle moves to the right in Figure 1at the initial speed �̇�(0). 

 At 𝑡 = 0 the value of 𝑥 at the front axle is zero just as the front tire reaches the point of 

the sharp change in slope.  

 The tire, having finite stiffness, engages the slope change gradually as it advances up the 

slope.  We can simulate this change by assuming that the grade changes linearly to a 

maximum when 𝑥 = 𝐶(𝛿).  

 In the region from 𝑥 = 0 𝑡𝑜 𝑥 = 𝐶(𝛿) take the slope to be the continuous curve 

         𝜑(𝑥) =
1

2
 𝜑𝑚𝑎𝑥 [1 − 𝑐𝑜𝑠 (

𝜋𝑥

𝐶(𝛿)
)] , �̇�(𝑥) =

1

2
 𝜑𝑚𝑎𝑥𝑠𝑖𝑛 (

𝜋𝑥

𝐶(𝛿)
)

𝜋

𝐶(𝛿)
�̇� 

 In the region 𝑥 ≥ 𝐶(𝛿)    𝜑(𝑥) =  𝜑𝑚𝑎𝑥. 

 The rear tire begins to engage the slope change when 𝑥 = 𝐿. 

 The function  zSlope(𝑥) = 𝑥𝜑(𝑥) is the vertical distance between the x-axis and  the 

sloped running surface when 0 ≤ 𝑥 ≤ 𝐶(𝛿), and zSlope(𝑥) =  x𝜑𝑚𝑎𝑥 when 𝑥 > 𝐶(𝛿). 

 The z-distance of the front axle from the surface z = 0 can be represented in two ways: 

𝑅 − 𝛿2 + zSlope(𝑥) = 𝑧𝑐𝑔 − 𝑧̅ + 𝑥2𝜃.   Thus 𝛿2 = 𝑅 + 𝑧̅ − 𝑧𝑐𝑔 − 𝑥2𝜃 + zSlope(𝑥). 

 When 𝑥 ≤ 𝐿 the z-coordinate of the rear axle is a distance 𝑅 − 𝛿1 = 𝑧𝑐𝑔 − 𝑧̅ − 𝑥1𝜃 above 

the x-axis, and when 𝑥 > 𝐿 the value 𝑧𝑆𝑙𝑜𝑝𝑒(𝑥 − 𝐿) is added to 𝑅 − 𝛿1. 

 In summary 

𝛿2 = 𝑅 + 𝑧̅ − 𝑧𝑐𝑔 − 𝑥2𝜃 + zSlope(𝑥), �̇�2 = −�̇�𝑐𝑔 − 𝑥2�̇� + ż𝑆𝑙𝑜𝑝𝑒(𝑥) 

where ż𝑆𝑙𝑜𝑝𝑒(𝑥) = �̇�𝜑(𝑥) + 𝑥�̇�(𝑥) 𝑖𝑓 𝑥 < 𝐶(𝛿) or 𝜑𝑚𝑎𝑥�̇� if 𝑥 ≥ 𝐶(𝛿). 

𝛿1 = 𝑅 + 𝑧̅ − 𝑧𝑐𝑔 + 𝑥1𝜃 + 𝛽zSlope(𝑥 − 𝐿), �̇�1 = −�̇�𝑐𝑔 + 𝑥1�̇� + 𝛽ż𝑆𝑙𝑜𝑝𝑒(𝑥 − 𝐿) 

where 𝛽 = 0 𝑖𝑓𝑥 < 𝐿 and 𝛽 = 1 𝑖𝑓 𝑥 ≥ 𝐿. 
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Statics 

 

Then, the static balance of forces on a vehicle of empty weight W is 

 

𝐹1𝐿 = 𝑊𝑥2 +𝑊𝑝(𝐿 − 𝑥𝑝) 

 𝐹2𝐿 = 𝑊𝑥1 +𝑊𝑝𝑥𝑝 

In the static situation at t = 0 

 

𝐹1 = 2𝑘𝛿1 = 2𝑘(𝑅 + 𝑧̅ − 𝑧𝑐𝑔𝑠 + 𝑥1𝜃)   

𝐹2 = 2𝑘𝛿2 = 2𝑘(𝑅 + 𝑧̅ − 𝑧𝑐𝑔𝑠 − 𝑥2𝜃) 

𝐹1 − 𝐹2
2𝑘

= 𝐿𝜃𝑠 =
1

2𝑘𝐿
[𝑊𝑥2 +𝑊𝑝(𝐿 − 𝑥𝑝) −𝑊𝑥1 −𝑊𝑝𝑥𝑝] 

𝜃𝑠 =
1

2𝑘𝐿2
[𝑊(𝑥2 − 𝑥1) +𝑊𝑝(𝐿 − 2𝑥𝑝)] 

 

where 𝜃𝑠 is the static and initial value of 𝜃.   The static initial value of 𝑧𝑐𝑔𝑠 is then 

 

𝑧𝑐𝑔𝑠 = 𝑅 + 𝑧̅ + 𝑥1𝜃𝑠 −
1

2𝑘𝐿
[𝑊𝑥2 +𝑊𝑝(𝐿 − 𝑥𝑝)] = 

𝑅 + 𝑧̅ +
1

2𝑘𝐿2
{𝑊(𝑥2 − 𝑥1)𝑥1 +𝑊𝑝(𝐿 − 2𝑥𝑝)𝑥1 −𝑊𝐿𝑥2 −𝑊𝑝𝐿(𝐿 − 𝑥𝑝)}

= 𝑅 + 𝑧̅ −
1

2𝑘𝐿2
[𝑊(𝑥1

2 + 𝑥2
2) +𝑊𝑝[𝑥2𝐿 + 𝑥𝑝(𝑥1 − 𝑥2)]] 

 

Note that if 𝑥1 = 𝑥2 and 𝑥𝑝 = 𝐿/2 then, as expected, 𝜃𝑠 = 0 and 𝑧𝑐𝑔𝑠 = 𝑅 + 𝑧̅ −
𝑊+𝑊𝑝

4𝑘
. 

The static balance of forces on the passenger seat is 

 

𝑊𝑝 = 𝑘𝑠(𝑧𝑠𝑠 − 𝑧𝑝), 𝑧𝑝 = 𝑧𝑠𝑠 −
𝑊𝑝

𝑘𝑠
 

where 

𝑧𝑠𝑠 = 𝑧𝑐𝑔𝑠 − 𝑧̅ + 𝑧𝑠𝑒𝑎𝑡 − 𝑥1𝑝𝜃𝑠. 

 

Dynamics 

 

The dynamic values of the tire forces are 

 

𝐹1 = 2𝑘𝛿1 + 2𝑐�̇�1   

𝐹2 = 2𝑘𝛿2 + 2𝑐�̇�2   
 

The dynamic value of the upward force of the passenger seat on the passenger is 

 

𝐹𝑠 = 𝑘𝑠𝛿𝑝 + 𝑐𝑠�̇�𝑝 
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Let 𝑟𝑔 be the radius of gyration of the empty vehicle.  The equations of motion of the vehicle are 

 
𝑊

𝑔
�̈�𝑐𝑔 = −𝑊 + 𝐹1 + 𝐹2 − 𝐹𝑠    

𝑊

𝑔
𝑟𝑔
2�̈� =  𝐹2𝑥2 − 𝐹1𝑥1 + 𝐹𝑠𝑥1𝑝 

𝑊

𝑔
�̈� = −φ(𝑥)𝐹2 − 𝛽φ(𝑥 − 𝐿)𝐹1  

 

The vertical equation of motion of the passenger is  

 
𝑊𝑝

𝑔
�̈�𝑝 = −𝑊𝑝 + 𝐹𝑠 

 

Numerical Solution of the Four Second-Order Differential Equations 

 

The method use is described in the internal paper “A Practical Method for Numerical Solution of 

Differential Equations.”  A general second-order differential equation can be expressed as 

 

𝑑2𝑦

𝑑𝑡2
= 𝑓(𝑦, �̇�, 𝑡) 

 

It can be expressed as two first-order differential equations 

 

𝑑𝑢

𝑑𝑡
=  𝑓(𝑢, 𝑦, 𝑡),

𝑑𝑦

𝑑𝑡
= 𝑢  

 

For each time step calculate 

𝑓𝑖−1 = 𝑓𝑖 

 𝑓𝑖 = 𝑓(𝑡, 𝑢, 𝑦) 

𝑢𝑖+1 = 𝑢𝑖 +
1

2
Δ𝑡(3𝑓𝑖 − 𝑓𝑖−1)  

𝑦𝑖+1 = 𝑦𝑖 +
1

2
Δ𝑡(𝑢𝑖+1 + 𝑢𝑖)  

𝑢𝑖 = 𝑢𝑖+1 
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The Program 
Public Class MainForm 

    Public dpr As Double = 180 / Math.PI        'degrees per radian 

    Public g As Double = 32.174 * 12            'acceleration of gravity, 

in/sec^2 

    Public kTire As Double = 800                'tire stiffness, lb/in 

    Public kSeat As Double = 200                'seat stiffness, lb/in 

    Public radiusGyr As Double = 40             'radius of gyration of empty 

vehicle, in 

    Public Wveh As Double = 1200                'vehicle empty weight, lb 

    Public Wpass As Double = 200                'passenger weight, lb 

    Public OmegaN = Math.Sqrt(2 * kTire * g / Wveh) 

    Public OmegaS = Math.Sqrt(kSeat * g / Wpass) 

    Public zetaTire As Double = 0.5             'tire damping ratio 

    Public zetaSeat As Double = 0.4             'seat damping ratio 

    Public cTire = 2 * zetaTire * OmegaN 

    Public cSeat = 2 * zetaSeat * OmegaS 

    Public Slope As Double = 0.5 / dpr          'sudden change in slope of 

running surface, rad 

    Public L As Double = 80                     'distance between front and 

rear wheel axles, in 

    Public x1 As Double = 0.4 * L               'distance from rear axle to 

vehicle c.g., in 
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    Public x2 As Double = L - x1                'distance from vehicle c.g. 

to front axle, in 

    Public xp As Double = 0.3 * L               'distance from rear axle to 

passenger c.g., in 

    Public x1p As Double = x1 - xp              'distance between passenger 

c. g. and vehicle c. g. 

