Transitions from Straight to
Curved Guideways

Chapter 2 deals with longitudinal performance relationships which can be
applied on both straight and curved sections of guideway. To understand
the layout of the specific network configurations discussed in chapter 4, we
also need to consider what may be called *‘lateral performance relation-
ships.”" These deal with limitations on lateral curvature and rate of change
of curvature of guideways due to comfort limitations on lateral acceleration
and jerk.

If the stiffness of lateral support between the vehicle and guideway is
high. the lateral jerk limitation results in a requirement for spiral transition
sections from straight to curved sections of guideway. Spiral transitions
will be treated first. Among these there are two types of practical impor-
tance: one in which the velocity of the vehicle is constant, and the other in
which the vehicle is subject to constant deceleration or acceleration.

If it is practical to reduce the stiffness of the lateral vehicle support
device, abrupt changes in guideway curvature can be tolerated under
certain conditions. Since allowing these abrupt changes may reduce the
cost of manufacture of the guideway, the conditions under which they can
be tolerated are derived.

Finally, the minimum radius of curvature of a guideway can be reduced
if the curve is superelevated. Reducing the minimum radius of curvature
permits greater freedom of design of networks in street systems, reduces
the possibility that buildings will have to be removed at curves, and reduces
the length and hence, the cost of curves. For these reasons, formulas for
design of superelevated curves are derived.

3.1 The Differential Equation for the Transition Curve

Consider the curve shown in figure 3-1, which passes through the origin of
the x = y coordinates with zero slope and zero curvature. The arc length
from the origin to an arbitrary point P is s, the angle between the velocity
vector V and the x-axis at Pis 8, the tangential unit vector in the direction of
Vis 1, and the normal unit vector is n. As point P moves to the right at
velocity V, the unit vectors rotate according to the relationships

dt = ndd
) (3.1.1)
dn = -1dé
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Figure 3-1. Notation in a Transition Curve

Let V be the magnitude of V, a be the acceleration of point P, and J be its
jerk. Then

VoW (3.1.2)
a=dv _dv. do (3.1.3)
{ 4 r
_da _ @V av do -
Y=@=a " aa "
a6 do \"
+Veh =V (7): (3.1.4)

From equation (3.1.4), the tangential jerk is

- 55,}"-- v( jf ) (.1.5)

and the normal jerk is

a°0 dV de
Jo=V - 2 ar dr (3.1.6)
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We wish to determine the shape of the guideway (the curve of figure
3-1), therefore, we make the transformation

d _ds d _,d
" ds Vs G.1.7)

hence

dé
= V?:— (3.1.8)

S

d*o _ d*e  dV do
dit " F+ dt ds (3.1.9)

and equations (3.1.5) and (3.1.6) can be written

_av _ e Y
he=—s v'( > ) (3.1.10)
de dv de

Equation(3.1.11) with J, constant defines the transition curve. Onceitis
found, J, can be found from equation (3.1.10) to determine if it exceeds the
comfort criterion.

In practical cases we will consider d *V/df = 0; therefore, equation

(3.1.10) becomes

2
Sy - 7‘-("' %:;) (3.1.12)

But from equation (3.1.3) and (3.1.8), the normal acceleration is

a = V3 % = _"’;_ (3.1.13)
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in which dé/ds is the curvature and R is the radius of curvature. Thus,
cquation (3.1.12) becomes

Jo= - Gn (3.1.14)
v

If the limit value of @, and the minimum value of Vare substituted into
equation (3.1.14), and the result is below the jerk limit, the acceleration
limit determines the length of the spiral transition; otherwise, the limit is
determined by jerk. Since the acceleration and jerk limits are approxi-
mately equal in units of seconds, the acceleration limit governs if a, is less
than Vg, a condition which is usually satisfied.

3.2 The Constant Speed Spiral

If V is constant, equation (3.1.11) can be written

gsi," - JV-, (3.2.1)

Ats = 0, § = di/ds = 0; therefore, the curvature is

do _ J.s

il v (3.2.2)
and, from equation (3.1.13), the normal acceleration is

a, = % (3.2.3)
Integrating equation (3.2.2), we have

0= i (3.2.4)
If equation (3.2.3) is solved for s and substituted into equation (3.2.4),

0 =T, (3.2.9)

With the limit values of a, and J, substituted into equations (3.2.5) and
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(3.2.3), we obtain the maximum values of 0 and s, respectively, along the
constant velocity spiral. With a, = J, in units of seconds,

Omoax = 2‘!‘-,- (3.2.6)
and
Smax = V (3.2.7)

The equation of the constant velocity spiral in rectangular coordinates
(x, y) is found from the differential relationships

dx = ds cos 0
] (3.2.8)

dy = ds sin @

in which all terms are defined in figure 3-1.
The equation of the spiral transition section is therefore given paramet-
rically by the equations

X = L'cos s) ds
] (3.2.9)

y= L‘sin “J) ds

in which 6(s) is given by equation (3.2.4).

