Guideway Structures

10.1 Introduction

In transit systems that use exclusive guideways, the guideway is generally
the largest cost item, Understanding of principles of guideway cost minimi-
zation is therefore crucial to the design of economical systems. Exclusive
guideways may be either at grade, underground, or elevated; however, the
analysis of this chapter is directed only to clevated systems. In spite of
generally lower cost, at grade systems are not usually desirable in urban
areas because of interference with cross traffic and increased difficulty to
clear ice and snow. The cost per unit length of underground systems is
roughly proportional to the cross-section area of the tunnel, and hence to
the cross-section area of the vehicles, Because of the cost of relocating
utilities, underground systems have been estimated generally to be three to
five times as expensive per unit length as elevated systems: however, a
study performed in Australial 1] indicates that for small-vehicle systems the
cost of underground systems may compare favorably with the cost of
clevated systems.

The material in this chapter is not intended to provide information
needed for detailed design of clevated guideway systems. That would be a
lengthier task than can be undertaken in a systems textbook. The objective
is rather to provide insight into principles of cost minimization. Detailed
methods of dynamic analysis, using computer simulations, have been
developed under the auspices of the American Iron and Steel Institute
(AISI)[2] and by several university groups[3,4,5,6]. The work of AISI,
which includes a comprehensive treatment of ride comfort ¢riteria, may be
the most complete modern treatment of the design of steel guideways. The
work of Snyder, Wormley, and Richardson[3] is directly useful, not only
because they develop methodology for dynamic analysis of guideway-
vehicle interactions, but because they give results that permit comparison
of required guideway weight per unit length at different vehicle weights.
The work of Paulson, Silver, and Belytschko[4] applies most directly to
heavy-rail structures. Likins and his colleagues[5,6] include vehicle
dynamics as well as guideway dynamics, as do Snyder et al., and also
provide a method for minimizing the cost per unit length of a guideway, but
for fixed cross-sectional configuration and fixed vehicle speed.

In the analysis of this chapter, it is assumed that the guideway cross
section is rectangular for two reasons: (1) it is a basic ¢ross section from
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which certain specific conclusions can be drawn; and (2) it is sufficiently
simply mathematically that the results can be understood in a general
context. Various types of loading are considered to determine which load-
ing conditions determine the beam design, and the parameter choices that
minimize the beam weight per unit length and therefore its cost, are found.

10.2 Optimum Cross Section Based on Bending Stress

Relationship between Cross-Section Area
and Moment of Inertia

Consider a beam of rectangular cross section with the dimensions shown in
figure 10-1. If the maximum bending moment on the cross section is M and
the maximum bending stress is o, then it is well known from the theory of
strength of materials that

Mc
o s (10.2.1)

in which ¢ = i/2 and I is the moment of inertia of the cross section. For the
cross section of figure 10-1,

I= 41.L"”r'dx + 2w|'”'mr‘dx
xnnn-s

- ag’_ + '!f'x (0 — 2hty + 4364)

Substituting into equation (10.2.1),
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Figure 10-1. Cross Section of a Rectangular Beam
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f,_l - % - h;’_ + " - 2he; + 436) (10.2.2)

It is convenicnt to introduce the dimensionless variables
A = Wity
a = wiyht, (10.2.3)
I = llen i
Then, equation (10.2.2) can be written
I =3 + alh* - 24 + 43) (10.2.4)
The cross sectional area of the beam is, from figure 10-1,
A = 2ht, + wity) (10.2.5)
or in dimensionless form
o = Aty = 21 + a)h (10.2.6)
By climinating 4 between equations (10.2.4) and (10.2.6), it is possible
to obtain an equation for & as a function of # with a as a parameter. Then,
for a given J, it is possible 10 determine for what value of a & will be a
minimum. If & is a minimum, then for given wall thicknesses r,and 1, Aisa

minimum, and the cost per unit length is a minimum.
First solve equation (10.2.4) for £:

| 4+ da
‘=3G:J(l+3a)[3l—a m)}
1+ 3a '

Only the positive sign in the above equation has physical meaning. This
may be seen by noting that for fixed a and fixed ¢, and &, i mustincrease as
M increases. Substituting into equation (10.2.6) then leads to the result

o - 2(T' -fj‘:;){h - \/(l + 30-)-[3’ Ca (? I‘g%)] ] (10.2.7)
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In figure 10-2, s#/9'% is plotted from equation (10.2.7) as a function of a with
# as a parameter. Using &//'* as the ordinate reduces the range of the
plotted variable by many orders of magnitude without reducing the general-
ity of the results.

Optimum Widih/Depth Ratio

Note from figure 10-2 that there is a value of « that minimizes < for fixed J,
that is. for fixed load and wall thicknesses there is a value of w/h which
minimizes the cross sectional area and hence the cost of the beam per unit
length. As the wall thickness becomes thin, 5 becomes very large. In the
limit for very large #, equation (10.2.7) simplifies to

o = E%T’;_“g%;’,)'f (10.2.8)

Setting the derivative with respect 10 a equal to zero in equation (10.2.8)
gives

aed _ o o 239 | 30+ a)
e 0 1+ 3a [(l + 3a)'® 31 +_E'),,r]

which is satisfied if @ = 1/3. Substituting a = 1/3 into equation (10.2.8)
shows that for thin-walled box beams the minimum cross-sectional area is
found from

Ay = H23)'? I = 327 J'7 (10.2.9)

From-figure 10-2, 11 is scen that as a increases, the ratio of o 10 Wy,
increascs as follows:

a: 1 2 3 4 5 6
S et 1.06 1.20 1.34 1.47 1.59 L.70

Mateasy g,
The increased,cost of the beam is in proportion to these numbers.
Figure 10-2 shows that for decreasing J (thicker-walled beams for a
given load), the point of minimum s moves to values of a smaller than one
third, and that for a value of # between 10 and 10'*, a for minimum
vanishes. It is also noted that for thick-walled beams, the ratio /sy,
increases more rapidly as a increases than for thin-walled beams.
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Required Wall Thickness

It is of interest to determine if there is an optimum way r,and f, can be
chosen. To obtain a sufficiently high vibrational frequency (section 10.3), it
is necessary to choose the ratio of & to the span sufficiently large, and in that
way his determined. Then, for a given a, the beam will support greater load
if its wall thickness is greater. Thus the optimum wall thickness is the
minimum value that will support the load.
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Figure 10-2. Required Cross-Sectional Area of a Box Beam at Given
Maximum Static Load
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If the minimum wall thickness is thin (r << )), equation (10.2.9) applies.
Substituting the meaning of &/ and ¥ given in figure 10-2,

M 1
Agss ™ 3.27( - "‘") ne (10.2.10)

Toax

Thus A, depends only on ¢, and not on f;. This means that ¢, should be
chosen as small as practical from the standpoints of fabrication, plate
buckling (section 10.7) and plate vibration (section 10.8). On other hand, 1,
can be chosen to accommodate a desired ratio of w/k. Thus, from equations
(10,2.3), for a = 1/3,

S
1 3w

If, for ease of material procurement it is desired to make #, = 1, then one
must choose fi/w = 3 1o minimize cost per unit length. If, however, for some
design reason it is desired to choose h/w = 1, say, then it is necessary to
choose t; = #,/3. But we have already chosen f, as thin as possible.
Therefore £, must be at least as large as t,, but clearly should be no larger.
Thus, for thin walled box beams, one should mike the choices

L = f, = [
ko= 3w
It is seen that if minimum guideway cost is desired, it is necessary to
accommodate the vehicle design to the guideway and not vice versa.
The wall thickness required to meet static stress requirements can be
found for & = 1/3 by eliminating & between equations ( 10.2.9) and (10.2.6).

Then, using the parameter definitions given in figure 10-2 and by equations
(10.2.3), and setting a = 1/3,

_ 3M
f = 70'::1# (10.2.11)

An Example of Optimum Design of a Thin- Walled Beam

Consider a specific example. Assume a uniformly loaded simply supported
beam with distance ¢, between supports. This load condition represents
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the case of a span loaded with vehicles with zero spacing between them, the

worst static condition that must be considered. Then, from any text on
strength of materials,

Mo, = -‘l{v (10.2.12)

in which g is the load per unit length. If g, is the live load,
G = qc+ pgA (10.2.13)

in which pg is the weight per unit llength of the beam.
* Substituting for A from equation (10.2.6) with « =1/3

q = q. + 83pght

Substituting ¢ into equation (10.2.12) and the result into equation (10.2.11)
gives

32
- 167_‘,'-; (g + 83pght)

3
t= ﬁ (10.2.14)

pet; !

Vanishing of the denominator gives the span length £, for which the
beam c¢an no longer support its own weight. Setting the denominator equal
to zero and solving for £, gives

e
(Emas ™ (29'-”) (10.2.15)

Solving for t, we have

pg

We see that the maximum length for g, > 0 depends on the material
property o, /pg. For ordinary structural steel, the vield point is between 30
and 40,000 psi[7). Therefore, assume a design stress o, = 20,000 psi
(140(10)* N/m*),* and p = 484 b, /ft*[7760 kg/m’]. Then o /pg = 1804 m.

*1 psi = 6895 N/m*, 1 b ft* « 16,02 kg/m*, | Ib/ft = 14.6 N/m.
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Thus. for a steel beam say | mdeep, (€)max = 60 m. For reinforced concrete
beams. different values will be obtained depending on the arrangement of
reinforcing bars and the degree of prestressing.

For a typical live loading g, = 300 1b/ft (4470 N/m), the required

thickness of a steel beam, computed from equation (10.2.14), is given in
figure 10-3. The ratio of live load to dead load at maximum stress

Qe = ogh_ 0.2.16
pgA  pR€; (10.2.16)

is also shown as a matter of interest. Note that ¢ is proportional to g,, but
that ¢/pgA is independent of g.. .

Since t/h < < | in all cases in figure 10-3, the calculation based on
equation (10.2.14) is valid. For concrete. ¢ will be much larger and the
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z
. s
512 J12 &
g e
E
z -
3T N 1.0 Tam ° 5
= b= 08N ' ' ©
R :
o4} \s 44
0 1 i 1 L o
15 20 25 30 35 40

Free Span Length, m

Figure 10-3. Required Wall Thickness of an Optimum Cross Section Steel
Box Beam Uniformity Loaded
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assumption # = = in use of figure 10-2 is not valid. In this case 7 can be
found by iteration. For a given g,, 0ua, and &, assume a value of ¢ and
compute My, /& may- Then compute J and from figure 10-2 select an appro-
priate &. Then sf is determined. From equation (10.2.6) rcan now be found. If
the assumed and computed values do not agree, pick another value of r¢loser
to the computed value and repeat the calculation until the two values
converge,

Relationship between Live Load and
Weight per Unit Length

An important consideration in guideway design is to understand how the
required beam weight per unit length and hence cost varies with g,. If a and
h are held fixed, equation (10.2.6) shows that A is proportional to ¢. But,
from equation (10.2.14) ¢ is proportional to g, for 1 << h. Thus, for
thin-walled beams, A, and hence the beam weight per unit length, increases
in direct proportion to g,. Consequently the beam cost increases with g,.
For thick-walled box beams strict proportionality does not hold and the
function A(g,) must be found by iteration between equations (10.2.7) and
(10.2.6), in which in ¥ (equation (10.2.3)) M/e is substituted for //c, then M
from equation (10.2.12) and g from equation (10.2.13).