    Public radiusTire As Double = 13.25         'tire radius, in 

    Public zBar As Double = 36                  'distance from axles to c.g 

in body axes, in 

    Public RzBar As Double = radiusTire + zBar 

    Public zSeat As Double = 48                 'distance from wheel axles to 

undeflected seat, in 

    Public zSeatzBar As Double = zSeat - zBar 

 

    Public TheRunThread As Threading.Thread 

    Dim objGraphics As System.Drawing.Graphics 

    Dim ObjFont = New System.Drawing.Font("Arial", 60) 

 

 

    Private Sub MainForm_Load(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles MyBase.Load 

        Dim radiusgyrSq As Double = radiusGyr ^ 2 

        Dim oldcgAccel, oldThetaA, oldPassAccel, oldxDotDot As Double 

        Dim NewzcgDot, NewthetaDot, NewxDot, NewzpDot As Double 

        Dim Defl1, Defl1Dot, Defl2, Defl2Dot, Deflp, DeflpDot, zs, zsDot As 

Double 

        Dim c1, c2, Phi1, Phi2, zSlope1, zSlope2, zSlope1Rate, zSlope2Rate As 

Double 

        Dim F1, F2, Fs As Double 

 

        'initial upward motion of vehicle c.g. 

        Dim zcgAccel As Double = 0 

        Dim zcgDot As Double = 0 

        Dim Term As Double = x2 * L + xp * (x1 - x2) 

        Dim zcg As Double = RzBar - (Wveh * (x1 ^ 2 + x2 ^ 2) + Wpass * Term) 

/ 2 / kTire / L ^ 2 

 

        'initial counterclockwise angular motion of vehicle 

        Dim ThetaAccel As Double = 0 

        Dim thetaDot As Double = 0 

        Dim theta As Double = (Wveh * (x2 - x1) + Wpass * (L - 2 * xp)) / 2 / 

kTire / L ^ 2 

 

        'initial vehicle forward motion 

        Dim xDotDot As Double = 0 

        Dim xDot As Double = 30 * (88 / 60) * 12 'vehicle forward speed 

entering slope change 

        Dim x As Double = 0 

 

        'initial passenger motion 

        Dim PassAccel As Double = 0 

        Dim zpDot As Double = 0 

        Dim zp As Double = zcg + zSeatzBar - x1p * theta - Wpass / kSeat 

 

        'deflection of front tire  

        Defl1 = RzBar - zcg + x1 * theta 
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        c1 = radiusTire * Math.Atan(Math.Sqrt(2 * radiusTire * Defl1 - Defl1 

^ 2) / (radiusTire - Defl1)) 

        Defl2 = RzBar - zcg - x2 * theta 

        c2 = radiusTire * Math.Atan(Math.Sqrt(2 * radiusTire * Defl2 - Defl2 

^ 2) / (radiusTire - Defl2)) 

 

        Dim t As Double = 0 

        Dim delT As Double = 0.00001 

 

        Dim xGraph, yGraph As Single 

        Dim x0 As Single = 30 

        Dim y0 As Single = 700 

        Dim tScale As Single = 3000 

        Dim aScale As Single = 1000 

 

        Dim HorizontalLocation = 550 

        Dim VerticalLocation = 150 

 

        objGraphics = Me.CreateGraphics 

        objGraphics.DrawLine(Pens.White, x0, y0, x0, 0) 

        objGraphics.DrawLine(Pens.White, x0, y0, 2000, y0) 

 

        Do 

            c1 = radiusTire * Math.Atan(Math.Sqrt(2 * radiusTire * Defl1 - 

Defl1 ^ 2) / (radiusTire - Defl1)) 

            If x < L Then 

                Phi1 = 0 

                zSlope1 = 0 

                zSlope1Rate = 0 

            ElseIf x < L + c1 Then 

                Phi1 = 0.5 * Slope * (1 - Math.Cos(Math.PI * (x - L) / c1)) 

                zSlope1 = Phi1 * (x - L) 

                zSlope1Rate = Phi1 * xDot + (x - L) * 0.5 * Slope * 

Math.Sin(Math.PI * (x - L) / c1) * Math.PI * xDot / c1 

            Else 

                Phi1 = Slope 

                zSlope1 = Slope * (x - L) 

                zSlope1Rate = Slope * xDot 

            End If 

 

            If x < c2 Then 

                Phi2 = 0.5 * Slope * (1 - Math.Cos(Math.PI * x / c2)) 

                zSlope2 = Phi2 * x 

                zSlope2Rate = Phi2 * xDot + x * 0.5 * Slope * 

Math.Sin(Math.PI * x / c2) * Math.PI * xDot / c2 

            Else 

                Phi2 = Slope 

                zSlope2 = Slope * x 

                zSlope2Rate = Slope * xDot 

            End If 

 

            'Deflections and deflection rates 

            Defl1 = RzBar - zcg + x1 * theta + zSlope1 

            Defl1Dot = -zcgDot + x1 * thetaDot + zSlope1Rate 

            Defl2 = RzBar - zcg - x2 * theta + zSlope2 

            Defl2Dot = -zcgDot - x2 * thetaDot + zSlope2Rate 

            zs = zcg + zSeatzBar - x1p * theta 
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            zsDot = zcgDot - x1p * thetaDot 

            Deflp = zs - zp 

            DeflpDot = zsDot - zpDot 

 

            'Forces 

            F1 = 2 * kTire * Defl1 + 2 * cTire * Defl1Dot 

            F2 = 2 * kTire * Defl2 + 2 * cTire * Defl2Dot 

            Fs = kSeat * Deflp + cSeat * DeflpDot 

 

            'Solution of the difference equations 

            oldcgAccel = zcgAccel 

            zcgAccel = -g + (F1 + F2 - Fs) * g / Wveh 

            NewzcgDot = zcgDot + 0.5 * delT * (3 * zcgAccel - oldcgAccel) 

            zcg = zcg + 0.5 * delT * (NewzcgDot + zcgDot) 

            zcgDot = NewzcgDot 

 

            oldThetaA = ThetaAccel 

            ThetaAccel = (F2 * x2 - F1 * x1 + Fs * x1p) * g / Wveh / 

radiusgyrSq 

            NewthetaDot = thetaDot + 0.5 * delT * (3 * ThetaAccel - 

oldThetaA) 

            theta = theta + 0.5 * delT * (NewthetaDot + thetaDot) 

            thetaDot = NewthetaDot 

 

            oldxDotDot = xDotDot 

            xDotDot = -Phi2 * F2 - Phi1 * F1 

            NewxDot = xDot + 0.5 * delT * (3 * xDotDot - oldxDotDot) 

            x = x + 0.5 * delT * (NewxDot + xDot) 

            xDot = NewxDot 

 

            oldPassAccel = PassAccel 

            PassAccel = -g + Fs * g / Wpass 

            NewzpDot = zpDot + 0.5 * delT * (3 * PassAccel - oldPassAccel) 

            zp = zp + 0.5 * delT * (NewzpDot + zpDot) 

            zpDot = NewzpDot 

 

            xGraph = x0 + tScale * t 

            yGraph = y0 - aScale * PassAccel / g 

            objGraphics.FillEllipse(Brushes.Green, xGraph, yGraph, 2, 2) 

            yGraph = y0 - aScale * zcgAccel / g 

            objGraphics.FillEllipse(Brushes.Red, xGraph, yGraph, 2, 2) 

            yGraph = y0 - aScale * 0.25 

            objGraphics.FillEllipse(Brushes.Yellow, xGraph, yGraph, 2, 2) 

 

            Application.DoEvents() 

            t = t + delT 

        Loop Until t > 0.5 

        objGraphics.DrawString("PASSENGER ACCELERATION WHILE PASSING A SLOPE 

DISCONTINUITY", Me.Font, System.Drawing.Brushes.Black, HorizontalLocation, 

VerticalLocation + 20) 

        objGraphics.DrawString("Red curve is the acceleration of the vehicle 

c.g.", Me.Font, System.Drawing.Brushes.Black, HorizontalLocation, 

VerticalLocation + 40) 

        objGraphics.DrawString("Green curve is the acceleration of the 

passenger", Me.Font, System.Drawing.Brushes.Black, HorizontalLocation, 

VerticalLocation + 60) 
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        objGraphics.DrawString("Yellow line is at 0.25g acceleration", 