The angle 0(s) is limited to the value given by equation (3.2.6). In an
extreme case, we can assume a, = 2.5m/s?and V = Snvst. In this case, 8,5
= 0.25 radian. In most cases, ., is much smaller; therefore, use of only
the first term in the Taylor series expansions of the sine and cosine is
sufficient. At 0., the second terms in the Taylor series expansions

of
cosfl = | - T+...

Sinf = 0 ~ -g:— + ...

produce an error less than &,,./2 = 1/32 compared to unity. Therefore,
substituting cos # = | and sin # = #into equations (3.2.9), and then equation

(3.2.4), we have
X= g
] (3.2.10)

Y= v
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The equation of the spiral is, therefore

y = ’3-‘;,'; (3.2.11)

If we define the dimensionless variables

- 5
=

X X (3.2.12)

P
I

5.

equation (3.2.4) becomes
0= s* (3.2.13)

and equation (3.2.11) becomes

y -5 (3.2.14)

Since these equations contain no parameter, we see that the family of
constant velocity spirals scale in proportion to the parameters (2V3/J,, that
is, in proportion toV**. From equation (3.2.7) we note, however, that the
maximum length of the constant speed spiral is proportional to V.

3.3 A Right-Angle Curve at Constant Speed

In this section, the theory of section 3.2 is applied to the specification of a
right-angle curve in which the vehicles are to maintain constant line speed
V. A constant speed spiral forms the transition from a straight guideway to

a guideway of constant radius of curvature R, which, from equation
(3.1.13), is

=V (3.3.1)

in which, a, is specified from comfort conditions. A second spiral, which is
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the mirror image of the first rotated 90 degrees counterclockwise forms the
transition from the constant curvature section back to a straight section.
The problem of this section is to determine the coordinates required to lay
out the entire curve, and the length of the curved sections.

Let the origin of the (x — y) coordinates be at the point of transition from
the straight section to the spiral transition section, with the velocity
vector at the origin pointed in the + x direction. Then the equation of the
first transition spiral is, without transformation, equation (3.2.11). Call the
end point of this transition section (x,, y,). Then the coordinates x, and y,
are found by substituting s, from the equation (3.2.7) into equation

(3.2.10).
;= V
] (3.3.2)

Thus
= !61..

The length of the first transition section is V in units of seconds, and the
guideway at (x,, y,) makes an angle 8, with the x-axis, where from equation
(3.2.6) '

9, = ;% (3.3.3)

Let (xg, y;) be the coordinates of the center of curvature of the section of
constant curvature. Then, from a simple geometric construction,

Xy = x; = R sin 6,

ye = ¥, + R cos 8,

Since 4, is a small angle, let sin #, = #, and, cos 8, = 1. Then substitute
from equations (3.3.1), (3.3.2) and (3.3.3) to obtain

Xy = ‘g—
(3.3.4)
)‘! = -'!6‘- . -“-::_

Let (x;, y;) be the coordinates of the center point of the section of
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constant curvature. This point is important because it determines the
clearance required for the curve. From a geometric construction,

Xy =X + RIJZ
Vs ™ Yo — RiZ.
Substituting equations (3.3.1) and (3.3.4),
= e+ 0707 2
- n
] (3.3.5)
ya = T +0.293 =

Let (x,. y,) be the coordinates of the end point of the section of constant
curvature. Then

Xy = Xy + Rcos 8,
)'.=)’g-RSina,

Making the small angle assumption and substituting from equations
(3.3.1), (3.3.3), and (3.3.4),

g = —vz'— + g:—
] (3.3.6)
J Ve V

)..=_€_+ z- 3

Finally, let (xs, ys) be the end point of the spiral transition from curved
back to straight guideway. Then,

Xy = Xy + 0y
Vs = ¥ T Xy

Substituting from equations (3.3.2) and (3.3.6),

Xy =y = %“-—4— -‘{— + Vv (3.3.7)

The length of the section of constant curvature is R(w/2 — 26,), there-
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fore, using equations (3.3.1), (3.3.3), and (3.2.7), the total length of curved
guideway is

Curved Guideway Length = R (7/2 — 24,) + 2V

=TV
>a,t Vv (3.3.8)

Thus, the addition of a spiral transition adds a length V (in units of
seconds) to the total length of curved guideway.