Horizontal Wind Loading

Consider horizontal wind loading. From aerodynamic theory the horizon-
tal wind pressure is ¥2p, VZ, in which p, is the air density and V. is the wind
speed. Therefore the wind loading per unit length on the guideway alone
with no vehicles is

-~

Guma = V2p,Vich 5 =0 (10.2.17)
The tolerable wind loading on a structure calculated for vertical loading is
found with the help of figure 10-2 by noting that the appropriate value of ais
the reciprocal of the value used in calculating the beam for vertical loading.
As an illustration, assume ¢ is much less than & and a = 1/3 for vertical
load. Then, for horizontal wind loads « = 3 and, from figure 10-2, .
ol 3 <

|

o = 43897,

Compare this equation with equation (10.2.9), in which & has the same
value. # is proportional to M and hence to the load per unit length. Thus
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2
Qwing ™ ( %g—) (qe + pgA)

= 0.557q, (1 +P£".)
qe

Using the example of figure 10-3, g, = 4470 N/m; and as an illustration
assume £, = 30 m. Then g/pgA = 3.0 and the tolerable wind load s

Guing = 3320 N/m

Substituting this value into equation (10.2.17), the wind speed correspond-
NG 10 Gupms = 3320 N/m is

L o2en0) |
(Vu)m:: - [ _%_):'I‘L]

But p, = 1.293 kg/m® at standard conditions, and, in the above example, it =
1 m. Thus

(V)mas = 72 m/s = 161 mi'h

With winds of even half this magnitude, it can be assumed that the system
will be shut down and the vehicles stored in sheltered locations. Thus the
added wind load on the vehicles need not be included. With, say 1/3(V ) max.
the system may, however, be operative. The wind load on the guideway
alone will then be one ninth as much but the torsional load applied to the
guideway through the vehicles must be taken into account. This problem is
considered in section 10.6.

Double Guideway

Many guideway transit systems, both in development and inoperation, use
conventional wheeled vehicles which require wide guideways. Based on
the above theory, an approach to optimum design of such a structure would
be 10 use two parallel beams rigidly connected together. These could be
I-beams, box beams, or some other shape. Let us compare these designs
with a single box beam. The variables are the depth of the beams A, the
thickness of the material r, and the span ¢,. The cquations needed to
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compare designs are equations (10.2.2), (10.2.5), and (10.2.12). For simplic-
ity, assume £ is much less than A, and let a = 1/3 for each beam. Then, from

equations (10.2.2) and (10.2.5),

M - 2_
i th® (10.2.18)
A= 3;—" (10.2.19)

With the two-beam configuration, M is cut in half for each beam, and we
wish 10 examine the effect of this reduction on the total cross-sectional
area, that is, 24 for the two-beam configuration. Consider the following
three cases.

Case 1: Fixed ¢,, 1. Then & becomes #/,2 and A becomes A/,2. Hence the
total cross-sectional area Ay becomes 24, where A is the cross-sectional
area of a single beam, Thus, with fixed £, and ¢, a two-beam configuration
has 1.4 times the cross-sectional area of 2 one-beam configuration. Thus, if
the material cost is proportional to the cross-sectional area, the two-beam
configuration is 40 percent more expensive for the beams alone; however,
the extra labor and material required to fasten the two beams together will
increase the cost even more.

Case 2: Fixed ¢,, h. Now r becomes Y2t, and A becomes 2A. Thus A,
remains the same. But if, for the single beam £ is chosen as thin as possible
for reasons of fabrication, it is unlikely that it is possible to reduce ¢ by 50
percent, Thus, this form of the two-beam configuration is also more expen-
sive than a single beam.

Case 3: Fixed 1, A;. In this case, equation (10.2.19) shows that i becomes
Vah, and equation (10.2.18) shows that M becomes %M. Thus two beams
can carry only half the moment they must carry. But, from equation
(10.2.12), if the maximum moment carried by the two-beam configurationis
cutin half, £, must be reduced by 1/,2 = 0.707, that is, the span length must
be reduced by 30 percent, thus requiring 30 percent more support posts.
In all three cases, it is seen that a guideway cost penalty is paid if
conventional wheeled vehicles are to be used. Thus, long term interest in
monobeam transit systems is justified. The difficult problem, however, has
been to design the vehicle/guideway system in such a way that the vehicle
can switch from one guideway to another with no moving parts in the track,
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that is, by means of in-vehicle switches. Several groups, reported in the
Lea Transit Compendium([8], have succeeded in developing such switches,

10.3 Dynamic Loading—Single Vehicle
Crossing a Span

In design of a guideway of minimum weight per unit length, it is necessary
to understand the effect of motion of the vehicles on the maximum stresses
in the guideway, and the vertical accelerations produced on the vehicleasa
result of motion of the guideway. Also, knowledge of the amplitudes and
frequencies of motion of the guideway is necded to make certain that the
fatigue life of the guideway will be adequate. The objective of this section is
to give some insight into these problems and the parameters that control
them.

In this section, the simplest dynamic loading problem of interest is
solved and discussed—that of a single vehicle crossing a flexible span. For
mathematical simplicity, the dynamics of the vehicle are not taken into
account. This permits concentration on guideway characteristics and will
provide insight into choice of vehicle dynamic characteristics, but of
course in a complete solution, vehicle dynamics must be considered. Such
a treatment is given by Snyder, Wormley, and Richardson of MIT(3] for
multiple vehicle crossings of a span. Therefore the important multiple
vehicle case is treated in section 10.4 by discussion of their computer
solutions,

Equation of Motion of a Flexible Span

Figure 10-4 depicts a vehicle of weight W and speed Vabout to cross a
flexible simply supported span of length €,.

L— yix, t)

Figure 10-4. A Vehicle Cross a Flexible Span
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In the present analysis, the vehicle will be treated as a point force W moving
at speed V, and, for mathematical simplicity, the beam will be assumed to
be undamped. Since the damping of @ real beam is generally small, the
undamped beam is a useful idealization. The deflection of the beam, y(x, 1),
satisfies the partial differential equation{9]

& oa® o (10.3.1)

El 55+ PAGE

in which E is the modules of elasticity, / and A have the meanings of the
previous section, p is the mass per unit volume, and fix,r) is an arbitrary
time-space-dependent force per unit length,
For a simply supported beam, the boundary conditions are
w0, 0 = y£&,.0) =0
(10.3.2)

& - &y .
a—;} ©.0= 2% (6n=0

and the initial conditions are taken as an undeflected beam at rest, that is

¥x, 0) = ‘;l' (x,0) =0 (10.3.3)

Following reference[3], the solution of equation (10.3.1) can be ex-
pressed in the form

S
yx, 0= Y A0 sin ("'ﬂ) m=12,.. (103.4)

w1 ['

The form of the space function in equation (10.3.4) satisfies both the
differential equation and the boundary conditions (10.3.2). Substitute equa-
tion (10.3.4) into equation (10.3.1), multiply by sin (rmx/¢,), and integrate
from x = 0 to x = ¢,. The result is that A(r) satisfies the differential
equation

An + 0iAg = ;%C L"f(x. fsin max/e, dx (10.3.5)
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in which the dots denote time differentiation, and

[

‘I‘_‘ U PN "n.uo--‘—-g- "\A e c”
is 27 times the natural frequencies of vibration &' the

R
ek ».-("}:') % (10.3.6)

Solution with Vehicle as Point Load
The assumption that the vehicle behaves as a point_‘forcc means that
Ax.dx = W if x = Vi< ¢,
=0 if x¥+ Vi ] (10.3.7)

-0 it 1>V

Substituting equation (10.3.7) into equation (10.3.5) gives

)

. W
Ap + WEA, = "5 sin (1 t= L)V
pAL, (10.3.8)
- 0 t > €JV
in which
0. _m=zV (10.3.9)

K

The general solution of equation (10.3.8), for r = €,/V, is

! .
An(t) = C, sin Bt + C; COSwf + MZ‘I' s:n(-) ! <

From equation (10.3.3), the initial conditions are A,(0) = A,(0) = 0. Using
these conditions to evaluate the constants C, and C,,
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2w 1 . ,
Ay = pACL (1= B5) (SIn Buwe! — B sin wyt) (10.3.10)

in which, from equations (10.3.9) and (10.3.6),

Q,_&V fpA 1 VI
B.:-’ 7 LA %l_ 2 - - (10.3.")

Wy M ;‘M St\

is a dimensionless speed parameter. (, - e
... ¢ - ) = .,. -

( ‘b- .f.'. i N o
Comparison with Static Solution

Equation (10.3.10) applies to the case r = £,/V. The case 1 > ¢,/V will be
solved later, but first it is useful to compare the above solution with the
static solution for the same beam with a concentrated load at the center.

From any text on strength of materials, the static midspan deflection (y =
£,)2) is

W) = K %‘F (10.3.12)

For the dynamically loaded beam, equation (10.3.4) gives for the midspan
deflection

WESZ, 1) = A = A1) + A) — ... (10.3.13)

'sing equation (10.3.6), the dimensional coefficient in equation (10.3.10) is

W 2w
pAlwy T Efr?

Therefore, the ratio of dynamic to static deflection at midspan is, from
equations (10.3.10), (10.3.12) and (10.3.13),
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e % 3 ol (b granen )

me1a,...