Me.Font, System.Drawing.Brushes.Black, HorizontalLocation, VerticalLocation + 

80) 

        objGraphics.DrawString("Slope change " & FormatNumber(Slope * dpr, 2) 

& " degrees", Me.Font, System.Drawing.Brushes.Black, HorizontalLocation, 

VerticalLocation + 100) 

        objGraphics.DrawString("Seat stiffness " & FormatNumber(kSeat, 2) & " 

lb/in", Me.Font, System.Drawing.Brushes.Black, HorizontalLocation, 

VerticalLocation + 120) 

        objGraphics.DrawString("Seat damping ratio " & FormatNumber(zetaSeat, 

2) & " ", Me.Font, System.Drawing.Brushes.Black, HorizontalLocation, 

VerticalLocation + 140) 

 

        objGraphics.Dispose() 

    End Sub 

 

    Private Sub btnRun_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles btnRun.Click 

 

    End Sub 

 

    Private Sub btnQuit_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles btnQuit.Click 

        Me.Close() 

    End Sub 

End Class 
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Running Surface Stiffness and Tire Ellipticity Requirements 

for Adequate Ride Comfort 
 

1. Stiffness of the Running Surface 

 

The running surfaces for the system under consideration20 is a pair of angles each of which is 8 

inches wide, 6 inches high, and a 1/2th inch thick.  From the Manual of Steel Construction, Third 

Edition, page 1-35, the moment of inertia in the vertical direction is I = 21.7 in4.  From page 1-98 

the torsional constant is J = 0.584 in4. 

 

2. Natural Frequency of the Running Surface 

 

From Marks’ Standard Handbook for Mechanical Engineers, 10th Edition, page 3-73, Table 

3.4.6 the fundamental radial frequency of a simply supported beam is 

 

    2

1 4
where

EI wA
m

ml g
       (1) 

 

in which E is the modulus of elasticity [29.5(10)6 psi for steel], I is the minimum moment of in-

ertia of the angle in its weakest direction [𝐴𝑟2 = 6.80(1.30)2 = 11.49 𝑖𝑛4], l  is the distance be-

tween supports (54 inches for the system under consideration), w is the weight density (0.283 

lb/in3 for steel), A is the cross sectional area (6.80 in2 for the running surface of section 1), and g

is the acceleration of gravity.  The natural frequency / 2f   cycles per second. Thus the fun-

damental natural frequency of our simply supported beam is 

 

𝑓1 =
𝜋

2𝑙2
√
𝐸𝐼𝑔

𝑤𝐴
=

𝜋

2(54)2
√
29.5(10)6(11.49)(32.17 × 12)

(0.283)(6.80)
= 140.5𝐻𝑧 

(2) 

 

The excitation frequency, called the crossing frequency, is 

     
V

f
l


       

 

in which V is the speed of the vehicle.  Thus the critical speed for the running surface is 

 

𝑉 = 𝑓𝑙 = (140.5/𝑠𝑒𝑐)(54/12𝑓𝑡)(60/88) = 431mph 

 

                                                           
20 J. E. Anderson, “The Structural Properties of a PRT Guideway.” 
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which is a great deal higher than any speed of interest.  Thus, at urban speeds we can assume that 

the static deflection of the beam is also the deflection under our moving load. 

 

3. Deflection of the Running Surface 

 

From equation (28) of my paper “Deflection of a Continuous Beam resting on Regularly-Spaced  

Simple Supports under a Concentrated Load” the deflection under the front tires of a vehicle 

with the front tires halfway between supports and the rear tires on a support is 

 

𝑦𝑓 = 0.2573
𝑃𝑓𝑙

3

48𝐸𝐼
=

(0.2573)(54)3

48(29.5)(10)6(21.7)
𝑃𝑓 =

1.319

(10)6
𝑃𝑓 𝑖𝑛 

 

The wheel base WB is 1.5l or 81”, which means that when the front wheels are midspan, the     

back wheels are over a support.  The gross weight of our vehicle will be about 2000 lb of which 

half will be on the front wheels.  Thus, let 1000 lb.fP    Then yf = 0.0013 in. 

 

4. Vertical Acceleration due to Running Surface Deflection 

 

Approximate the running surface between a pair of supports by a sine curve.  Then 

 

    sin 2
2

fy Vt
y

l


      
 

 

in which V is the speed of travel and 0t  as the vehicle passes over the left hand support if the 

motion is to the right.  So 0 when 0 and 0 again when / 2.y t y Vt l      If we differentiate the 

deflection twice with respect to time t  we get the maximum vertical acceleration, which is 

 

                        |𝑦𝑚𝑎𝑥̈ | =
𝑦𝑓

2
(
2𝜋𝑉

𝑙
)
2

= 2𝜋2𝑓𝑐
2𝑦𝑓 = 2𝜋

2𝑓𝑐
2(0.0013 𝑖𝑛) =0.0257𝑓𝑐

2  in/sec2 

(6)

 

 

in which /vf V l  is the crossing frequency.  Assume 60 mph 88 ft/sec,V    

88(12) /54 19.56 Hz.cf    Then 

 

|𝑦𝑚𝑎𝑥̈ | =
0.0257

12
(19.56)2 = 0.819

𝑓𝑡

𝑠𝑒𝑐2
= 0.025 𝑔 

  

This is the peak acceleration.  The r.m.s acceleration is less by the square root of two.  Thus the   

r.m.s. acceleration is 0.02 g. 
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 The above chart is from the ISO ride comfort standards.  It can be seen that a point at 20 Hz and 

an r.m.s. acceleration of 0.02g is well under the curve for 24 hours of oscillation.  At 20 Hz, the 1 

hr duration curve is almost ten times higher.  At 30 mph, the crossing frequency is 9.8 Hz and the 

r.m.s acceleration is about 0.006g, which is below the minimum values on the above chart.  Our 

conclusion is that with the design we have selected, ride comfort will not be compromised due to 

deflection of the running surface. 

 

5. Tire Ellipticity 

 

In the book Mechanics of Pneumatic Tires, U. S. Department of Transportation, U. S. Govern-

ment Printing Office, 1981, there are two chapters that discuss tire non-uniformity in terms of 

radial force variations.  On page 616 one finds the statement: “Radial force variations acceptable 

for car manufacturers range from 100 to 150 N for the peak-to-peak value for European tire sizes 

from 13” or 14” rim diameters.”  The mode shapes of variations in the deflection of a specific 

tire are shown in the following Figure 9.4.24 from Mechanics of Pneumatic Tires.  The first 

mode is for the case in which the tire deflection varies from a maximum to a minimum and back 

to a maximum in one half a circumference.  To obtain an understanding of tolerable variations, 

let us assume that the tire radius varies in the same 
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way.   Let D be the nominal outer diameter of a tire so that D is its circumference.  Then let us 

assume that the tire radius R varies by an amount R from a nominal value 0R according to the 

equation 
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0

0

cos 2
x

R R R rnd
R




 
    

 
 

   (7)

 

 

in which x Vt is the distance traveled, V is the speed, t  is the running time variable, and rnd is 

a random number from 0 to 1, introduced to take into account that peaks and valleys in the radius 

of the four tires are not coordinated.   

 

The frequency of the variation is 

     
0

.
V

f
R



      (8) 

 

6. Vertical Acceleration due to Tire Ellipticity 

 

Assume for a moment for simplicity that our vehicle is a unicycle.  Then, if it is at rest at time 

zero the vertical force balance between the vehicle’s weight W and the tire force is oW k , 

where o is the static deflection of the tire at 0x t   and k is the tire stiffness.  Let oz be the 

height of the center of mass of the vehicle above a reference plane at 0x t   when the deflec-

tion at this point is zero.  Then, the height of the center of mass of the vehicle above the refer-

ence plane at 0x t   is  0 .o oz z     If the vehicle moves to the right at speed V Newton’s 

second law of motion gives 

 

      o

W
z W k z z

g
   

 

or 

    
   

1
1o o

o

kg
z g z z g z z

W 

 
        

     (9) 

 

The following program solves equation (9).  Since we plan to use 13” OD tires, let us consider 

the case when the radial force varies up to plus or minus approximately 100 N from the nominal 

value of 350lb(4.448N/lb) = 1557 N.  This amount of force variation is achieved in the program 

if we let the quantity MaxVar = 0.0023Radius0.  With this value, the program calculates the fol-

lowing results. 

 

 

 

 



127 
 

 

V f dTFmax dTFmin Amax Amin 1 hr Comfort 

mph Hz N  g r.m.s. g r.m.s. g r.m.s. 

20 16.91 109.34 -112.08 0.050 -0.051 0.2 

30 25.37 99.93 -102.62 0.045 -0.047 0.35 

40 33.82 97.14 -99.82 0.044 -0.045 0.5 

 

The last column gives, from the chart on page 3, the comfort value of vertical acceleration for a 

one-hour exposure at the indicated frequency.  We see that the calculated values are a small frac-

tion of these comfort limits, which means that tire Ellipticity is not a factor in ride comfort in 

even this extreme case in which the variable tire forces would act directly on the passenger as if 

the passenger rode directly over the tires and there is no other cushioning.  Actually, the seat will 

provide some cushioning so the above calculations give higher vertical accelerations than would 

be experienced by the passengers.  The other reason for concern would be the effect of the calcu-

lated vibratory acceleration on equipment that will be mounted either in the chassis or the cabin 

of the vehicle.  A specification then is that the equipment be able to operate indefinitely in the 

above calculated vibratory environment. 