3.4 Transition to an Off-Line Station at Constant Speed

Inthis section, the theory of section 3.2 is applied tothe design of a constant
speed transition from a mainline guideway onto a parallel guideway sepa-
rated by a distance 4 from the mainline. The transition, shown in figure 3-2,
is made up of four constant speed spirals of the type given by equation
(3.2.11), connected so that the slope and curvature are everywhere con-
tinuous. We let the total length of the transition section in the direction of
flow be denoted by L. ‘

The section of the transition shown in figure 3-2, between x = 0, and x =
L/4, is computed from equation (3.2.11) without transformation. The cur-
vature is a maximum at point x = L/4 and vanishes at points x = 0, L/2.
Therefore, the transition section from x = L/4 to x = L/2 is a mirror image of
the first section about the perpendicular bisector of the line connecting the
origin with the point x = L/2, y = H/2. The section from x = L/2to x = L is
obtained by rotating the first half of the transition 180 degrees in the plane of
the paper about the midpoint.

i H
} . - v - [ = —
’ff‘ = .'_\.X.f .. z pul X5 X = = "- , ’;"' {'V A JJ'«“
¥ ,( ol \-'J' R, /.' > Ve
4 ! J‘f—'!_
Hl 2
M
2 y
1 ] I ] -
% L L N e
a 2 “

Figure 3-2. A Spiral Transition to a Parallel Line at Constant Speed
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In the derivation of the relationship between L and A, itis convenient to
use the dimensionless notation defined by equations (3.2.12). Thus, let

= A
2V,
and } (3.4.1)
L= L
A

and consider the dimensionless form of the equation for the spiral, equation
(3.2.14). From figure 3-2, and equation (3.2.14), we see that at x = L4

& B
kil

Substituting x = [/4, we have

- 3
H = _l6 - (3.4.2)

Since equation (3.4.2) and equation (3.2.14) contain only the dimension-
less values and no parameters, the transition spiral scales in proportion to
the parameter [2V%/J,, that is, in proportion to V32, Substituting equations
(3.4.1) into equation (3.4.2), we find that

13
L= v( %’1 ) 47 (3.4.3)

Thus, for a given value of H, L increases in proportion to V.

The maximum magnitude of the normal acceleration a, occurs at x =
L/4 and at x = 3L/4. Therefore, in equation (3.2.3), substitute s = x = L/4,
and then equation (3.4.3). We obtain

173 i :
"*‘%'(1"’#) ; Sel (3.4.4)

Hence, for given maximum values of J, and a,, the maximum permissi-
ble value of H is

Hone = z.ﬁ‘u_ =2a, . - (3.4.5)

in seconds units if (@) sax = J. If a lateral displacement larger than Hy,y is

.
.
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required, a straight section must be inserted at x = L/2 in figure 3-2. From
symmelry, the slope of the straight section is 2H/L. If H . is substituted
into equation (3.4.3) and a, = J,,

Leoax = 4V (3.4.6)

The minimum radius of curvature is found by substituting equation (3.4.4)
into equation (3.1.13). Thus

Ry = v2| -2 - (3;!7)
min ﬁ.ﬁ -

3.5 The Constant Deceleration Spiral

This case is defined by the equation

%‘{ = —-q (3.5.1)

Substituting equation (3.5.1) into equation (3.1.11) gives, J, constant,
the equation of the constant deceleration spiral. This equation can be
integrated if we note that, by substituting equation (3.1.7) into equation
(3.5.1),

ds = V4V (3.5.2)
a
from which
B2 (3.5.3)
and
o _ o d | db
ds TV dv( Vdv) (.5.4)

Thus, with V as the independent variable, equation (3.1.11) becomes

d de
@V 3 (vJV) MR

Yo -
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If we multiply both sides of this equation by V, the left side becomes a
perfect differential:

i (v d)- ar 6.5

The initial conditions at s = o are V = V,and 8 = dé/ds = 0; thus, from
equation (3.5.3), dé/dV = 0. Therefore, the integral of equation (3.5.5) can
be written

o J
B=- ( V‘i,l- l) (3.5.6)

Integrating again, & can be written in the form
A A A
o=t G 657

By substituting equation (3.5.6) into equation (3.5.3), we obtain the
curvature of the decelerating spiral.