(10.3.14)
Note that 96&/7* = 0.986 = |,

Because of the factor m*, equation (10.3.14) is very nearly given by the
first term:

_,v?(((;%;L = (.986 (ﬂ' &2;‘&,8&"“'5) (10.3.14a)

-

The vehicle reaches midspan when 1 = £,/2V. At this point, from equations
(10.3.9) and (10.3.11), Buwy! = mm/2. Therefore equation (10.3.14a) be-
comes

€2, ¢ - 1 = B, sin (=/28,)
_J_(.)%ﬁé)?ﬂ_ o.m( T A E'%) (10.3.15)

Equation (10.3.15) is plotted in figure 10-5. The maximum deflection is
1.520 times the static value and occurs when g8, = 0.373, For higher values
of B, (higher speed) the midspan deflection decreases with speed because
the beam has insufficient time to respond to the presence of the vehicle.
Below 8, = 0.373 the maximum deflection may be larger or smaller than the
static value depending on the phase relationship between the natural mo-
tion of the beam and the time of arrival of the vehicle at midspan. As the
speed decreases to zero, equation (10.3.15) approaches 96/=*; however, the
infinite series of equation (10.3.14) approaches #*/96 when r = £,/2V be-
cause of the identity

S W,
R
The maximum deflection of the beam generally occurs before or after the
vehicle reaches midspan. These maxima can be found from equation
(10.3.14a) but, from continuity, it can be assumed that they follow the
envelope indicated by the dotted line in figure 10-5. The maximum midspan
deflection while the vehicle is on the beam will probably be larger than
1.520 times the static value, but with the purpose of studying this problem
in mind, enough has been learned without computing it exactly.
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Figure 10-5. Maximum Midspan Deflection of Flexible Beam When
Vehicle Is at Midspan

A Critical Speed
The value 8, = 0.373 produces the maximum midpoint deflection when the

vehicle is at midspan, therefore the corresponding speed can be called a
critical speed. From equation (10.3.11) it is

Ver = "7':'—2 \/ﬂ— (10.3.16)

For a thin-walled steel beam, equations (10.2,2, 10.2.5) show. for the
optimum case a = /3, that

'{- -%’;’/—33- - % (10.3.17)
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Thus, equation (10.3.16) becomes

V., = 0.414 he, J_—f- (10.3.16a)

For steel, E = 30(10)° psi = 21(10)* N/m? and p = 7760 kg/m®. Thus
V., = 2150 h/€, m/s

and for W€, = 1130, V,, = 72 m/s. This speed is several times the speeds of
interest in urban transit applications, but will be of definite interest in
designing high-speed intercity systems. For a speed of say 15 mys, typical of
urban applications, 8, = 0.373(15/72) = 0.078 with the same set of paramet-
ers.

Motion of the Span after Vehicle Has Crossed

We have thus far considered only the deflection of the guideway while the
vehile is at its center. It is possible that further motion of the vehicle will
add energy to the guideway and hence increase the amplitude of its vibra-
tion. Thus, consider the case 1 > €/V. Then, the right side of equation
(10.3.8) is zero and the solution is

Adll) = -'—‘:591 Sin o’ + An(0) COS wpt’  (10.3.18)

mwhich?t =1~ (JVandA..(O).fi.(O)arcfound from equation (10.3.10) by
substituting ¢ = ¢,/V. Taking into account from equations (10.3.9) and
(10.3.11) that Bewef,/V = mm, and the expression above equation
(10.3.14),

A0) = — - WLy :i?nz:o!-(éV
_%Q)_ - _th'éargcosmw —F?r_s:;_»ﬁj)_VL

(10.3.19)
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The maximum value of A, after the vehicle has crossed the span is

found by seumg Ax(r') = 0 from equation (10.3.18), solvmg for wyt', and
substituting it into equation (10.3.18). Thus, A.(r') = 0 gives

. AD)
tanwor = EA'E.TG)‘ (10.3.20)

Using the trigonometric identity cosf = (1 + tan®d)~'7?, equation (10.3.18)
can be written in the form

An') = [i;',(,?)- tan wyt’ + A..(O)] (1 + tan? wyut')~®

Substituting equation (10.3.20),
(Admax = [AL(0) + AL(OV ] (10.3.21)

Substitute equations (10.3.19) into equation (10.3.21), taking into account
that w,¢,/V « mn/8,. The result, as a ratio to equation (10.3.12), can be
expressed in the form

(Anpax . 96,2 A N
Y0alh -~ m ml - gy |~ cosmmcosmmiBa)'* (10.3.22)

Substituting into equation (10.3.4) at x = €,/2, the ratio of dynamic to static
deflection is

g”’; --%Q - (_ [yim-ane Ne
)’( c)lulk' ;*_ Z"”—— (ré‘.ﬂ'-) (l " 508 BT)

(10.3.23)

To illustrate the character of the motion, equation (10.3.23) is plotted in
figure 10-6. Itis seen that the peak amplitude ratio is 1.691 and occurs at 8,
= 0.732. This compares with a peak amplitude ratio of 1.520 at ﬂ. 373
when the vehicle is at midspan. Thus the vehicle-at-midspan’ ¢ con tion
occurs at roughly half the speed, and equation (10.3.16) can still be consid-
ered the critical speed.
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Figure 10-6. Maximum Midspan Amplitude of Vibratory Motion of Flexi-
ble Beam After Vehicle Has Crossed It

The Maximum Vertical Acceleration of the Vehicle

The limiting conditions in design of the beam are the maximum acceleration
and the maximum dynamic bending stress. Thus formulas for these quan-

tities are now developed.
The vertical acceleration as seen from the moving vehicle is the second

total time derivative of y(x,r). Thus
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Applying this operator 10 equation (10.3.4), then substituting x = Vr and
using equation (10.3.9) gives

a"y - z (Apsin Q.0 +24,0,c08 0 — A 0%sin (0,.0)

Substitute A,, and its derivatives from equations (10.3.10). Taking into
account equations (10.3.9) and (10.3.11), and the identity above equation
(10.3.14),

_ 2We Ve 2 — <
aﬁ'. = -m_ 2_ ?— A5 [2(cos® 10 — sin® N.0)

(ﬁ. B—)sm Wt SN (2t — 2C08 Wyl COsLd 1]

Use of trigonometric identities reduces this expression to a sum of single
cosine terms

@y 2Wev: 3o | 2cos 200
d" Tf"EI -ol'”j ' - p’-

+ 23':(:—;%1):05(0». - —Zp!_.(ll_:g: )eos(w. + 0,.):]
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Note from equation (10.3.11) that 8, varies as 1/m. Therefore the first term
of the above equation is proportional to 1/m*, but the second and third
terms are proportional to 1/m. Hence, for m > | the first term can be
neglected in rough estimations. Using equation (10.3.11), factoring out 28,,
and noting from equation (10.3.16a) that 8, is small at urban speeds, d®y/df
can be written in the approximate form

;3_ - P%: Bll“ﬁl cos 200t + (—:—:—gf) cos(l — Byt

- (:_:_glL os(1 + Byant

*©

+ }, ’-”l—[cos(l — Buwnt — cos(l + B,.)w..r]] (11.3.25)

Since B, is much less than |, the second and third terms of the first vibration

mode dominate the above expression. For small 8, 11 = B =~ 15 B,
Then, using trigonometric identities, the second and third terms become
approximately

2sin 1,7 sinw,t — B, cose, cos (1,1)

But 0,1 = =/2 when the vehicle is at midspan, and e, is much greater than
0),. Therefore, for 8, much less than 1, the maximum value of this expres-
sion is close to 2. Therefore

Ady| o 2WB _ 2(WiglV
g dft |, pgA¢, w [pAEl (10.3.26)

In which g is the acceleration of gravity.

Minimizing the Maximum Acceleration

Equation (10,3.26) is valid only if 8, is much less than |, but from the
example following equation (10.3.16a) this is usually true in urban applica-
tions. From equation (10.3.11), the condition of small 8, requires that the
material property E/p be as large as possible, the cross-sectional property
1/A be as large as possible, and for optimized values of Elpand I/A, that the
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span ¢, be limited for a given speed, or vice versa. For a given value of 8,
equation (10.3.26) shows that the maximum acceleration depends on
WipgA¢é,, the ratio of vehicle weight to span weight. But p, A, and ¢, have
already entered into computation of 8,. Therefore, the acceleration can be
held below a specified limit only by limiting the weight of the vehicle. As
shown by the rightmost form of equation (10.3.26), the maximum accelera-
tion is insensitive to variations in span length £, as long as the condition 8, is
much less than | is maintained.

As indicated above, the cross-section parameter I/Ashould be
miximized to minimize the effects of dynamic loading. Or, for given J/A,
the dimension of the cross section should be chosen to minimize A, hence
the weight per unit length, and hence cost per unit length. Clearly, the cross
section that maximizes / for given A is one in which the bulk of the material
is as far from the neutral axis of the beam as possible. For a box beam (see
figure 10-1) of given wall thickness, 7 is maximized if the aspect ratio a =
w/h vanishes. This is, of course, an unobtainable condition because lateral
stiffness must be provided.

On the other hand, we found in section 10.2 that to maximize the
load-carrying ability under static conditions, //c had to be maximized fora
given cross section area and this leads to & = 1/3, For this condition,
equation (10.2.2) and (10.2.5) show that, for the box beam with thin walls,

I _ Rl +3a)|_nr
A Rli1+a £

We must concern ourselves with horizontal loads; therefore consider that
/A for the same beam in the horizontal direction is found by interchanging
w and A, where a = w/h, Thus

wt .
(A e = T§(||++§ 3) r

Thus, from equations (10.3.6) and (10.3.11),

Bven__ = _(@hem o (5,412 = 0.430

(81 )neeiz (@) )vert

Thus, the natural frequency of the beam in the horizontal plane is 43
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percent of its value in the vertical plane. The load in the horizontal plane on
a straight piece of guideway is due mainly to wind, which isalow frequency
load. There is also a load due to unbalanced vehicles, much smaller and
much more variable than the vertical load.

In curves, the load is due to the centrifugal force WV3gR, which for
comfort should be less than about W/4. Then, from the middle expressionin
equation (10,3.26), in the horizontal directions Wj, becomes

W W
ol 6%3‘ (¥ 0.58Wg,

Thus. without changing ¢,. the maximum acceleration in the horizontal
planc is only 58 percent of its value in the vertical plane in the case of a box
beam for which a = 1/3. In conclusion, it appears that a beam aspect ratio a
of one-third is large enough to provide adequate stiffness in the horizontal
plane.

Weight Penalty for Deviation from Optimum Cross Section

While it is of fundamental importance to find the optimum properties of the
cross section for minimum cost per unit length, itis also important to know
how much the cost increases if @ nonoptimum cross section 1s used. As
before, we assume that the cost per unit length increases with A", Thus, we
wish to find how A varies with a for a given value of /A, that is, for given
maximum acceleration (see the rightmost form of equation (10.3.26)).
First. substitute w = ah into equation (10.2.5) and solve for h. The result

is

.

h = -

+|-

f (1

t

Substitute this value of & into the equation for I, which is immediately
above equation (10.2.2). Thus

- A (143 1L @ £« _|(103.2
IA A’[Wt‘ (+a_)) 3 (0 + )r+37(l+a)]( L

*Bare material cost will increase in direct proportion to A: however, fabrication costs and
auxiliary cquipment costs do pot increase so rapadly.
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The dimensionless parameter A/f must be large in all practical cross
sections; thercfore, for constant JA, A varies with a for fixed r according to
the equation

A L 1 +af |
A=15 [ 35(1—+5a—)] (10.3.28)

in which A, ; corresponds to & = 1/3. Some values of this expression are as
follows: '

a: 0 13 1 2 3 4 6
AlA,5 096 1 1.14 1.34 1.52 1.69 1.98

Comparing with the values following equation (10.2.9), one can see that the
cost of the beam increases more rapidly to satisfy the dynamic loading
criterion than the bending stress criterion.