 
'This program VERTACCL.BAS calculates the vertical acceleration 

'of a vehicle due to tire irregularities 

'Units are lb, in, sec 

 

DEFDBL A-Z 

DIM Counter AS INTEGER 

DIM n AS INTEGER 

Pi = 4 * ATN(1) 

g = 9.80665 / .3048 * 12        'acceleration of gravity 

NperLB = 4.448                  'Newtons per lb 

W = 350                         'sprung mass on one tire 

m = W / g                       'mass of vehicle 

D = 13.25                       'diameter of tire 

Circ = Pi * D                   'circumference of tire 

Radius0 = D / 2                 'nominal tire radius 

V = 30 * 88 / 60 * 12           'forward speed of vehicle 

Del0 = .25                      'nominal tire deflection under load 

k = W / Del0                    'spring constant of tire 

 

dt = .001                       'computational time increment 

dX = V * dt                     'computational distance increment 

 

CLS 

SCREEN 9 

COLOR 7, 8 

T0 = 20 

Y0 = 200 

scaleT = 1000 

scaleA = 500 
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scaleV = 500 

scaleZ = 60000 

LINE (T0, Y0)-(T0, 0) 

LINE (T0, Y0)-(640, Y0) 

 

RANDOMIZE TIMER 

R = RND 

R = 0 

t = 0 

XX = 0 

z.. = 0 

z. = 0 

MaxVar = .0023 * Radius0        'maximum variation in the tire radius 

n = 5 

Xmax = n * Circ 

Xstart = Radius0 

Radius = Radius0 

z = Radius - Del0 

Counter = 20 

dTFmax = 0 

dTFmin = W 

Amax = 0 

Amin = 0 

 

DO 

  X = V * t 

 

  'Increase the tire variation gradually to settle initial conditions 

  IF X < Xstart THEN 

     Variation = 0 

  ELSEIF X >= Xstart AND X < Xmax + Xstart THEN 

     Variation = .5 * MaxVar * (1 - COS(Pi * ((X - Xstart) / Xmax))) 

  ELSE 

     Variation = MaxVar 

  END IF 

   

  'Define the variation in the tire radius 

  Radius = Radius0 + Variation * COS(2 * Pi * (XX / Pi / Radius0 + R)) 

  Deflection = Radius - z 

  TireForce = k * Deflection 

   

  'Capture the maximum and minimum tire forces 

  IF TireForce - W < dTFmin THEN 

     dTFmin = TireForce - W 

  ELSEIF TireForce - W > dTFmax THEN 

     dTFmax = TireForce - W 

  END IF 

 

  'Solve the differential equations of motion 

  z..old = z.. 

  z.. = -g + TireForce / m 

  z.old = z. 

  z. = z. + .5 * dt * (3 * z.. - z..old) 

  z = z + .5 * dt * (z. + z.old) 

 

  'Capture the maximum and minimum vertical accelerations 

  IF z.. / g > Amax THEN 
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     Amax = z.. / g 

  ELSEIF z.. / g < Amin THEN 

     Amin = z.. / g 

  END IF 

 

  'To step through the program 

  IF Counter = 20 THEN 

     Counter = 0 

     'SLEEP 

  END IF 

  Counter = Counter + 1 

 

  PSET (T0 + scaleT * t, Y0 - scaleA * z.. / g), 10 

  PSET (T0 + scaleT * t, Y0 - scaleV * z.), 11 

  PSET (T0 + scaleT * t, Y0 - scaleZ * (Radius0 - Del0 - z)), 12 

 

  XX = XX + dX 

  IF XX >= Pi * Radius0 THEN XX = 0 

  t = t + dt 

LOOP UNTIL t > 5 

 

PRINT "    Frequency, Hz: "; 

PRINT USING "#######.##"; V / Pi / Radius0 

PRINT "    dTFmax, dTFmin, Newtons: "; 

PRINT USING "#######.##"; dTFmax * NperLB; dTFmin * NperLB 

PRINT "    Amax, Amin, gs rms: "; 

PRINT USING "#######.###"; Amax / SQR(2); Amin / SQR(2) 
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The Bending Moment at the Guideway Joint 

 
Abstract 

Every guideway section in ITNS must have an expansion joint, and it would be desirable if this joint 

need carry only shear.  In a clamped beam under a uniform load, the bending moment is zero at the 

21% point and the 79% point in the beam. The purpose of this paper is to calculate how close to a 

zero bending moment it is practical to design the expansion joint.  In the ITNS guideway design, it 

is practical to place the joint at the 20% point, and we need to know what moment that joint need 

carry.  The results developed in this paper show that the joint need carry only 6% of the maximum 

moment in a fully loaded guideway.   

 

Consider a beam of length L clamped at both ends under a uniform load w lb/ft and a concen-

trated load P a distance a from the left end.  Represent the beam in an orthogonal x-y reference 

frame with x along the length of the beam.  x = 0 at the left end and y = 0 at the left support posi-

tive downward.  The bending moment in the beam is 

𝐸𝐼
𝑑2𝑦

𝑑𝑥2
= 𝑀(𝑥) = 𝑀1 − 𝑅1𝑥 +

𝑤𝑥2

2
+ 𝑃〈𝑥 − 𝑎〉 

 

in which M1 is the moment at the left end and R1 is the reaction force on the left support.    

 
〈𝑥 − 𝑎〉 = 𝑥 − 𝑎 if 𝑥 > 𝑎 and 0 if 𝑥 ≤ 𝑎. 

 

Integrating once and taking into account that the slope is zero at x = 0 we have 

 

𝐸𝐼
𝑑𝑦

𝑑𝑥
= 𝑀1𝑥 − 𝑅1

𝑥2

2
+
𝑤𝑥3

6
+
𝑃〈𝑥 − 𝑎〉2

2
 

 

Since the slope is also zero at x = 0, we have 

 

𝑀1𝐿 − 𝑅1
𝐿2

2
+
𝑤𝐿3

6
+
𝑃(𝐿 − 𝑎)2

2
= 0, 𝑀1 = 𝑅1

𝐿

2
−
𝑤𝐿2

6
−
𝑃(𝐿 − 𝑎)2

2𝐿
 

 

Integrating once more 

 

𝐸𝐼𝑦 = 𝑀1
𝑥2

2
− 𝑅1

𝑥3

6
+
𝑤𝑥4

24
+
𝑃〈𝑥 − 𝑎〉3

6
 

 

Since 𝑦 = 0 at 𝑥 = 𝐿 we have 

 

𝑀1 = 𝑅1
𝐿

3
−
𝑤𝐿2

12
−
𝑃(𝐿 − 𝑎)3

3𝐿2
= 𝑅1

𝐿

2
−
𝑤𝐿2

6
−
𝑃(𝐿 − 𝑎)2

2𝐿
 

Thus 

𝑅1𝐿

6
=
𝑤𝐿2

12
+
𝑃(𝐿 − 𝑎)2

6𝐿
[3 − 2 (

𝐿 − 𝑎

𝐿
)] 
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Therefore 

𝑅1 =
𝑤𝐿

2
+
𝑃(𝐿 − 𝑎)2(𝐿 + 2𝑎)

𝐿3
 

and 

𝑀1 = [
𝑤𝐿

2
+
𝑃(𝐿 − 𝑎)2(𝐿 + 2𝑎)

𝐿3
]
𝐿

2
−
𝑤𝐿2

6
−
𝑃(𝐿 − 𝑎)2

2𝐿
 

=
𝑤𝐿2

12
−
𝑃(𝐿 − 𝑎)2

2𝐿
[1 −

(𝐿 + 2𝑎)

𝐿
] =

𝑤𝐿2

12
+
𝑃(𝐿 − 𝑎)2𝑎

𝐿2
 

Hence 

𝐸𝐼𝑦(𝑥) = {
𝑤𝐿2

12
+
𝑃(𝐿 − 𝑎)2𝑎

𝐿2
}
𝑥2

2
− [
𝑤𝐿

2
+
𝑃(𝐿 − 𝑎)2(𝐿 + 2𝑎)

𝐿3
]
𝑥3

6
+
𝑤𝑥4

24
+
𝑃〈𝑥 − 𝑎〉3

6

=
𝑤𝑥2

24
(𝐿2 − 2𝐿𝑥 + 𝑥2) +

𝑃𝑥2(𝐿 − 𝑎)2

6𝐿3
[3𝑎𝐿 − 𝐿𝑥 − 2𝑎𝑥] +

𝑃〈𝑥 − 𝑎〉3

6

=
𝑤(𝐿 − 𝑥)2𝑥2

24
+
𝑃𝑥2(𝐿 − 𝑎)2

6𝐿3
[3𝑎𝐿 − 𝐿𝑥 − 2𝑎𝑥] +

𝑃〈𝑥 − 𝑎〉3

6
 

 

𝐸𝐼𝑦 (
𝐿

2
) =

𝑤𝐿4

384
+
𝑃(𝐿 − 𝑎)2

48
(4𝑎 − 𝐿) 

If 𝑎 =
𝐿

2
 

𝐸𝐼𝑦 (
𝐿

2
) =

𝑤𝐿4

384
+

𝑃𝐿2

48 × 4
(4𝑎 − 𝐿) =

𝑤𝐿4

384
+
𝑃𝐿3

192
 

 

which agrees with results presented in well-known textbooks on the analysis of structures. 