_.l._- d_o.-.._L!L H_—] 3
R ds 2aV, V (v' .58

in which R is the radius of curvature. Using equation (3.1.13), the normal
acceleration is

a = — V(w |) (3.5.9)

With the limit value of a, substituted, the minimum value of V is the
positive root of equation (3.5.9) solved for v :

_ aa Voly | _
Vnin - 7;”— l + aa, 1 (3.5'0)

Substitution of equation (3.5.10) into equations (3.5.7) and (3.5.8) gives
the maximum value of 8 and the minimum value of R, respectively.
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As anexample, let J, = a, = a =2.5 m/s?, and V, = 10 m/s. Then, from
equation (3.5.10), V., = 7.81 m/s. Substituting V,,,, into equations (3.5.7)
and (3.5.8),

Opax = 7.05°and R, = 244 m

In practical cases, speed is decreased to obtain the minimum radius of
curvature, and hence the smallest requirement for clearance. In this case,
both a, and R, are specified, and V,, is found from the equation

Vs = J@uRon (3.5.11)

Then, from equation (3.5.9), the velocity at the beginning of the spiral
transition should be

m 3.5.12

that is, the line speed should be slowed to V, before entering the spiral.

The length of the decelerating spiral is found by integrating equation
(3.5.2) with the initial condition s = 0 when V = V,. The result may be
written

g = 2!} (l - —“ff) (3.5.13)

Then, in the above example, the maximum length of the spiral is
obtained by substituting into equation (3.5.13) the valuesV, = 10 m/s, V =
7.81 m/s, and @ = 2.5 m/s®. Then 5, =7.8 m.

The equation of the spiral is found by substituting equation (3.5.7) into
equation (3.2.8) in which we substitute equation (3.5.2). The resulting
equation can be integrated in dimensionless form if we define the following
dimensionless variables:

g = 45:'-,1 (3.5.14)
v
f = .V.— (3.5.15)



X= avV}
(3.5.16)
Y= avVi
Thus,
1 ] 1=t |
X= Iv".cos _ﬂfe_ & £ de
(3.5.17)

y-l' sin _ﬁ.“_gi)'_ £ de¢

¥ivy

If it can be assumed that #/2 is much less than I, these equations
become:

X = J'I'.'.f d‘ = 15 ([ - %)
(3.5.18)

3

Y= (- grde - ‘;4(1 -VL.)

Vivy

Solving the first of these equations for V/V, and substituting into the
second, we have the equation of the decelerating spiral for small angles:

Y = §-[| -1 - m'-ﬂ]' (3.5.19)

The specification of a right angle curve with deceleration is found by
following the procedure of section 3.3, in which the coordinates of the
endpoint of the spiral are found from equations (3.5.18) and the endpoint
angle from equation (3.5.7), both for the appropriate value of V,,/V,.

3.6 The Lateral Response of a Vehicle due to a Sudden
Change in the Curvature of the Path

In some cases, spiral guideways have been found to be more expensive to
manufacture than guideways of constant curvature. Therefore, it is useful
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Figure 3-3. A Sudden Transition from a Straight to a Curved Guideway

to know the conditions under which spiral sections can be approximated by
sections of constant curvature. The problem reduces to the determination
of the lateral response of a vehicle due to a sudden change in the curvature
of the path,

Consider a vehicle of mass m moving to the right in figure 3-3 with speed
V. The vehicle has a lateral suspension system with spring constant &,
damping coeflicient {, and maximum permissible lateral deflection 8,,. At
the point ¢ = 0, the guideway curvature suddenly changes from zeroto I/R.
For ¢ greater than 0, the acceleration of the vehicle (and passengers) in the
direction normal to the curved pathis & — V¥R in which & is the deflection
of the lateral suspension system, positive if away from the center of
curvature as indicated in figure 3-3. The lateral equation of motion can be
written in the form

8+ 2wd + '8 = a, (3.6.1)
in which
- = @ (3.6.2)
and
o = %’_ (3.6.3)
Also, let

o =wl-_ (3.6.4)
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Then, subject to the initial conditions 8(0) = 8(0) = 0, the solution to
equation (3.6.1) is

a-w’[l-e"" (—1;_‘—!smml+cosmrﬂ (3.6.5)
Differentiating,

5= :"T&j e*sin o't (3.6.6)
b= ae ( cos w't — _v?]_-‘?_? sin w'l) (3.6.7)
R a.ue""[ i:,r:—_igl sin @'t + 2{ cos m] (3.6.8)

§ -~ a.m‘c"“[( I = 4% cos o't - _‘(_‘S_EL fl—-_!? oo “":I ¢.69

Note that the lateral acceleration of the vehicle is 8 — a,, whichis zeroat r =
0. .