Thus, from the viewpoint of vertical dynamic loading only, the cost per
unit length is 4 percent less for the ideal and impractical cases « = 0, as
compared to the bending optimum case @ = 1/3. If @ = 1/3 is taken as
optimum, it is scen that a square beam costs 14 percent more, the case a = 3
costs 52 percent more, and so forth. See footnote on page 280.

The Relationship between Beam Weight and Vehicle
Weight at Maximum Acceleration

It is also of importance to understand how the cost of a guideway of a given
shape varies with vehicle weight. Thus, for a = 1/3 and A/ much greater
than 1, equation (10.3.27) shows that

1 (3) a
i 24 (4) r
Substituting into equation (10.3.26),

d*

4 4.8(Wig)Vie (10.3.29)

wax (pE)® A

I
2

Thus, for given maximum acceleration, speed. material; and wall thick-
ness, the weight of the beam is proportional to the square root of the
weight of the vehicles.
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The Relationship between Vehicle Weight and
Speed at Maximum Acceleration

From equation (10.2,5), we have for a = 1/3, A = 8th/3. Substituting this
value into equation (10.3,29) gives

;_ f’,;lm . _Oi‘%“%’/fh),i (10.3.30)

As an example, consider the steel beam assumed in computing figure 10-3.
For steel, E = 30(10)* psi = 21(10)"° N/m* and p = 7760 kg/m*; therefore
(Ep)'* = 4,010 kg/m®s. Assume /i = | mand take the realtionship between
t and ¢, from figure 10-3, Then, equation (10.3.30) becomes (f in c/m)

Lyl o -« (WigV
o T faax = 17007 (10.3.31)

Note that, because of the direct relationship between £ and the span length,
¢,. the acceleration decreases as the span increases. From the viewpoint of
the fabrication problem, however, there is a minimum practical value of .
Suppose this is one centimeter. Using this value, figure 10-3 shows that the
span must be less than 34 m. Assume this is true. Then, consider the
tolerable acceleration.

Referencel2], section 4.5, gives standards for vertical vibration recom-
mended by the International Organization for Standardization (ISO).
These standards are given as a function of frequency and exposure time.
For a transit guideway system the frequency of significance is simply the
reciprocal of the time required to traverse a single span, f; = V/¢,. The
highest value of f; for urban applications may correspond to say V = 20m's,
¢, = 20 m; or f, = 1 Hz. For frequencies below about f, = 1.4 Hz, the ISO
standard recommends a low-frequency limit vertical acceleration for ride
comfort of 0.0707 g.  Substituting this value into equation (10.3.31) with ¢
= | ¢m gives

v =i}§-f’° (10.3.32)

in which M, = W/g in kg if V is in m/s. Thus, for a 1000 kg vehicle, the
velocity should not exceed 42 m/s; or for a 2000-kg vehicle, V should not
exceed 21 m/s, and so forth. The significance of these results is that, with

1\‘-33 2.z
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the assumed geometric parameters for a thin-walled steel box beam, stress,
not ride comfort, determines the design at urban speeds if only one vehicle
passes over each span at one time and the vibrations of the span are not
amplified by multiple passages of vehicles. The latter restriction is relaxed
in section 10.4.

The Maximum Dynamic Bending Stress

The bending stress in a beam is given by equation (10.2.1) in terms of the
bending moment M. From any textbook on strength of materials, Mis given
in terms of the deflection curve by

M= EIYY
Thus
o= cET} (10.3.33)
From equation (10.3.4)
a* X ma . [ mmx
o = 2 AR (?.-) sin ( 7_) (10.3.34)

Fort < £,/V, A (1) is given by equation (10.3.10). Thus otx.7) is found by
combining equation (10.3.33) and (10.3.34) and then by substituting equa-
tion(10.3.10). Using the relationship above equation (10.3.14), the result is

_8c WE, \ Z (sin Butoml = B SiN w41) . -
o 1.-’7( N )_2.-' mil — BL) sin —(:'— (10.3.35)

in which W¢,/4 is the maximum moment in a statically loaded and simply
supported beam with a concentrated load at the center.
In the example used with equation (10.3.16a), it was shown that 8, is
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much less than one in urban applications. Taking into account equation
(10.3.11), equation (10.3.35) can therefore be approximated by

-
-~
-

>

L sin Q¢ sin ("’;") (10.3.36)
L

L=

SIS

‘m

This equation applies up to 7 = £,/V. Therefore, from equation 10.3.9), Q.
reaches a maximum of mar. Consequently, sin {27 reaches its maximum of
unity for all modes. The first mode (m = 1), for example, reaches its
maximum when the vehicle is at midspan. Higher modes reach their max-
ima earlier. Without detailed calculations for a range of values of the
parameters, it is not possible to calculate a precise maximum stress; how-
ever, it is seen that for the first mode & p/o, = 8/7* = 0.81, and for higher
modes, the maximum stress falls off as 1/m?, Thus, it is unlikely that (o)
will be much above the static stress, .

Consider the case ¢ > £/V. From equation (10.3.22), the maximum
value of A,, for this case, using equation (10.3.12), is

(A L
Y e El = m\(l - B%)

But, from equation (10.3.10), using the expression above equation
(10.3.14), the maximum value of A, when 1 < £JVis

we, 2 1

(Aw) ey EL @ m(1 — B

Hence, after the vehicle passes over the span, the maximum stress does not
exceed a factor 28,/(1 + B,,) times the maximum stress for 1 < £,/V. For
urban speeds, this factor is well under one, therefore the maximum stress is
reached while the vehicle is on the span, and, as shown above, is close to
the maximum static stress.

During the life of the guideway, it will undergo millions of cycles of
stress. In a short-headway system, there may typically be 3000 vehicle
passages in the peak hour over a given span, or about 30,000 passages per
day. Assuming 300 full days of operation per year, there would be 9(10)*
passages per year, Thus, in a fifty-year life time, the guideway would have
undergone in the neighborhood of 500 million cycles. It is clear therefore
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that the maximum stress must be kept well below the fatigue stress limit of
the material. From reference[7], p. 5-11, the fatigue stress limit for an
indefinite number of stress cycles is given for ordinary structural steel as
30,000 psi (210« (10)* N/m?). Thus, the use of a design working stress limit of
20,000 psi, as has been done in all examples in this chapter, will insure long
life of the structure without requiring more expensive special steels.

10.4 Dynamic Loading—Cascade of Vehicles
Crossing a Span

Consider a cascade of vehicles crossing the span of figure 10-4 of equal
weight W and spaced a distance ¢, apart. If cach vehicle canbe represented
by a point load, the integral of equation (10.3.5) becomes

4 X,
L "fix.t) sin muxié, dx = WY sin ma/é, [Vt — (i =1)¢,)

(10.4.1)

in which N is the number of vehicles, but only those terms are included for
which

0= Vi — (i — 1), = ¢, (10.4.2)

With the help of a trigonometric identity and equation (10.3.9), the right
side of equation (10.4.1) may be written in the form

W(A sin Q2.1 + B cos 2,0

in which

. .
A= cos muéai

i=p - (‘

B = i sinﬂ(‘i

=p Ca

If €, > £,. there is only one vehicle at a time on the span, hence the sums
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in A and B have only one term, Moreover, between the passage of the first
vehicle across x = ¢, and the arrival of the sccond vehicle at x = 0, the
forcing function vanishes. If €, < €,,p=g= lfor0= Vi=é;p=1,4~2
for £, = Vi = 2¢, = ¢,; and so forth. Thus the exact solution must be broken
down into time steps corresponding to crossings of the vehicles across the
boundaries of the span at x = 0 and ¢,.

No such solution will be attempted because it is easier 1o do on a
computer, and Synder, Wormley, and Richardson of the department of
mechanical engineering at MIT[3] have completed an even more realistic
case—one in which each vehicle is represented by a pair of point forces at
the front and rear wheels, and in which both structural damping and vehicle
dynamics are included. We will discuss that solution, but before doing so, it
is useful to study the characteristics of the mutliple vehicle solution in a
general way: Motions of each mode m of vibration will be enhanced by
successive passes of the vehicles if each vehicle arrives at x = 0 at the
instant y.(x, 1) = 0 and y,(x, #) > 0, that is, when the span is just ready to
begin its downward motion. If the vehicle arrives at x = O when y,(x, 1) = 0
but y4(x, ) < 0, the vehicle's weight will resist the motion of the span, and
decrease the amplitude of motion.

The natural frequencies of vibration of the beam are given by equation
(10.3.6), and the corresponding periods of motion are 2s/w,. Thus, if £,/V
= 2mlw, for mode m, that mode will be enhanced. If f; = w,/2w, and
equation (10.3.6) is substituted, the critical headways are

& I
=. 4.
v (104-3)
in which
_ ® El
L= 3\ pA (10.4.9)

is the fundamental natural frequency of vibration of the beam if its ends are
simply supported.

The quantity £,/V is the time headway between vehicles. Thus, as the
time headway decreases, large amplitude motion can first be expected
when the time headway approaches 1/f,. Excitation of the second mode can
be expected as V/¢, approaches 4f;, and so forth. However, since vehicles
must operate at a range of spacings down to the minimum permissible.“lhe
beam must be designed so that V/¢, < f,.

3 e 4

. ) Lt
"‘f, e L
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To obtain a feeling for the magnitude of f;, consider a numerical exam-
ple based on the numbers used in computing V., from equation (10.3.16).
Thus, using equation (10.3.17) and the value of E/p for steel, given after
equation (10.3.16a) equation (10.4.4) becomes

= 2890 L (10.4.42)

where the lengths are in meters. Notice that f, is independent of the
thickness of the beam walls. If, for example, h = Imand €, = 20m, f, =
7.23 Hz, and 1/f; = 0.14 5. On the other hand, if a longer span, say £, = 40m
is desired, 1/f, = 0.55 s.

In section 7.2 it was concluded, based on kinematical considerations,
that a minimum headway of the order of 0.25 s is practical if the correct
design choices are made. It is now seen that, with a steel beam one meter
deep, this appears practical from the structural point of view for simply
supported spans of 20 m, but not for spans longer than about 25 m. If the
ends are constrained so that they cannot rotate under load, f; increases. For
completely clamped ends, Timoshenko[9] shows that f, increases over the
value given by equation (10.4.4) by the factor (4.730/m)* = 2.267. In this
case, l/f, for ¢, = 40 m decreases to 0.24 s. For short-headway transit
systems, making the ends of the guideway at the supports rigid may be less
expensive than reducing the post spacing or increasing the depth of the
beam: however, considering the need for thermal expansion joints, this
may be difficult.