Thus, the moment is given by 

 

𝑀(𝑥) =
𝑤𝐿2

12
+
𝑃(𝐿 − 𝑎)2𝑎

𝐿2
− [
𝑤𝐿

2
+
𝑃(𝐿 − 𝑎)2(𝐿 + 2𝑎)

𝐿3
] 𝑥 +

𝑤𝑥2

2
+ 𝑃〈𝑥 − 𝑎〉

=
𝑤

12
(𝐿2 − 6𝐿𝑥 + 6𝑥2) +

𝑃(𝐿 − 𝑎)2

𝐿3
(𝐿𝑎 − 𝐿𝑥 − 2𝑎𝑥) + 𝑃〈𝑥 − 𝑎〉 

 

If P = 0 then the moment vanishes when 

 

(
𝑥

𝐿
)
2

−
𝑥

𝐿
+
1

6
= 0 

 

The solution of which is 

 

𝑥

𝐿
=
1

2
(1 ± √1 −

2

3
) =

1

2
(1 ±

1

√3
) = 0.7887, 0.2113 
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Place the moment equation in dimensionless form, and in so doing let 𝛼 =
𝑥

𝐿
 𝑎𝑛𝑑 𝛽 =

𝑎

𝐿
. 

Then, the moment equation becomes 

 

𝑀(𝛼, 𝛽) =
𝑤

12
(𝐿2 − 6𝐿𝑥 + 6𝑥2) +

𝑃(𝐿 − 𝑎)2

𝐿3
(𝐿𝑎 − 𝐿𝑥 − 2𝑎𝑥) + 𝑃〈𝑥 − 𝑎〉 

=
𝑤𝐿2

12
(1 − 6𝛼 + 6𝛼2) + 𝑃𝐿(1 − 𝛽)2(𝛽 − 𝛼 − 2𝛼𝛽) + 𝑃𝐿〈𝛼 − 𝛽〉 

=
𝑤𝐿2

12
{1 − 6𝛼 + 6𝛼2 +

12𝑃

𝑤𝐿
[(1 − 𝛽)2(𝛽 − 𝛼 − 2𝛼𝛽) + 〈𝛼 − 𝛽〉]} 

 

Where 
𝑝

𝑤𝑙
 is the weight of a vehicle divided by the weight of the beam.  If there are several point 

loads, then result is obtained by superposition.  Let 𝛽𝑖 be the i-th of a series of equal point loads.  

In this case 

 

12𝑀

𝑤𝐿2
= 1 − 6𝛼 + 6𝛼2 +

12𝑃

𝑤𝐿
∑[(1 − 𝛽𝑖)

2(𝛽𝑖 − 𝛼 − 2𝛼𝛽𝑖) + 〈𝛼 − 𝛽𝑖〉]

𝑛

𝑖=1

 

 

Note that 
𝑤𝐿2

12
 is the maximum bending moment in a beam under uniform load w, and it occurs at 

x = 0 and x  = L.  Let the wheel base of the ITNS vehicle be WB.  Then we can take the point 

loads in pairs separated by WB, with  
𝑊𝐵

𝐿
=

84

90×12
= 0.0778 ≈ 0.08 for the ITNS vehicle.  The 

ratio 
12𝑃

𝑤𝐿
=
6𝑊𝑣𝑒ℎ𝑖𝑐𝑙𝑒

𝑤𝐿
=
6(1800)

140×90
=
6

7
= 0.8571.  It will be convenient to place the expansion joints 

at 𝛼 = 0.2 or 0.8.  In the accompanying Excel Spreadsheet we have calculated the ratio 
12𝑀

𝑤𝐿2
 for 

all relevant values of 𝛽𝑖.   The results use the following input parameters: 

 
The Moment in a Beam at the Expansion Joints 

Beam Unit weight: 140 lb/ft 

Vehicle Gross Weight: 1800 lb/ft 

Beam Length: 90 ft 

12P/wL: 0.8571  

Alpha: 0.2  

1-6A+6A^2: 0.0400  

WheelBase: 7.0000  

WB/L: 0.0778  

Minimum Headway: 0.5 sec 

Speed: 30 mph 

Vehicle Spacing: 22.0 ft 

Spacing/L: 0.24  
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This first result assumes a one-point load due to half a vehicle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This second result is for one vehicle with a pair of point loads one Wheel Base apart.  Note that 

the maximum moment increased by about 0.02 to about 0.085. 
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This third result is for a pair of vehicles spaced 22 feet apart.  We see that the maximum moment 

increased to about 11%.   The curve is calculated only to 𝛽 = 0.76 because to go further the for-

ward vehicle would have passed the guideway support post. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This fourth result is for three vehicles each spaced 22 feet apart for a total spread of 44 feet.  We 

see that while the area under the moment curve increased, the maximum increased hardly at all. 

This fifth result is for four vehicles covering from nose-to-nose 66 feet.  We see that the maxi-

mum moment decreased slightly. 

 

Conclusion 

 

In designing the expansion joint at the 20% point, we will need to assume that the maximum mo-

ment it need carry is no more than 12% of the maximum moment in an unloaded beam.  How-

ever, we have taken for the design load not only the guideway weight, but the guideway weight 

plus a root-mean-square load of vehicles on the guideway, i.e., 140 lb/ft + 1800/9/square root of 
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2, i.e. a total load of double the guideway weight per foot.  Hence the expansion joint need carry 

only 6% of that maximum bending moment that the guideway must carry.  

 

The Joint between Guideway Sections 

 
Summary 

 

The first thing a potential purchaser of ITNS will notice in his or her first ride on our test system will be 

the ride comfort.  One of the most important considerations in ride comfort will be the manner in which 

the joints between guideway sections are aligned.  Thus, the manner of treatment of these joints deserves 

very careful analysis.  If, before a potential user is given an opportunity to ride, we judge that the ride 

comfort is inadequate, it is possible that we would have to tear down the entire guideway and replace it, 

for which there will likely be no money.  The subject of this paper is an introduction to the consideration 

of these joints.  How acceptable the ride comfort will be with our joint design can only be determined 

from following the movement of vehicles in our test guideway, but if we have not adequately accounted 

for potential bumps at the joints, we may not get a second chance.  This is one more case in which ade-

quate engineering analysis prior to operation is essential.   

 

The Expansion Joint 

 

Steel expands at about 6.5(10)-6 in/in/oF.  In designing ITNS, we need to consider a temperature 

range from about -40oF to +120 oF.  (I am aware that in Mid-Eastern countries we will have to 

design for a maximum temperature of at least 150 oF but then the minimum temperature will also 

be higher.)  Over a temperature difference of 160 oF, steel will expand about 6.5(10)-6(160) 

=1.04(10)-3 in/in.  Thus a 90-ft guideway section will expand about 1.04(10)-3(90)(12) = 1.12 in. 

 

 

 

 

 

 

 
Figure 1.  Running surfaces cut at a 45o angle, showing tire contact area. 

 

It is possible for the expansion joint to be fingered, but fabricators have told me that a less ex-

pensive and likely satisfactory way is simply to cut the running surfaces at the joint at an angle, 

such as 45 deg.  A 45 deg joint is illustrated in Figure 1, where the blue rectangle represents the 

contact area of the tire.  The angle could be larger, up to perhaps 60 deg, but the advantage of 45 

deg is that the complement of the angle is the angle, which removes one possible source of error.  

Also other fabrication problems may arise with a larger angle.  We note that at any position of 

the tire-contact area, in passing over the expansion joint a portion of the tire contact area at each 

position along the direction of motion is in contact with one or the other of the two adjacent run-

ning surfaces, which minimizes the magnitude of a sudden vertical motion as the tire passes over 

the joint.   
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If the tire diameter is D, the width of the tire contact area W, and the tire deflection d, the contact 

area is obtained by application of the Pythagorean Theorem.  Thus  

 

𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑟𝑒𝑎 = 2𝑊√𝑑(𝐷 − 𝑑) 

 

Assume that in ITNS W = 3.5 in (the tire width is 4 in), D = 13.25 in, and d = 0.15 in.  Then the 

contact area is 3.5 × 2.8 = 9.81 in2.  Assuming that the separation between adjacent running sur-

faces is zero at an outside temperature of 120oF, we need to know the fraction of the contact area 

that touches either of the running surfaces at lower temperatures.  This calculation is a straight 

forward application of geometry and is carried out by the program shown in Appendix A, where 

as an example, the calculation is carried out for outside temperatures of -40oF, 0 oF, 40 oF, and 80 

oF.  The results for a 45o joint are given in Figure 2.  The minimum contact area as a fraction of 

the total contact area for joint angles of 45o and 60o are shown in the following table: 

 

Outside temperature: -40o F 0o F 40o F 80o F 

45o joint 0.684 0.760 0.840 0.920 

60o joint 0.815 0.861 0.907 0.954 

Difference in Minimum 

Contact Area 

16.1% 11.7% 7.4% 3.6% 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The fraction of the tire contact area that rests on one or the other of the two running surfaces. 