The maximum value of 8 occurs at the first zero of 3 for 1 greater than 0,
which, from equation (3.6.6), occurs at 't = . Substituting this value in
equation (3.6.5),

8y = aJut (1 4 e ™Vini) (3.6.10)

With &, given by design, k should be chosen for a given m (see equation
(3.6.2) s0 that

Wt = -5: (I + eV ) (3.6.11)

in which { is yet to be determined. By setting § = 0, solving for w't, and
substitution into equation (3.6.7), it can be shown that the maximum lateral
acceleration of the passengers, |6 = a |, occursat ¢ = 2, 5. Thus, to satisfy the
comfort criterion, we need to compute the maximum value of jerk, & The
maximum value of the function 8w’r) corresponds to the first zero of §.

% True f Yourd If S(r/n,' Cne >, If
Y03, Qmop = r¥/7a,
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From equations (3.6. 8)and(3 6.9), we see that if { =0, &0) = 0 and the first
maximum in 8 occurs at 't = /2. As the dampmg ratio increases, the first
zero of 8(w't) moves to earlier values of @'t until at { = 0.5 the first zero of
8(w'f) occurs at @'t = 0. For { slightly larger than 0.5, both terms in
equations (3.6.9) are negative from w’r = 0 10 a value slightly less than 't =
m. But, because of the exponential decay term, the value 3(0) is greater than
at the first zero of 3 for w’s greater than 0. At { = /3/4, the first zero of 5 has
moved back to w't = w2, but again 3 (0) greater than 3 (=/2). Thus, for 0 <{<
¥4, the maximum value of 3w's) is found by setting &(w't) = 0. From
cquation (3.6.9), we then find

tan o't = _ﬂ;j',_( —%:—jg-) (3.6.12)

If we use the trigonometric identity cos 8 = (1 +tan*$) """ and substitute
equation (3.6.12) into equation (3.6.8), the bracketed term reduces to unity,
and the maximum jerk becomes

oo e T (425

- ¢ 3-ap
(3.6.13)
If { > V4, the maximum jerk is
8(0) = J, = 2a.w{ (3.6.14)
In general, let
o = a0 F(Q (3.6.15)

in which the meaning of F(3) is found from equation (3.6.13) or (3.6.14).
Then square equation (3.6.15) and substitute for «* from equation (3.6.11).
The results may be written

Ji = % (l + c-wﬂ) FYQ) (3.6.16)

We wish to know how small the radius of curvature, R, can be before J,,
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reaches the comfort limit. Therefore, solve equations (3.6.3) for R and
substitute for a, from equation (3.6.16). The result may be written

Vv

R= -Jagin—

D (3.6.17)
in which

0= eo( 2]

-2 S = [ 1-40
exp[ 3—‘,1.__‘—5 tan [‘L‘ (3_4{1 )]] 0 ==%)

13
L 3
i [' + exp (Tl——_%—)} o= == e

The choice of { depends on the degree of damping desired, which canbe
measured by the ratio of the second extremum in the function [8(w'f) — 8(=)
to the first. Thus,

Omy | 82w - 8(=) | L 3.6
5, 8(m) — 5() | = e ime) °eP

The function 8,,/8,,and G({) are plotted in figure 3-4.

Figure 3-4 together with equation (3.6.17) show that the radius of
curvature that can be negotiated for a given comfort criterion, given by J,,,
is minimized if { = 1/3° At this value, the ratio 8,,,/8,., = 0.329, which would
appear 10 be a satisfactory degree of damping. The minimum value of G(D)
is G(1/3) = 0.966. Therefore, from equation (3.6.17),

Rou = 0.966 7.,.,!;—_[,,- (3.6.20)

_‘_(:' L, 2330
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Figure 3-4. Lateral Damping Functions

As anexample, let V= 10 m/s, J, = 2.5m/s*, and §,, =~ 0.05m. Then R\, =
142 m. Substituting into equation (3.6.3), a, = 0.70 m/s* which is less than
the acceleration limit (@) .y = J. Therefore, the curve is determined by
the jerk limitand Ris givenby equation (3.6.20). In general, Risdetermined
by the jerk limit, not the acceleration limit if

JtQa 13

AL < (adyr Tl 14

But J, = _(a:;.':,. in units of seconds. Therefore

-

87 < 0.966 J.17

s
S < 0,901 J,,

if the limit is determined by jerk. Thus, if 8, is less than approximatcly:i:
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meter, certainly always true, the radius of curvature is limited by equation
(3.6.20).