An accurate assessment of the minimum practical headway, or of the
design parameter choices required for a given headway, requires a detailed
computer analysis such as performed by Snyder et al.[3]. Their results
pertain to the performance of vehicles travelling on rough guideways as
well as on flexible guideways. While the question of tolerable guideway
roughness is of crucial importance in the cost of fabrication of the guide-
way, it is not considered further herc. We consider rather the limitations
reported by Snyder et al. due to flexible guideways. The results reported
there are understood by means of the equation of criticality obtained by
setting m = | in equation (10.4.3). Normalizing with respect to the span
length ¢,, this equation can be written

I R abletim

-
%ﬁ - },’%_s V. (10.4.5)

in which V, is referred to by Snyder et al. as the “‘crossing-velocity
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frequency ratio.” Itis the ratio of the inverse of the crossing time, £,/V, that
is the crossing frequency, to the fundamental frequency of vibration of the
beam. When ¢,/¢,, the dimensionless headway, reduces enough to equal
V.. the successive vehicle passages augment the natural vibration of the
beam. The computer analysis of Snyder et al. indicates that, as more and
more vehicles cross the span, the maximum amplitude of motion continues
to build up, and reaches steady state only after the crossing of fifteen to
‘twenty-five vehicles. Also, the maximum deflection of the span is in-
“Creased after the twenty-fifth vehicle passes by a factor of 3.4/1.8 = 1.9
over the deflection after one passage. Thus, the maximum beam deflection
and stress estimated above for the case of one vehicle crossing are approx-
imately doubled.

Snyder et al. show a series of computer-drawn plots of the nondimen-
sional maximum midspan deflection (yu,,/¥*), where y* is the static value
given by equation (10.3.12), plotted as a function of V, (equation (10.4.5))
for four values of €,/¢,: 1.5, 1.0,0.5, 0.25. Figure 10-7, taken from Snyder et
al.[3] with permission, is a typical example. In this figure, €, = 30.48 m and
the structural damping ratio of the beam is 0,025, The deflections shown are
the steadystate values achicved after fifteen to twenty-five vehicles have
crossed the span. The plots can be envisioned as the resulting deflections if
a cascade of vehicles at fixed headway ¢, continually increases its speed.
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Crossing Velocity Frequency Rato V,
Figure 10-7. Maximum Midspan Deflections due to a Series of 1260-kg
Vehicles Crossing a 30.48-m Span (from reference[3], De-
partment of Mcchanical Engineering, M.L.T.)
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If £,/¢, = 0.25, and V'is very small, the deflection is,the static value for
vehicles equally spaced along the span. As Vincreases, ¥y, doesn’t begin
to increase noticeably until V, gets within about 20 percent of the critigg
value of 0.25 (equation (10.4.5)). At V. = 0.25 the deflection is about
times the static value, Then, after the speed has increased so that V, = 0,30,
the deflection is back to the static value and remains there through the
remainder of the range of V. shown. -1
If €€, = 0.5, yu.y reaches a much higher maximum (6 9llmee the static
value) at the eritical value of V. = 0.5, but also peaks at V. = ¥, and slightly
at V. = 1/6. The explanation for this behavior is seen by following the
derivation of equation (10.4.3) and concentrating on the fundamental
mode, m = |. Thus, if the time headway between vehicles, £,/V, is equal to
the period of motion 1/f;, each cycle of vibration of the beam is enhanced by

-

the passage of each successive vehicle. But, the vibratory motion will also.

be enhanced, though to a lesser extent, if every other or every third, and so
forth, vehicle arrives at the beginning of a period of motion of the beam.
Thus, successively smaller resonances will occur when

vV = 2f,, 3, ..

Or, in the notation of equation (10.4.5), successively smaller resonances
occur when

& O
V, = L a O 10.4.6
"2 3¢ ( )

For €,/¢,=0.5, V.= 1/4, 1/6, and so forth. For £,/¢, = 1.0, resonances at V,
= 1, 12, /3, /4, I/5, and l/6 are visible; and for £€,/€, = 1.5 resonances may
be seen at V, = 1.5, 0.75, 0.5, 0.375, 0.3, and 0.25. Equation (10.4.6)
corresponds to equation 5.1 of reference [3) for m « 1.

Only the fundamental resonance, corresponding to V., = €,/¢, produces
an amplitude above the static value for £,/€, = 0.25. On this basis, there-
fore, the lower-speed resonances need not be avoided. It is important to
note also, from figure 10-7, that the peak deflections increase in magnitude
as the headway increases. Thus, with long headway systems it is particu-
larly important to avoid operating a long stream of vehicles at €, = £, V..

Any clevated guideway transit system must be designed for the static
loading condition of vehicles end to end on the guideway (equation
(10.2.12). Thus, in the case where the minimum operating headway ¢,/¢, is
0.25, the worst static condition produces a higher stress if £, is less than
£,J/1.4, where £, is the vehicle length. If this condition holds, the resonant
condition V£, = ¢, need not be avoided for stress reasons. If the minimum

2,5
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operating headway ¢€,/£, = 0.5, we must have £, < €,/6.9 if the static
condition is to prevail, and so forth. If the system happens to operate with &
long stream of vehicles at €, = (€4) s, it may, with low probability, operate
at one of the secondary resonant points of cquation (10.4.6), but these
resonances are not strong enough to be of concern. In any case, ride
comfort will be increased if long streams of equally spaced vehicles are not
permitted to form, that is, random spacing will improve ride comfort.

The MIT group[3] assumed a concrete guideway cross section of fixed
shape and, in their computer runs, varied its size until both the stress
criterion and the ride comfort criterion were satisfied. They found the
required guideway cross sections by making computer runs of multiple
vehicle crossings using three vehicle masses with the following characteris-
1cs:

Gross Vehicle Mass (kg) 1260 2700 4860
Passenger Capacity 4 6 12
Headway (s) 0.2 03 1.0
Flow (persons’s) 20 20 12

The results arc shown in figure 10-8. Here we have plotted the required
guideway mass per unit length as a function of vehicle mass for the two
spans chosen in reference(3]: €, = 15,2 mand 30.4 m, and for the cases of a
single crossing and of multiple crossings sufficient to produce maximum
amplitude of motion. Each of the twelve data points shown corresponds to
a set of computer runs required to find the minimum guideway mass per
unit length that satisfies both the stress and ride comfort criteria. For
instance, the data point corresponding to figure 10-7 is the one for multiple
crossings for which M, = 1260 kg and £, = 30.4 m. For this case, f, = 1.49
Hz and ¢, = (13.4 m/s) (0.2 5) = 2.68 m. Hence,

= 0.296 and A = 0.088

V. 2

_ Vv
= i

In this case, £, is so small that £, cannot be much less than ¢,. Hence the
dynamic load condition is likely to produce the greatest stress, From figure
10-7, it can be inferred, however, that for such a low value of £,/¢,, the
amplitude rise at V, = £,/¢, will be quite small, and that the vehicles have
passed over this minor critical point to reach V. = 0,296,

Because of the different relationships to the resonant points in the
various data points of figure 10-8 and in other configurations, onc must not
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Figure 10-8. Guideway Mass per Unit Length Required to Meet Stress and
Ride-Comfort Criteria

generalize the results of figure 10-8 too far; however, we can make the
following observations:

1. The required guideway mass increases in going from single crossings
to multiple crossings by about 20, 11, and 1.5 percent for vehicles masses of
1260, 2700, and 4860 kg, respectively. Thus, at least in this example, the
analysis of multiple crossings is significant only in the smaller-vehicle
cases, but the increase in guideway mass is small enough so that the single
vehicle crossing, analyzed exactly, is of much interest in understanding the
basic phenomena. (It must be remembered, however, that the MIT study
also took into account vehicle dynamics.)

2. Ataconstant flow of persons per second, smaller vehicles will result
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in a lower guideway mass per unit length and hence lower cost. Note that
the data corresponding to the largest of the three vehicles corresponds toa
flow only six tenths of the flow in the two other cases. Thus, if the flow with
the largest-mass vehicle were increased to correspond to the other two
cases, its guideway would be substantially larger.

From equation (10.3.29) it was concluded that-the mass per unit length
of the guideway is proportional to the square root of the vehicle mass if the
ride comfort criterion governs over the stress criterion. To test this
hypothesis in the case of the data of figure 10-8, dashed curves proportional
to M} are drawn from the multiple crossing data points for the lightest
vehicle. It is seen that the square-root assumption underestimates the
guideway mass when £, = 15.2 m, but overestimates it when &, = 30.4 m.
The differences are not surprising, however, because of: (1) the lower flow
for the heaviest vehicle; (2) the fact that equation (10.3.29) is approximate;
and (3) the fact that figure 10-8 applies for one specific velocity. The
relationship

GUIDEWAY MASS = (VEHICLE MASS)"

is still a good rough approximation,
-"

]
10.5 Limit Valve of Speed Based on
Ride Comfort

Based on the analysis of section 10.4, it is useful to consider the following
simplified analysis of ride comfort in vehicles in a cascade: Consider the
case where £,/¢, is much less than | and assume the guideway is uniformly
loaded with a load per unit length g = W/¢,, where Wis the vehicle weight.
Based on figure 10-7, assume that for small £,/¢, the resonant effects are
small and. therefore, that the beam deflection is the static deflection with
the load g. To increase ride comfort, assume that the beams are precam-
bered to lie flat on their support posts when no vehicles are present. Thus,
the deflection will be totally due to vehicle weight. To increase the beam
natural frequency, clamp the ends of the beams on the support posts by
overlaying steel sheets sccured to the beams in such a way that thermal
expansion can take place.

From any text on strength of materials, the maximum moment in such a
beam is

Mau = “g‘ (10.5.1)



293

and the maximum deflection is

_ gt}
Boax = Tﬁl (10.5.2)

With clamped beams, we can assume that the vertical displacement seen by
a passenger is

Yoy = —A?’L sin wf

where
w = 2wV,

Hence, the maximum vertical acceleration is

Gy = “-;x- @ = 2030, VAIE? (10.5.3)

Assume the beam is designed to a certain maximum bending stress o,
under the total load of vehicles end to end and beam ‘weisht. Then, from
cquations (10.2.1) and (10.5.1), the required moment of inertia is

= g My = —};f,’:_—(g«» psA)

in which & = 2¢, £, is the vehicle length, and pgA is the weight per unit
length of the beam. Substituting this value of [ into cquation (10.5.2), and
rcmcmbcnng that because of the assumed camber, g = WI(,'m computing
maximum deflection, equation (10.5. 2) becomes

'." "“( &
L anlif, 1
Benx = “TRERE, (T F pRALIW) poce

Substituting this expression into equation (10.5.3) and solving for V, we
obtain
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Vi = %_[ _Z.a..Eh«{ | +PRAL, )] (10.5.4)

It is worthwhile to note from structural theory that if the beam had been
simply supported, the factor of 12 in equation (10.5.1) would become 8, and
the factor of 384 in equation (10.5.2) would become 384/5. Thus, E in
equation (10.5.4) should be multiplied by 12/(8+ 5) = 0.3, and the maximum
value of V for adequate ride comfort would reduce by (0.3)'* = 0,548,

We see that increasing the maximum stress o, lowers the limit velocity,
This is because o, permits higher deflection. As expected, a heavier beam
(greater pgA) increases the limit velocity, heavier vehicles lower the limit
velocity, and a shorter headway between vehicles lowers the limit velocity.
The span ¢, does not enter directly, but through the parameter A, which
must increase with £, at a given o,,. The limit velocity can be increased
most easily be increasing h.