 

What are the consequences of passing over the gap in the running surfaces?  The distance the ve-

hicle moves in completely passing over the gap is W + Contact Length + gap and with the 

above values, it would at -40oF be 3.5 + 2.8 + 1.12 = 7.42 in.  At a speed of 20 mph or 352 

in/sec, the time required to pass the gap is about 20 millisec.  A slight slapping sound may be 
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heard, the lower the outside temperature the louder.  Also an extremely minor bump may be felt, 

but with even just seat suspension, it likely will not be noticed.  We are accustomed to much 

larger bumps in automobile rides.  Experimental data on the test track is needed.  As a backup, 

we could build in some fingered joints so that we could compare. 
 

Consequences of a Step in the Running Surface 

 

It cannot be expected that the adjacent running sur-

faces of two 90-ft guideway sections will be 

aligned exactly.  How much misalignment will be 

tolerable can best be determined by experiment.  I 

have solved the equations of motion in passing over 

gap with a slope discontinuity21, and calculated the 

maximum vertical acceleration that would be expe-

rienced by a passenger seating in a sprung seat.  

Unfortunately, there is no standard against which to 

state what maximum misalignment would be ac-

ceptable.  The important point is that we will need 

to develop a way to keep the step change as close to 

zero as economically practical.  This concern ap-

plies most importantly to the major running sur-

faces and to a lesser degree to the side wheels be-

cause the side loads will be smaller.  Sudden up-

ward or downward motion of the wheel does not 

translate directly into motion that will be felt by the 

passenger sitting on a sprung seat, and the step 

changes that can be produced in ITNS will be much 

smaller than experienced by an automobile passing 

over expansion joints in a highway.   
   Figure 3.  Guideway Cross Section. 

 

How can any step change in the running surface at the expansion joints be minimized? 

 

The cross section of the guideway, which is symmetrical about its vertical centerline, is shown in 

Figure 3.  The main load is carried by four pipe stringers of 4 in OD each.  The plan we have en-

visioned is that at the expansion joints, a pipe of slightly smaller OD than the ID of the each 4-

inch pipe and from about ten to twelve feet long (the smallest acceptable length must be deter-

mined during the computer analysis of the guideway) will be slid half way inside the outer pipes 

with one end secured perhaps by a tack weld and the other allowed to slide.  The sliding half 

should be covered by some kind of low-friction material.  If a section of guideway would have to 

be replaced, these pipes must be cut at the joint.  If nothing more is done, the maximum differ-

                                                           
21 See my paper “Ride Comfort over Slope Discontinuity.” 
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ence in alignment of the adjacent running surfaces is dependent on a buildup of several toler-

ances, and these can be reduced by manufacturing key dimensions in the U-frames to as close a 

tolerance as would be commercially practical.        

      

A steel fabricator asserted to me that it would be practical to hold the left-to-right dimension of 

the U-frames at the location of the upper and lower lateral wheels to within 0.005” to 0.010”.  I 

am convinced that that will be acceptable and is one reason for this particular design configura-

tion, which will permit the upper and lower angle running surfaces to be pressure-welded to the 

U-frames − pressure-welded because of warping that occurs due to the heat generated by arc 

welding.  Now, in addition, for the pair of U-frames that will be adjacent at a joint, the position 

of the cutouts for the longitudinal pipe-stringers with respect to the running surfaces must be 

closely controlled.  If necessary U-frames to be placed in the end U-frames of adjacent sections 

could be marked and installed as matched pairs.  Hopefully, no additional alignment procedure 

will be required.     

 

The guideway sections are to be manufactured in 45-ft lengths, assembled in the field into the 

desired 90-ft sections.  This will mean that the expansion joint will be at the 25% points between 

posts instead of the ideal 21%, but as shown in Appendix B, the bending moment at the 25% 

point is only one eighth of the maximum bending moment.  The procedure for assembling two 

45-ft lengths will be similar to assembling 90-ft sections to each other, except that here there is 

no expansion joint.  If the running surfaces can’t be aligned adequately based on the accuracy of 

the U-frames, the U-frames can be set back from the ends sufficiently so that the running sur-

faces can be brought into alignment by pressure welding sufficiently stiff angle sections to their 

back sides lapped between the adjacent running surfaces. 

 

In a loop guideway, how will the last 90-ft section be secured?   

 

In all sections except the final one, the procedure of sliding in the inside pipes into one end, se-

curing them by a tack weld, and then sliding the next section on to these inside pipes is straight-

forward.  What to do with the final section that closes the loop?  There are two problems: 1) its 

length must be correct in order that the gap between adjacent sections not be too large or too 

small, and 2) the procedure just described for installing the inside pipes must be modified.   

 

As to the length, would it be better a) to rely on sufficiently accurate surveying so that the re-

maining gap is within plus or minus say 0.20 inch of nominal, or b) to delay manufacture of the 

final section until the adjacent sections have been installed?  For many reasons, we will have to 

plan that the sections cannot all be exactly 90 ft long, hence procedure b) may be the best.      

 

What should be the procedure for installing the inside pipes into the closing section?  

 

By not yet firmly bolting the post brackets (that connect the post to the guideway) that are close 

to one end of the final guideway section it will be possible to move this guideway section out of 

alignment sufficiently so that the procedure described for any other section will work for one of 

its ends.  But then if the last section is drawn into alignment at the final joint, there is no way to 

insert the inside pipes.  One solution would be to 1) cut the main pipe stringers short on the final 

section by say two feet and set back the end U-frame by the same amount.  Then 2) before the 
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final section is installed slide the inside pipes into each of the four stringers far enough so that 

their ends interface with the end of the section.  3) Bring the final joint into alignment and then 

4) pull the inside pipes out half way so that an equal length remains in each of the two sections.  

Once done, one end of each of these inside pipes can be tack welded to maintain its position.  

This procedure appears satisfactory because the maximum bending moment at the expansion 

joint will, per the analysis in Appendix B, be no more than about one eighth of the maximum 

bending moment in the guideway, and thus it can be carried by the inside pipe stringers.  This 

procedure works best if the final guideway section is one of the straight sections. 

 

Appendix A 

 

Program to calculate the tire contact area. 
 

'This program GAP.BAS calculates the fraction of covered area in passing 

'over a gap in the running surface. 

DEFDBL A-Z 

DEFINT I-J 

 

Jmax = 1000 

DIM FrnAreaCovered(1 TO 4, 0 TO Jmax) 

 

TireWidth = 3.5    'tire width,inches 

TireDiam = 13.25   'tire diameter, inches 

TireDefl = .15     'tire deflection, inches 

'From the Pythagorean Theorem: 

ContactLength = 2 * SQR(TireDefl * (TireDiam - TireDefl)) 

'Tire contact area: 

TCA = TireWidth * ContactLength 

 

CoefOfExpansion = .0000065#     'Expansion coefficient of steel,in/in /deg F 

ExpOfGdwy = CoefOfExpansion * 90 * 12  'Expansion of guideway per degree F 

 

Angle = 60     'angle gap boundry makes with direction transverse to motion 

Angle = Angle * ATN(1) / 45  'convert to radians 

TwoTanAng = 2 * TAN(Angle) 

'Distance from start of gap on one side of tire to start on other side: 

TWtanAng = TireWidth * TAN(Angle) 

'Distance in direction of motion from start of gap to end of gap: 

TWtnpCL = TWtanAng + ContactLength 

 

CLS 

SCREEN 9 

COLOR 7, 8 

X0 = 10 

Y0 = 300 

Xscale = 60 

CAscale = 250 

LINE (X0, Y0)-(600, Y0) 

LINE (X0, Y0)-(X0, 0) 

LINE (X0, Y0 - CAscale)-(600, Y0 - CAscale) 

 

dx = .01 

 

OPEN "GAP45.ASC" FOR OUTPUT AS #1 
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FOR I = 1 TO 4 

  DelT = 40 * I    '120 deg F - outside temperature, deg F 

  gap = ExpOfGdwy * DelT  'separation between guideway sections 

  x = 0    'x is the coordinate in the direction of motion, 0 just as 

           'the tire contact area first touches the first part of the gap 

  AC.old = TCA   'to determine minimum area covered 

  Flag% = 0 

FOR J = 0 TO Jmax 

  IF x < gap THEN 

     AreaCovered = TCA - x ^ 2 / TwoTanAng 

  ELSEIF x < TWtanAng THEN 

     xmg = (x - gap) ^ 2 / TwoTanAng 

     IF x > ContactLength THEN 

        xml = (x - ContactLength) ^ 2 / TwoTanAng 

     ELSE 

        xml = 0 

     END IF 

     IF x > ContactLength + gap THEN 

        xmlg = (x - ContactLength - gap) ^ 2 / TwoTanAng 

     ELSE 

        xmlg = 0 

     END IF 

     AreaCovered = TCA - x ^ 2 / TwoTanAng + xmg + xml - xmlg 

  ELSEIF x < TWtanAng + gap THEN 

     xmg = (x - gap) ^ 2 / TwoTanAng 

     IF x > ContactLength + gap THEN 

        xmCLmG = (x - ContactLength - gap) ^ 2 / TwoTanAng 

     ELSE 

        xmCLmG = 0 

     END IF 

     AreaCovered = (TWtnpCL - x) ^ 2 / TwoTanAng + xmg - xmCLmG 

  ELSEIF x < TWtnpCL + gap THEN 

     IF TWtnpCL > x THEN 

        WCLmx = (TWtnpCL - x) ^ 2 / TwoTanAng 

     ELSE 

        WCLmx = 0 

     END IF 

     AreaCovered = TCA - (TWtnpCL + gap - x) ^ 2 / TwoTanAng + WCLmx 

  ELSE 

     AreaCovered = TCA 

  END IF 

 

  'To determine minimum covered area, AC.min: 

  IF Flag% = 0 AND AreaCovered > AC.old THEN 

     AC.min = AC.old / TCA 

     Flag% = 1 

  END IF 

  AC.old = AreaCovered 

 

  FrnAreaCovered(I, J) = AreaCovered / TCA 

  PSET (X0 + Xscale * x, Y0 - CAscale * FrnAreaCovered(I, J)) 

  x = x + dx 

NEXT J 

PRINT " Minimum Covered Area: "; 

PRINT USING "###.###"; AC.min 

NEXT I 

FOR J = 0 TO Jmax 
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 WRITE #1, J * dx, FrnAreaCovered(1, J), FrnAreaCovered(2, J), FrnAreaCov-

ered(3, J), FrnAreaCovered(4, J) 

NEXT J 

CLOSE #1 
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A Dynamic Analysis of the Switch Rail Entry Flare 

 
Figure 1. A switch wheel entering the flared switch rail. 

 

The Problem 

 

Figure 1 illustrates a switch wheel attached to an ITNS vehicle moving to the left at speed V and 

engaging a flared switch rail.  When the wheel hits the switch rail it will transfer to the vehicle, 

which is running above the rail, a sudden motion and will impart to the rail an impulsive force.  

We must know the magnitude of the lateral acceleration and jerk imparted to the vehicle and the 

magnitude of the impulsive force so that we can design the rail to have sufficient strength when 

subjected to a sequence of impulsive loads. 

 

Analysis 

𝐼𝑓 𝑥 ≤ 𝑥1 𝑙𝑒𝑡 𝑦 = 𝑦1 (
𝑥

𝑥1
)
𝑛

 𝑒𝑙𝑠𝑒𝑖𝑓 𝑥 > 𝑥1 𝑙𝑒𝑡 𝑦 = 𝑦1 + 𝑛
𝑦1
𝑥1
(𝑥 − 𝑥1) 

i.e. let the slopes match at x = x1. 

 

Let the flare length be Lflare and let the maximum transverse deviation of the flare be Dmax. 

Assume the vehicle enters the flare at x = Lflare at a speed V and time t = 0, and the flare ends at x 

= 0.  Then the position of the vehicle is x = Lflare – Vt.    Then, in the region 0 ≤ 𝑥 ≤ 𝑥1 

 

𝑑𝑦

𝑑𝑡
= 𝑛𝑦1

𝑥𝑛−1

𝑥1
𝑛 (−𝑉),

𝑑2𝑦

𝑑𝑡2
= 𝑛(𝑛 − 1)𝑦1

𝑥𝑛−2

𝑥1
𝑛 𝑉2 

 

Let us restrict the lateral acceleration at x = x1 to alimit.  Then at x = x1 we have the equation 

𝑎𝑙𝑖𝑚𝑖𝑡 = 𝑛(𝑛 − 1)
𝑦1𝑉

2

𝑥1
2  

or 

 

𝑦1 =
𝑎𝑙𝑖𝑚𝑖𝑡

𝑛(𝑛 − 1)𝑉2
𝑥1
2 
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At x = Lflare we have 

𝐷𝑚𝑎𝑥 = 𝑦1 + 𝑛
𝑦1
𝑥1
(𝐿𝑓𝑙𝑎𝑟𝑒 − 𝑥1) =

𝑎𝑙𝑖𝑚𝑖𝑡
𝑛(𝑛 − 1)𝑉2

𝑥1
2 [1 + 𝑛 (

𝐿𝑓𝑙𝑎𝑟𝑒

𝑥1
− 1)]

=
𝑎𝑙𝑖𝑚𝑖𝑡

𝑛(𝑛 − 1)𝑉2
[−(𝑛 − 1)𝑥1

2 + 𝑛𝐿𝑓𝑙𝑎𝑟𝑒𝑥1] 

or 

𝑢 = 𝑥1
2 −

𝑛

𝑛 − 1
𝐿𝑓𝑙𝑎𝑟𝑒𝑥1 +

𝑛𝐷𝑚𝑎𝑥𝑉
2

𝑎𝑙𝑖𝑚𝑖𝑡
= 0 

the solutions of which are 

 

𝑥1 =
1

2
[(

𝑛

𝑛 − 1
) 𝐿𝑓𝑙𝑎𝑟𝑒 ±√(

𝑛

𝑛 − 1
)
2

𝐿𝑓𝑙𝑎𝑟𝑒
2 − 4

𝑛𝐷𝑚𝑎𝑥𝑉2

𝑎𝑙𝑖𝑚𝑖𝑡
] 

Note that  

𝑑𝑢

𝑑𝑥1
= 2𝑥1 −

𝑛

𝑛 − 1
𝐿𝑓𝑙𝑎𝑟𝑒 

which is zero at 

𝑥1 =
𝑛

2(𝑛 − 1)
𝐿𝑓𝑙𝑎𝑟𝑒 

For n = 2    𝑥1 = 𝐿𝑓𝑙𝑎𝑟𝑒  𝑎𝑛𝑑 𝑓𝑜𝑟 𝑛 = 3    𝑥1 = 
3

4
𝐿𝑓𝑙𝑎𝑟𝑒 . 

 

This we note that the equation u(x1) has negative slope at x1 = 0 and that x1 for the plus root is at 

least a large fraction of the length of the flare.  Thus, we take the solution to be 

 

𝑥1 =
1

2
(
𝑛

𝑛 − 1
)𝐿𝑓𝑙𝑎𝑟𝑒 [1 − √1 − 4

(𝑛 − 1)2𝐷𝑚𝑎𝑥𝑉2

𝑛𝑎𝑙𝑖𝑚𝑖𝑡𝐿𝑓𝑙𝑎𝑟𝑒
2 ] 

 

If we take alimit = 0.25g =8.05 ft/sec2 and V = 44 ft/sec, then for a real solution we must have 

 

4
(𝑛 − 1)2𝐷𝑚𝑎𝑥𝑉

2

𝑛𝑎𝑙𝑖𝑚𝑖𝑡𝐿𝑓𝑙𝑎𝑟𝑒
2 < 1 𝑜𝑟 𝐷𝑚𝑎𝑥 <

𝑛

(𝑛 − 1)2
𝑎𝑙𝑖𝑚𝑖𝑡𝐿𝑓𝑙𝑎𝑟𝑒

2

4𝑉2
 

 

A reasonable flare length would be about 8 ft, in which case we would have  

 

𝐷𝑚𝑎𝑥 <
𝑛

(𝑛 − 1)2
0.0665 

 

If n = 2 then Dmax < 0.133 ft or 1.6 in, and if n = 3  Dmax < 0.050 ft or 0.6 in. 
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Alternative Shapes 

 

1. The Rail is basically linear. 

 

Let the transition rail be defined by the equations 

 

𝐼𝑓 0 ≤ 𝑥 ≤ 𝑥1 𝑙𝑒𝑡 𝑦 = 𝑦1 (
𝑥

𝑥1
)
2

 𝑒𝑙𝑠𝑒𝑖𝑓 𝑥 > 𝑥1 𝑙𝑒𝑡 𝑦 = 𝑦1 + 2
𝑦1
𝑥1
(𝑥 − 𝑥1) 

 

Assume that the switch wheel hits the switch rail when x = L > x1 and t = 0.  Then the position of 

the switch wheel, moving to the left at constant speed V , is given by 

 

𝑥𝑠𝑤𝑥 = 𝐿 − 𝑉𝑡 
         (1) 

Then, with the vehicle moving to the left,  

 

𝑦 = 𝑦1 + 2
𝑦1
𝑥1
(𝐿 − 𝑉𝑡 − 𝑥1), �̇� = −2

𝑦1
𝑥1
𝑉, �̈� = 0 𝑖𝑓 𝑥 > 𝑥1 

(2) 

If 

 𝑥 ≤ 𝑥1  𝑦 = 𝑦1 (
𝐿−𝑉𝑡

𝑥1
)
2

,      �̇� = −2𝑦1
(𝐿−𝑉𝑡)𝑉

𝑥1
2 ,       �̈� =

2𝑦1

𝑥1
2 𝑉

2,       𝑦 = 0. 

 

Thus, if we wish to limit the lateral acceleration to say �̈� = 𝑎𝑔 we must select x1 at 

 

𝑥1 = 𝑉√
2𝑦1
𝑎𝑔

 

 

Let L≫ 𝑥1, and let the transverse displacement of the flare at x = L be 𝑦(𝐿) = 𝑦𝐿 ≫ 𝑦1.   For ex-

ample, let L = 6 ft = 72 in and yL = 0.5 in at t = 0.  Let x1 = 6 in.  Then 

 

𝑦1 =
0.5

1 +
2(72 − 6)

6

=
1

46
= 0.022 𝑖𝑛 

 

Thus, almost always, the switch wheel hits the flared rail when y > y1, but if it hits the flared rail 

when y < y1 and V = 35 mph =51.3 ft/sec = 616 in/sec then �̇� ≤
2(616)

46(6)
= 4.5

𝑖𝑛

𝑠𝑒𝑐
. 