As indicated in connection with equation (10.3.32) assume a,, = 0.707
m/s®. Then for a one-meter-deep steel beam (E = 21(10)'* N/'m?, o, =
140(10)" N/m?®), equation (10.5.4) becomes

Vie = 29.3 (g:-)m(l + %ﬁ)m m's (10.5.5)

Thus, without computing the guideway/vehicle weight parameter, itis seen
that for all headways the limit value of speed for adequate ride comfort is
above the range of speeds of interest for urban applications. On the other
hand, if the beams are simply supported, the factor 29.3 reduces to
29.3(0.548) = 16,1 m/s = 36 mi'hr. In this case the parameter pgA¢/Wis of
interest for heavy vehicles at short headways. For steel, pg = 77600 N/m?.
Assuming an optimum steel beam, equation (10.2.5) shows that A = 8ht/3,
Assume = 1cm, i = I m. Then pgA = 2069 N/m. As an example, take the
middle vehicle of figure 10-8. Then W = 2700(10) = 27,000 N. Thus pgA/W
= 0.077 m~', Consider a minimum time headway of 0.25 second. Then, for
V=20 m/s, €, = 20(0.25) = S m. Assume ¢, = 3 m. Then for this case
pgA€J/W = 0.23 and V,, = 23.0 m/s (52 mi'hr) for simply supported beams.
Since this limit speed is above the assumed speed, the beam is still deter-
mined by the bending stress criterion and not by ride comfort. With simple
supports, however, the ride over the supports will contain higher frequency
components than assumed and requires further study. To take into account
the amplification produced near resonant conditions, 4, in equation
(10.5.4) should be reduced in the same proportion that the amplitude is
increased over the static value near resonance, If this adjustment is made to
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equation (10.5.4), it applies to the dynamic as well as to the static deflection
conditions.

10.6 Torsion
Torsional Loads

A transit guideway can be loaded in torsion due either to wind forces or to
centrifugal forces. Consider first the wind load. As an extreme condition,
assume the maximum torque on the guideway to be determined by the
condition that vehicles of height i, are parked end to end on a span of length
€,. Assume that at the support posts, the guideway is constrained from
rotating. Then the torque is greatest at the support posts and is equal to one
‘half the lorque produced on an arca h,€,. If h is the depth of the guideway,

assume the point of application of the wind load is (h + h,)/2 from the axis of
twist of the beam. Then the torque due to wind is

" - P-;-”n htsh + h,) (10.6.1)

in which p, = 1.293 kg/m?® is the air density at standard conditions and V,_ is
the maximum wind speed perpendicular to the guideway.

A centrifugal torque is produced by vehicles travelling around a curved
section of guideway at line speed V.. If the vehicle weight is W and the
maximum comfort level of lateral acceleration is aJg, each vehicle pro-
duces a maximum torque

T, = wae (h+h)
R

o+

If the headway is £,, and ¢, is the unsupported span length around a curve,
there can under normal conditions be £,/¢€, vehicles on one span. Then, as
with equation (10.6.1), the maximum torque is less than

Tduax = ot (h 4 h) & (10.6.2)

The actual torque is less than that given by equation (10.6.2) because the
curvature of the guideway causes part of the torque to add to the bending



296

moment at the support post, and only a component 10 be a true torque.
Hence the present calculation is conservative.
The ratio of wind to centrifugal torque is

= PsV3 £y
T = SWads) o (10.6.3)

Assume the system operates normally up to say V, = 60 mi/h (27 m/s), and
consider two cases: (1) Standing passenger vehicles—assume a /g = 0.125
g, W= 10,0001b, (45400 N), h, = 2.4 m, €, = 130 m, and £, is the same for
straight and curved track. Then, from equation (10.6.3),

%-26

c

(2) Seated passcnger vehicles—assume a,/g = 0.25 g, W = 2000 Ib, (9080
N) h, = 1.6 m, £, = 10 m, and ¢, is again the same in both cases. Then

T e
T 33

Thus, in both cases the wind torque is dominant and can be assumed to act’
with no centrifugal forces in computation of the maximum torsional stress,
because it is not prudent to operate at normal line speed when the wind
speed is maximum.

The Torsional Stress in a Box-Beam Guideway

Assume the guideway is a box beam with the dimensions shown in figure
10-1. Lett, = t, = t << hand let the shear stress on the cross section due to
the applied torque 7 be 7. According to Timoshenko and Goodier(10] ,
Saint-Venant showed that the cross sections of a noncircular beam warp in
torsion. If they are restrained from warping, additional stress concen-
trations occur, and the following analysis must be modified. Thus, near
constrained ends, more detailed knowledge of the means by which the
supports resist torsion than available here must be available for a rigorous
solution. Such a solution has been carried out by Ebner(11] but it will be
assumed (1) that for relatively thick-walled beams (compared to aircraft
wings) the correction is small, or (2) that it is possible to design end
constraints that minimize stress concentration in torsion,



297

With these caveats, consider the beam of figure 10-1 and assume that
the wall is thin compared with the depth A. In this case, Tomoshenko and
Goodier indicate that, except at the corners (considered below), the shear
stress r can be assumed uniform. Then, the torque T can be expressed as

T = 2ro{hw/2 + whi2) =2rthw

Thus,

T= -mt (10.6.4)

where A, = hw is the cross-sectional area of the beam.

The material cross-sectional area A is given by equation (10.2.5). The
shear stress is minimum for a given guideway weight per unit length if A is
maximized with A held constant. Thus, setting the variation of A equal 10
zero with ¢ fixed results in 8w = — 8h. Then

3A, = 0 = wbh + héw = (w = h)dh

Thus, as should have been expected from symmetry, a box-beam guideway
will resist a given load with the minimum weight per unit length if the beam
is square. This is an important consideration, however, only if the torsional
wind load is the dominant factor in determining the size of the guideway.

According to Timoshenko and Goodier, equation (10.6.4) is valid away
from the corners of the box beam. At the corners, there is a shear-stress
concentration dependent upon the ratio of the inside radius of curvature at
the corners, a, to the wall thickness, 1. On page 301, reference[10], a curve
of the stress concentration as a function of a/f is given, calculated both on
the basis of an approximate analytical theory and a numerical calculation
by finite differences. For example, for a/t = 1.0, 7o, /7 = 1.3; and for a/r =
0.5, Tpay/r = 1.7. To be safe, assume the stress concentration factor to be
two, so that, from equation (10.6.4),

_ T
Tmax = m: (10.6.5)

Substituting equation (10.6.1) into equation (10.6.5), the maximum
shear stress (A, = hw = ak?) is
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oax = PR ",'-’7":(1 + ’7"1) (10.6.6)

Assume p, = 1.293 kg/m*, V, =2Tm/s,a = 1/3,h = I m, and h, = 2.4 m.
Then

oy = 2884 £‘: "’:’, = 0.410¢,/1 psi

Taking values of £,/r from figure 10-3, the following stresses are found:

€ (m): 20 0 40
T PSI): 2830 1585 893
Tensadl N/MP): 199010y 1020108 6.3(100*

Thus, for a design based on bending stress, the shear stress is greatest
where ¢, and ¢ are the smallest. Since the design shear stress for structural
steel[7] is about 12,000 psi (84(10)°N/m?), the design is in all cases deter-
mined by bending stresses, not shear stresses. If the minimum plate thick-
ness is limited to say | cm for ease of fabrication, as assumed following
equation (10.3.31), the maximum shear stress is even less for the smaller
values of £,.

This conclusion leads to increased flexibility in design because the full
box beam is not needed for resisting torsional loads. As an example,
assume w = 1/3 m but that, for the portion of the box beam that resists
torsion. ki is reduced to the valuc A’ such that 7, in equation (10.6.5), is
equal to the design value. Then, substituting, A, = wh' and equation
(10.6.1) for T, equation (10.6.5) can be expressed in the form

. paVi £, h
W= %;;:-'L-“g- (h + h,)

17.510)°¢ £/t for h, =1.6 m

34.4(10)%¢ Jtfor hy, = 2.4m

(10.6.7)

in which, in computing the lever arm for the wind torque, his still taken as |



299

m. ASSUME I = 1 ¢M, as suggested above. Then figure 10-3 shows that is
greater than f,, only above ¢, about 34 m. With this assumption, several
values of A' are as follows:

¢,(m) ticm) hy(m) h'(cm)
20 1 1.6 3.50
30 1 1.6 5.25
40 1.84 1.6 3.80
20 1 24 6.88
30 1 2.4 10.32
40 1.84 24 7.48

Thus, a much shallower beam than a full box beam one meter deep will
provide ample torsional strength. Note from equation (10.6.7) that " is a
quadratic function of the height of the vehicle, &, but that for full, unslotted
box beams, extra vehicle height is not significant in torsion from the
viewpoint of shear stress. (It may, however, be a factor in lateral vehicle
stability.) If increased h, adds to the weight of the vehicle; however, it will
require a heavier beam. These conclusions indicate that the use of
U-shaped beams to simplify switching, as is done in the design developed
by The Aerospace Corporation[12] is a practical configuration.

Slorted Box-Beam Guideways

One of the most difficult design problems in narrow-beam transit systems is
to develop a practical configuration that can permit vehicles to switch
without moving a portion of the track. The requirement of movement of the
track generally restricts the systems to long headways, hence large vehi-
cles, hence to a large cross-section, high cost guideway. A method around
this problem, employed in the design of the Rohr Monocab system in the
United States, and the H-Bahn system in West Germany, is to slot the
guideway so that a suspension bogie can ride inside the beam{13]. The
subject of this subsection is the analysis of the torsional stresses in such a
beam.

The theory of torsion of open channel sections is developed by
Timoshenko and Goodier{10].

From this work, the maximum torsional stress in a thin-walled channel
section and away from a corner is found to be the same as the maximum
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torsional stress in a bar of narrow cross section of thickness r and width bif
the developed length of the channel cross section is b and its thickness is
also 7. Thus, reference| 10) gives for the maximum shear stress of a channel
section the formula

_ 3T
L T

in which T'is the applied torque. Just as with the development of equation
(10.6.5), to account for stress concentrations in the corner, we will multiply
the above value by two to obtain

Toax = -2_11;

For a thin-walled slotted box beam of depth /i and width w, b = 2(h + w)if
we neglect the width of the slot. Then

_ 3T
Toax = T+ wiff (10.6.8)

In this case, the maximum stress is independent of the ratio w/h and
depends only on the length of the perimeter.

Comparing with equation (10.6.5) with A, = wh, we see that the slot
increases the maximum stress by the factor

(Tmaxhiot -  SWh
Tansdos st~ (B + W (10.6.9)

Forbeams withh = | m.w = 1/3m, 7 = | ¢m, this ratio is 75. Thus, while the
torsional stress in a full box beam was well below the design stress, it will
dominate the design of a slotted box beam.

Substitute equation (10.6.1) into equation (10.6.8).
Then

Vi he, [+ h
- Egg—&l';,x(mr-) (10.6.10)

As in the previous subsection, let p, = 1.293 kg/m® and V,, = 27 m/s. Then
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3p. ViR = 353 N/m* = 0.05 psi. Again assume a design shear stress of
12,000 psi or 84(10)* N/m?. To get a feeling for magnitudes, leth = I m, w =
1/3m, and £, » 20m. Then from equation (10.6.10) the thickness needed to
resist the torsional load is

t=160cmforh, = 1.6m
=22cmforh, =24 m

For a closed box beam, it was argued that the walls should be at least I cm
thick to simplify fabrication. If this proves correct, the penalty in added
weight per unit length and hence cost per unit length in using a slotted box
beamis afactorof 1.6 for ki, = 1.6 mand 2.24 for h, = 2.4 m. Recall from the
previous subsection that these two values of A, correspond to the use of
scated- or standing-passenger vehicles, respectively. Thus, with slotted
box beams, the penalty in guideway cost in using standing-passenger
versus seated-passenger vehicles is a factor of 2.24/1.60 = 1.40 or 40
percent,

An alternative design for a slotted beam configuration is to use a shallow
box defined by equation (10.6.7) to resist torsion and thinner walls to
contain the bogie. The fabrication cost of such a design would, however,
increase,

10.7 Plate Buckling

If a box-beam guideway is built up of thin steel plates, it is necessary to
ascertain that the side walls are thick enough so that they will not fail by
buckling. The theory of buckling is given by Timoshenko| 14]. To determine
the critical buckling load of the side walls of a box beam, we must define the
manner of support of the edges of the side walls and the manner of loading.
These factors will differ with different vehicle support configurations, but
before troubling to define them in detail it is useful to consider a simplified
configuration which can be cxpected to produce buckling most easily. Then
we c¢an compare it with other configurations.

The simplest configuration of interest is a plate of length €, width &, and
thickness ¢ simply supported along all its edges and subject to a uniform
load per unit length N along the boundaries of length £, in which we assume
¢ is much greater than . Then, from reference[14], p. 329, the critical
buckling load, converted to our notation, is

#p(¢ .  h\ _ =D i\
Ner = T(F*?) - 7;!‘(‘ *ef)
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in which

Er*
D= =

isthe pla:ctc rigidity factor, where v is Poisson’s ratio and Eis the modulus of
clasticity. For structural steel » = 0.3 and E = 21(10)"° N/m*.

Thus, the critical buckling load for a steel plate for which /i is much less
than € is

N., = 19(10)" r:’,N/m (10.7.1)

in which ris in centimeters and / is in meters, For the plate used in previous
calculations for which t = 1 cmand A = 1 m,

N, = 19(10)* N/m (12,800 Ib/ft)

Compare this result with figure 5-4, where a vehicle mass of 1000 kg/m
exerts a force of 10,000 N/m. A pair of simply supported plates, idealizing a
box beam, could support up to 380,000 N/m or a mass distribution of 38,000
kg/m—far higher than the mass per unit length of any of a wide range of
transit vehicles. The actual edge conditions would stiffen the plate and
decrease its load, and the load of the vehicles in most practical configura-
tions is not applied directly to the top of the plates. Therefore, plate
buckling plays no role in designing box-beam structures of the approximate
dimensions considered above,

As a matter of interest, plate buckling would be important if N, were
reduced by a factor of about 40(scc figure 5-4). This would occur if 1 were
reduced by (40)'? = 3,42 1o about 3 mm. Such thin plates would be difficult
to handle in a steel fabrication shop.

10.8 Plate Vibration

A final factor in design of thin-plate beams is the possibility that plate
vibration will produce unwanted noise as vehicles pass. This problem can
be analyzed by means of the theory of vibration of plates, developed by
Timoshenko[9]. His equation (214) gives the frequencies of vibration of
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rectangular plates with simply supported edges. In the notation used here,
these frequencies can be expressed in the form

_m - E m o
fon =5 r\/ _l‘.’(l—-s"_)b"(l't’ + F) (10.8.1)

in which m and n are positive integers. For steel (E = 21(10)"° N/m?, p =
7760 kg/m?, v = 0.3), equation (10.8.1) becomes

fo = u.m:(',?,ﬂ%{,’-) Hz

in which r is the thickness of the plate in centimeters and, as before, rand ¢
are the depth and length in meters, respectively.

Thus, for ¢t = L ecm, i = | m, and ¢ much greater than A, the lowest
frequency (m = n = 1)is 24.7 Hz. The lowest audible frequency is about 20
Hz. Thus, corresponding tom, n = 1, 2, 3, ... , sound will be produced
throughout the audible range if the beam is excited. Measures to prevent
the production of unwanted noise depend on two factors: (1) design of the
suspension system of the vehicles in such a way that the vibratory modes of
the side walls are not excited; and (2) damping of the vibratory modes by
application of an appropriate material to the walls of the plate.

If the vehicles use wheels, for example, the use of steel wheels on steel
rails would appear to be the worst combination because imperfections in
the rails attached to the guideway and in the wheels would act as forcing
functions and would cause the plate walls of the guideway beam to vibrate
audibly as the vehicles pass. Use of rubber-tired wheels would dampen the
effect of imperfections, and the use of air or magnetic suspension would
appear to remove high frequency forcing functions altogether.

The damping of structures by use of surface treatments is discussed by
Plunkett[15,16). For the present application, the work of reference[ 6]
appears directly applicable. There it is shown that the application of a thin
viscoelastic layer constrained by even thinner sheets of a stiff maternial such
as steel or aluminum of optimum length provides a significant amount of
damping to thin beams even though the surface treatment adds less than 3
percent to the weight of the beam, The optimum constraining layer length
for damping of a thin beam is 3.28 (1,0,E./G,)'®, where E,; and 1, are the
clastic modulus and thickness of the constraining layer, respectively: and
G, and 1, are the shear modulus and thickness of the viscoclastic material,
respectively. The amount of damping falls off rapidly if the length of the
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constraining layer deviates from optimum. Torvik and Strickland[17] have
extended application of the method to plates with similar results.

10.9 Optimum Span Length

According to equation (10.2.14), the plate thickness of a box beam of
constant depth and width must increase with the span length &, in a
stress-limited design. Thus, the cost of the beam decreases as €, decreases,
but smaller £, means more support posts; therefore, there is a value of €,
that minimizes the cost of the guideway plus support posts. Itis instructive
to study this optimum design point.

To be specific, consider a thin-walled box beam design. The cost per
unit length of the beam can be expressed as

C, = Cyo + Cigp2(h + wht(£)) (10,9.1)

in which C, is the element of cost per unit length independent of £,, Cyyis
the erected cost per kilogram of material, 20k + w)r is the cross-sectional
area of the beam, and #(¢,) indicates the dependence of  on €, from equation
(10.2.14). Assume, however, that 1 is not permitted to go below a value 1,
taken in previous subsections as one centimeter.

Assume the posts are square cross-sectioned steel beams of side length
h, at the base. of wall thickness, t,, and of height ¢ above the ground. Let
the cost per post be

C, = 4C,uptylh, (10.9.2)

in which it is assumed that the total cost of the post counting its base is
proportional to the above-ground mass. But the dimensions of the base, h,,
depend on the applied moment, M = F£, where F is a force applied at the
vehicle height. F can be due to either wind or to sudden braking of a strecam
of vehicles. Then, from equation (10.2.1) and equation (10.2.2) with w = h
>>t,

Thus

N "2
hy = ( = ‘—) (10.9.3)
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If Fis due to wind,

F = %Pov:(h + h)¢,

in which (& + h,)¢, is the cross-sectional area exposed to wind in one span
length. If ¥ is due to emergency deceleration of vehicles,

in which W is the weight of each vehicle, a, is the emergency braking rate,
and ¢, is the minimum headway of a stream of vehicles.

Based on the numerical values used in connection with equation
(10.6.6), the maximum value of p, Vi(h + )2 = 1600 N/m. Assuming a,/g
=10.5, W= 12600 N (see figure 10-8), and (£,) i = Sm, a, W/g€, = 630 N/m.
Assuming that for heavier vehicles, €, increases in proportion to W, the
wind load dominates, Substituting the wind load into equation (10.9.3), and
then equation (10.9.3) into equation (10.9.2), the cost of each post is

e
C, = ZC,.'pV,,[ 1.5p,Cipth + he) ] an (10.9.9)

Tm

Now the installed cost of the whole guideway per unit length can be
expressed as

Cr=C, + -C(‘.L
Substituting equations (10.9.1) and (10.9.4),
r = Coo + AJ(£,) + AYE}R (10.9.5)
in which
A; = 2pCuM(1 + @) (10.9.6)

and

mn
Ay = 2cmpv.,[ 1.5p,€ :’&’“ "i] (10.9.7)



306

The optimum span length is found by differentiating equation (10.9.5) with
respect to £, and setting the result equal to zero. Thus,

dt AJA
= S5 (10.9.8)

gives the optimum value of ¢€,.

As indicated above, it is necessary to take ¢ at least as large as t,, which,
from figure 10-3, corresponds to a specific value of £,, which we shall call
¢, Then, from the form of equation (10.9.5), it is clear that the optimum
value of ¢, must be at least as large as ¢, . Whether or not it is larger
depends on whether or not the value of ¢, that satisfics equation (10,9.8) is
larger or smaller than £, If it is smaller, €, js the optimum value; if larger,
the root of equation (10.9.8) is the optimum. Thus, assume #(¢,) is the
function given by equation (10.2.14) and express 1(¢,) in the form

-2y (10.9.9)
where
- - 3w
a 8%1;,' Bkt (10.9.10)
and
x=¢&Jb (10.9.11)
where
L 1
b= (-?”-ni ) : (10.9.12)
P8

In the expression for a, we have assumed the live load per unit length is
W/¢,, where Wis the vehicle weight and £, isits length. Now, from equation
(10,9.9),

dt 2ax

dé, K =2



Substituting this expression into equation (10.9.8),

2ax _ AJA
TR - S T Tapae

which may be written in the form

_ L
M= Tl_-lrr ('0.9.'3)

where
Ay AC/CV, 1. Spth + b))
BT GahA e i gt (109,19

Equation (10.9.13) is plotted in figure 10-9. Thus, after u is found from
equation (10.9.14), the optimum value of x is found as the corresponding
value from figure 10-9. Then ¢, is found from equations (10.9.11) and
(10.9.12). As indicated above, if this value of £, is less than €, _, €, is the
optimum value. Consider as an example a steel box beam for which & = |
m, a = /3. Withp = 7760 kg/mv?, o = 140(10)*N/m?, V= 2T m/s, and p, =
1.293 kg/m?,

= 15.KCue/ Crad 3133 + )W

Assume Cpy/Cyy = 10 to account for the cost of the entire post and its
erection, and take W to be the smallest value given in figure 10-8, 12600 N.
Thenleté, =2.6m,h + h,=2.6m,and € = Sm, Finally take 7, = 0.02mto
minimize possible damage in case of accidents, and we find g ~ 0.084,
Then, from figure 10-9, x = 0.335, From equation (10.9.12), b « 60.0 m,
Therefore, €, = 20.1 m. But, if the wall thickness is limited to say | cm,
figure 10-3 shows that the span is stress limited at €, = 32.8 m. This is larger
than the computed value of 20.1 m. Therefore, in this example, the guide-
way cost is minimum if €, is taken as 32.8 m. If it were possible to use plates
less than one centimeter thick without a corresponding increase in fabrica-
tion cost per unit mass of material, the total cost could be decreased.
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10.10 Summary

The purpose of this chapter has been 1o examine the factors that have
primary influence on the cost per unit length of elevated guideways, and to
find optimum parameter choices where they exist that will minimize cost
per unit length. Since the guideway is the single most expensive item in an
exclusive-guideway transit system, the optimization of its parameters is of
primary importance in minimizing the cost of the total system. While
attention is devoted in this chapter exclusively to elevated guideways, it
should be kept in mind that there may be circumstances in which at-grade
guideways are satisfactory and would decrease system cost, and in which,
in the case of small-vehicle systems, underground guideways may not be
appreciably more expensive than elevated guideways [1].