 

2. The Rail is a parabola. 

 

First assume that the shape of the flared switch rail is described by a parabola, i.e. 
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𝑦 = 𝑦𝑙
𝑥2

𝑙2
 

(A-1) 

in which x l  is the variable position where the switch wheel strikes the switch rail, and 

( ) ly l y  is the lateral displacement of the switch rail with respect to its lateral displacement at 

.x l    

 

Substituting equation (A-2) into equation (A-1) we find the lateral displacement of the switch 

wheel as a function of time: 

 

𝑦(𝑡) = 𝑦𝑙
(𝑙 − 𝑉𝑡)2

𝑙2
 𝑖𝑓 𝑡 ≤

𝑙

𝑉
  𝑜𝑟 0  𝑖𝑓 𝑡 >

𝑙

𝑉
 

        (A-3) 

Thus the transverse velocity, transverse acceleration, and transverse jerk experienced by the 

switch wheel, arm and hence vehicle are given successively for /t l V by 

 

                                𝑆𝑝𝑒𝑒𝑑:           �̇� = −2𝑦𝑙
(𝑙 − 𝑉𝑡)

𝑙2
𝑉   

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛:           �̈� = 2𝑦𝑙
𝑉2

𝑙2
  

      𝐽𝑒𝑟𝑘:          𝑦 = 0 

        (A-4) 

For t > l/V the lateral motion is zero.  So the vehicle experiences a sudden negative step change 

in lateral speed, followed by a linearly decreasing lateral speed to zero at /t l V .  The lateral ac-

celeration suddenly receives a positive value at t = 0 and remains constant until t = l/V where-

upon it suddenly vanishes, thus at both the beginning and ending of the spiral, the vehicle experi-

ences an infinite spike of jerk in zero time – in the physical world a very large pulse of jerk for a 

very short period of time.   

 

3.  The Switch Rail is a Cubic. 

 

On the other hand, if the shape of the flare conformed to a cubic curve, we would find that the 

motion of the switch wheel for /t l V  would conform to the following equations: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛:              𝑦 = 𝑦𝑙
(𝑙 − 𝑉𝑡)3

𝑙3
  

              𝑆𝑝𝑒𝑒𝑑:             �̇� = −3𝑦𝑙
(𝑙 − 𝑉𝑡)2

𝑙3
𝑉   

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛:           �̈� = 6𝑦𝑙
(𝑙 − 𝑉𝑡)

𝑙3
 𝑉2 

      𝐽𝑒𝑟𝑘:          𝑦 = −6𝑦𝑙
𝑉3

𝑙3
 

        (A-5) 



147 
 

So, in this case the switch wheel, and hence the vehicle, receives a sudden step change in lateral 

speed, which for a fixed value of l  is 1.5 times as much as in the parabolic case, and a pulse of 

acceleration 3 times as much as in the parabolic case, which decreases linearly to zero at 

/ .t l V   The jerk goes from zero when t < 0 to a finite value constant throughout the transition, 

and then suddenly drops to zero again when / .t l V   Since acceleration suddenly takes a finite 

value at 0t  , there occurs there an infinite spike of jerk.   

 

In both cases there is an infinite spike of jerk at t = 0.  The question then is as follows:  Is it bet-

ter to live with one spike of jerk rather than two?  In both cases we see that the lateral motion is 

largest when 0.t    If cJ is the comfort value of jerk, we see from the last of equations (A-5) 

that the cubic flare length should be 

 

       

1/ 3

6 l

c

y
l V

J

 
  

 
     

 (6) 

 

For example, if 
1

4
16m/s, 3mm, and g/sl cV y J   , then 3.11m (10.2 ft).l    For the same 

values, with the cubic curve, we see that 

 

   

22
2

max 2

16
6 6(0.003) 0.477 m/s 0.049 ,

3.11
l

V
y y g

l

 
    

 
   (7) 

 

which is well below the comfort level of 0.25g.  Thus with 3.11l   m we experience a pulse of 

jerk corresponding to a very small step in acceleration.    

 

How uncomfortable is such a small step in acceleration?  Consider the following thought experi-

ment:  Suppose you are in an elevator and the elevator suddenly starts to accelerate downwards. 

While it doesn’t suddenly drop as if the cable were cut, i.e., at an acceleration rate of one g, the 

motion is uncomfortable – one gets a funny feeling in the pit of the stomach.  Now suppose you 

are sitting in a wagon on a plane inclined at an angle of say 10 deg or 0.175 radian restrained by 

a rope.  Suppose someone suddenly cuts the rope.  You will feel a smaller funny feeling, and it is 

clear that the smaller the incline the smaller the uncomfortable feeling.  An acceleration given by 

equation (7) corresponds to an incline of 0.049 radian or 2.8 degrees.   

 

With a parabolic flare, the maximum step change in acceleration is one third as much with the 

same flare length, but it occurs twice.  To design with the parabolic flare, assume the maximum 

lateral acceleration reaches the comfort value of 0.25cA g .  Then, from the second of equa-

tions (4) we get 
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1/ 2

2 l

c

y
l V

A

 
  

 
     (8) 

 

Using the values assumed following equation (6) we would get 

 

   

1/ 21/ 2

1

4

2 2(0.003)
16 0.792m.l

c

y
l V

A g

  
    

    

   (9) 

 

but with this small a flare length, the step changes in acceleration correspond to cutting the rope 

on an incline of 0.25(180 / ) 14.3deg  may be uncomfortable.  If we were to assume say 

/8cA g  the flare length would be 1.12 m.  If the flare length were the value 3.11l   m calcu-

late from equation (6), we see that if the transition shape is parabolic, we find from the second of 

equations (4) that  

 

   

1/ 2

2

max

16
2(0.003) 0.0136m/s 0.0014

3.11
y g

 
   

 
  (10) 

 

We see that to make further progress we need to determine how large ly  must be, considering 

the most extreme motion of the vehicle subject to a combination of a maximum side wind, a 

maximum unbalanced load, and a maximum centrifugal force, all acting in the same direction.  

This information requires an accurate dynamic simulation of the lateral motion of the vehicle22, 

and will depend on the tire stiffnesses assumed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
22 This study is available. 
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The Maximum Stress in the Switch Rail  

 
Figure 2.  Cross section of the switch rail. 

 

The inertia load of the switch wheel on the switch rail is  

     
maxy

P W
g

       (11) 

The load P  produces a bending moment Pa where a is the distance from the point of applica-

tion of the load to the centerline of the top horizontal portion of the switch rail, shown in Figure 

A-2.   The maximum stress in the top member is the sum of the maximum bending stress and the 

tensile stress: 

   

3 2

max

max

2
, where

/ 12 6

6
1

Pa P I wt wt

I c tw c t

P a

wt t





   

 
   

 

   (12) 

 

in which t  is the thickness of the steel rail and w is the effective length into the paper in Figure 

A-2.  At this point, without a finite-element analysis, we can only guess at w.  Suppose 6w  in 

and 1/ 4t   in.  Then max 96.7P  psi if P  is in pounds.  Assume we select the flare length so 

that / 1/ 8y g  .  The weight we need consider is not the entire weight of the vehicle because 

there are switch wheels at the front and back of the vehicle.  To be conservative assume W 

1500 lb.  Then 1500 /8 187.5p    lb and max 18131  psi.  With mild steel the accepted maxi-

mum tensile stress is 15, 000 psi.  Thus we must either use thicker sections or a higher grade of 

steel.   

 

This is just a “ball park” analysis.  To settle on the parameters, we need, as mentioned, both an 

accurate dynamic analysis of the motion of the vehicle passing through a merge or diverge sec-

tion of guideway and a finite-element analysis on the switch rail.   

P 
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The switch rails will be welded to the vertical U-frames of the guideway every 54 in.  Thus we 

must consider three factors: 

 

 The maximum bending stress in the rail. 

 The maximum deflection of the rail 

 The maximum stress at the points of attachment to the U-frames. 

 

To obtain the first two of these quantities, we need the moment of inertia of the cross section of 

the rail shown in Figure A-2.  It is 

 

 

2 3 3
3 41 0.25(3.5) 3

2 1 6 1 6 5.49 in
12 2 12 12 3.5

b tb d
I tb dt

b

     
           

     
 

 

in which 3.5b  in is the horizontal width of the switch rail and 3d   is the length of the two 

vertical sides of the switch-rail cross section.  Then, assuming the ends of the 54” long switch-

rail beam are essentially clamped, the maximum bending stress is  

 

   
54 3.5 / 2

2.15
8 8 5.49

bending

Pl c
P P

I
     

 

The maximum deflection of the beam is 

 

  
3 3

6

max 6

54
5(10) ( in lb) in

192 192(29.5)(10) (5.49)

Pl
P P

EI

     

 

If we assume 200P   lb, this stress and deflection are too small to be of concern. 

At the attachments, the area of the welds will have to be at least  

 

   
2/ 200/10,000 0.02indesignP     

 

whereas the actual weld area will more than exceed 
21 in .   Hence the switch rails are sufficiently 

stiff and strong.   

 

 

 

 

 