The criteria for guideway design are primarily maximum stress and ride
comfort: however, integration of the guideway into the system requires
that consideration be given to the manner of switching and the manner of
support of the vehicles by the guideway. To take advantage of the cost
reduction possible with the use of small vehicles, it is necessary to consider
switch mechanisms that do not requirc movement of a portion of the
guideway; and, to provide adequate lateral stability and ride comfort, the
dimensions of the guideway must not be too small. The results of this
chapter indicate, however, that weight per unit length of the guideway
increases too rapidly as parameters deviate from optimum to permit con-
siderations of switching and lateral stability to dictate the basic guideway
design. Rather, if weight and cost are 10 be minimized, optimum paramet-
ers must be chosen and then the switching and lateral stability requirements
provided by clever design. Enough design and test experience has been



309

accumulated to ascertain that these requirements are not incompatible.
The visual appearance of the guideway is of course also an important factor
in the design; however, this consideration is satisfied in a structurally
optimum design because such a design has the smallest possible cross
section.

Itis not obvious a priori which stresses reach their design limits first ina
given guideway design; therefore, all possibilities must be considered. The
logical first step is to consider bending stresses produced by a static vertical
load, assumed in the worst case to be due to vehicles at rest end-to-e¢nd on
the guideway. Next, the dynamic loading due to motion of vehicles over the
guideway is considered, first by studying the deflection, stress, and accel-
eration produced by a single vehicle of arbitrary speed and mass crossing a
single, simply supported span, and second by studying the increased ef-
fects produced by cascades of vehicles crossing a span. The conclusion
reached is that the static condition described above usually yields a higher
stress than the dynamic stress produced with vehicles spaced farther apart,
and therefore that, because the static yield point stress and fatigue limit
stress are about the same in structural steel (7], the static condition of
vehicles spaced end-to-end usually determines the design. Application of
the ride comfort criterion then shows that at speeds higher than given by
equation (10.5.4), the beam must be deeper than that required by the stress
criterion.

Torsional stresses are next considered, and it is found that with a
bending-optimum box beam, the torsional stresses due to wind and cen-
trifugal forces are well below the design shear stress. Thercfore only a small
fraction of the depth of a4 bending-optimum box beam is needed to resist
torsion, a conclusion that increases the flexibility of the choice of beam
cross section. Slotted box beams are also studied in torsion, and it is found
that for the same dimensions as a closed box beam, the shear stress is
greater by a factor of about 73, thus requiring the walls of the beam to be
substantially thicker. Finally, for thin-walled steel beams the possibility of
plate buckling and plate vibration is examined. It is found that if the plate is
thick enough so that its thinness will not cause fabrication problems (an
intuitive judgement), buckling under the loads that can be produced by
vehicles is not a problem, but that the plate can not practically be thick
enough to avoid resonances in the audible range. Thus, it is necessary
either to design the vehicle suspension system so that the plate vibratory
modes will not be excited due to imperfections, or to apply an optimized
vibration-damping layer to the surface of the beam. Such a treatment is
described.

A number of numerical examples are worked out in this chapter to
tllustrate the method more specifically, and to give a feeling for the mag-
nitudes of the various parameters. In all cases, the properties of ordinary
structural steel are assumed. Perhaps the only other practical alternative is
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to use reinforced concrete; however, this is not done for three reasons: (1)
the mathematics is much more straightforward for thin-walled beams (a
good assumption for steel) than for thick-walled beams, which must be
assumed with concrete; (2) there are more variables with concrete beams
because of prestressing and placement of reinforcing bars; and (3) one
example seems sufficient to illustrate the attainment of certain optimum
conditions. Nonetheless, because of the low cost of reinforced concrete as
compared to steel, its use should not be ignored and a similar solution
should be carried through for concrete.

The results of chapter 10 will now be discussed in more detail: figure
10-2 gives the dimensionless material cross-sectional area sfofabeamasa
function of aspect ratio a for various values of a dimensionless loading
factor . It is seen that for thin-walled beams the cross-sectional area of the
beam for a given load is minimum if the aspect ratio if one-third. If the beam
wall thickness is the same on all walls, this means that the width of the beam
should be one-third the depth. As the wall thickness increases, the dimen-
sionless loading factor  decreases and the optimum aspect ratio decreases,
Thus. in all cases, a deep, narrow beam is indicated if the cost 1s to be
minimized. By varying the parameter a in figure 10-2, one can see how the
dimensionless area f increases away from the optimum condition, It can
be expected that the cost per unit length of the beam increases with its
cross-sectional area, that is, to the ordinate in figure 10-2; therefore this
figure is basic to the determination of the relative cost of various beam
designs. It is important to note that figure 10-2 is based on the fundamental
bending stress formula, given by equation (10.2.1), and is independent of
the manner or magnitude of loading.

Once the optimum aspect ratio of the beam is determined, its required
thickness must be found as a function of load. If the wall is thin compared to
the depth, the thickness is given by equation ( 10.2.14). For a given depth
and span length, this equation shows that the required wall thickness is
proportional to the live load per unit length. In the same circumstances, the
cross-sectional area of the beam (and hence material cost per unit length) is
proportional to the wall thickness. Therefore, if the beam is stress limited,
which is the case for most urban application} the material cost per unit
length of the guideway is proportional to the weight per unit length of the
vehicles. Figure 5-4 shows the mass per unit length of forty-seven different
transit vehicles of various capacity, and together with the above conclu-
sion, illustrates a major reason for interest in small vehicles in automated
transit systems.

The required wall thickness is plotted from equation (10.2.14) in figure
103 for a live load of 447 kg/m (300 Ib/ft). Since the wall thickness is
proportional to live load, it can readily be determined for other loadings.
Some of the wall thicknesses plotted may, as mentioned above, be too thin
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from the viewpoint of ease of fabrication. If, for example, the thinnest
permissible sheet is | ¢m, a beam one-meter deep is stressed to the design
limit only if the spans are longer than 32.8 m. For shorter spans, the beam
could tolerate a higher unit loading without exceeding the design limit;
however, the cost then increasces because more posts than necessary are
used. If the guideway is built up of two parallel box beams in order to
support ordinary wheeled vehicles, itis shown that for the same span length
and beam-wall thickness, the total cross-sectional area and hence cost per
unit length increases by about 40 percent.

Once static loading is understood, it is necessary to determine if the
motion of the vehicles will set up resonant conditions that will make
dynamic loading more severe than the worst static loading case of vehicles
parked end-10-¢nd on the guideway. As mentioned above, this case is
treated by first examining the motions produced by a single vehicle cros-
sing the span. As indicated from figures 10-5 and 10-6, the greatest deflec-
tion at any speed is only about 70 percent greater than the static value
produced with one vehicle parked at the center of the span. Thus, unless
the vehicles are almost as long as the free spans, the maximum static load
will be greater than the single-vehicle dynamic load. For dynamic loading
with single or multiple vehicles, the resonant conditions are determined by
the natural frequencies of vibration of the unloaded beam. The natural
frequencies are proportional to (//A), where [ is the moment of inertia of
the cross section and A is the cross-sectional area. Thus, foragiven A, and
hence a given cost per unit length, resonant conditions cause the least
difficulty if 7 is a maximum. Maximum /, in turn, is produced if the beam is
as deep and narrow as possible, but one must take into consideration the
need for lateral stiffness. It is shown that for the bending-optimum aspect
ratio of one-third, the natural frequency in the horizontal plane is 43 percent
of its value in the vertical plane, a value judged sufficiently high.

From analysis of cascades of vehicles crossing a span, based on an
analysis performed at the Massachusetts Institute of Technology, it is
found that the ratio of dynamic deflection to static deflection with the same
vehicle loading is greater if the vehicles are farther apart and diminishes
markedly as the headway between vehicles decreases (see figure 10-7). Itis
also found that the maximum amplitude of beam motion is amplified with
successive vehicle crossings by a factor of about 1.9in 15 to 20 crossings at
which time a steady-state condition is reached. Based on the MIT results, if
the minimum operating headway is 0.25, 0.5 times the span length, the
worst-case static stress will be greater than the maximum dynamic stress
(at any speed) if the span length is greater than 5.6, 13.8 times the vehicle
length. But, if the maximum vchicle speed is kept about 20 percent below
the primary resonant condition (usually attainable), the maximum dynamic
deflection is only a small amount greater than the static deflection for the
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case of vehicles spaced a fourth of a span apart, and it can be concluded that
the maximum static stress determines the design.

Figure 10-8 shows that the guideway mass per unit length, determined
under dynamic conditions, increases roughly as the square root of the
vehicle mass for a given flow in seats per hour. But, if the static stress
determines the design, the guideway mass increases as the first power of
the vehicle mass, and this is the usual condition. If the static condition and
not the dynamic condition determines the design, a simple formula (equa-
tion (10.5.4)) is found that determines the maximum speed for which the
ride comfort condition is met. In most cases it is found that this speed
exceeds the maximum speed of interest in urban applications, and hence
that the design is determined from static stress considerations.

Torsional stress considerations indicate, as mentioned above. that a full
box beam is not needed to resist the torsional loads, thus permitting some
freedom in the design. If the beam is slotted, however, torsional loads are of
prime importance. In this case, because of the added vertical height of
standing-passenger vehicles and the accompanying increase in wind load,
the use of standing-passenger vehicles adds about 40 percent to the mass
per unit length of the beam required to resist the wind load.

Finally, a formula is found (equations (10.9.13, 10.9.14)) for the span
length that minimizes the total cost of beams plus support posts.
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