An additional interpretation of equation (3.6.20) is found by solving it
for J,..

‘."3

W (3.6.21)

Jo = 0.949

Fora given lateral suspension system defined by 8, and £, and given abrupt
changes in curvature characterized by R, equation (3.6.21) shows that the
uncomfortableness of the ride, characterized by J,,. worsens as the cube of
the velocity.

Suppose a vehicle is on a path of curvature I/R,, and suddenly enters a
path of curvature 1/R,, in which R, < R,. Then, if R is given by equation
(3.6.20), the minimum value of R, that will meet the comfort criterion is
found from the equation

R S
R. R, R
from which
RR 22)
R = R. + R (.62

If R, is substituted into equation (3.6.3) and the computed value of a. is less
than the limit value, equation (3.6.22) determines the curve, Suppose we
wish to design a right-angle turn in the guideway in circular arc segments so
that the criterion on maximum lateral jerk is always satisfied. Then, from
equation(3.6.22), the radius of curvature of successive segmentsare Ry ~ R,
R/2, R/3, R/4, and so on. In practice, however, it is unlikely that more than
two different curvatures will be used.

3.7 Superelevation

The minimum radius in a turn at a given specd can be reduced by means
of superelevation. Consider a superelevated, curved guideway, a cross
section of which is shown in figure 3-5 at & point at which the speed is Vand
the superelevation angle is ¢. The resultant of the vectors representing the
centrifugal force a,, and the gravity force g, makes an angle ¢ with the
normal to the floor of the vehicle. Jtis the angle ¢ that is spccnf ed to meet
comfort criteria. From figure 3-5 we have

Ge =glan (g + ¢) = gle + ¢) (3.7.hH
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dgure 3-5. A Superelevated Guideway

in which the small angle approximation is sufficiently accurate.
From equation (3.1.13), the minimum radius of curvature is given by

) 2
v v -
k= an %0y L
ST

gfeen L v
if a, is the largest permissible value of this quantity. Substituting from
equation (3.7.1),

v:
. —— .
R gly +-€) G.7.2)

in which ¢ is the maximum permissible lateral acceleration in a curve
divided by g.

The permissible angle e is limited by the possibility that the vehicle
might have to stop on curves to a value of about 12 degrees or 0.2 radian.
With standing passengers, ¢ is limited to about 1/8 radian, and if all

passengers are seated to about 1/4 radian. Thus, with superelevation the

minimum radius of curvature can be reduced by the ratio

r 17 '_»4'

3.7.3
Rovs ieeked)

f.ia

- 1,87

For standing passengers and ¢ = 0.2 radian, ¢/¢ = 1.6, and for seated
passengers, ¢/¢ = 0.8. Thus, the reduction in Ry, is very significant and
worth pursuing. In designing a superclevated curve, the spiral (or varying
curvature) transition section must be twisted as well as curved in the
horizontal plane. The angle of twist is zero at the zero-curvature end of the
spiral and increases uniformly to a value of ¢ of about 12 degrees at the end
of maximum curvature.
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3.8 Summary

In the layout design of almost every guideway transit system, some sec-
tions of curved guideway are necessary. The design of specific systems
must therefore be delayed until the student has an appreciation of the
design of transitions from straight to curved guideway. These transitions
must be designed so that the magnitude of lateral motions are acceptable
from the standpoint of comfort. Comfort depends on keeping the maximum
lateral acceleration and rate of change of acceleration (jerk) below specified
values. This results in the requirement that transitions from straight guide-
ways to guideways of constant curvature must be separated by sections of
constantly increasing curvature or spirals. If the speed is constant through-
out the transition, the spiral section can generally be approximated by a
simple cubic given by equation (3.2.11). Two important applications of the
cubic transition are derived: (1) the right-angle curve, and (2) the transition
toa parallel guideway, such as used in entry into an off-line station. In both
cases enough information is given so that each of these types of curves can
be specified. From the equations derived, it is straightforward to derive the
transition between two straight lines of arbitrary angle.

Curved guideway costs more than straight guideway, therefore it is
desirable to reduce the length of curved guideway wherever possible. In the
transition to an off-line station, this is possible if the vehicle starts to
decelerate before entering the transition, because sharper curves can be
negotiated at the same level of comfort at lower speeds. Thus, if the
transition curve is designed to take advantage of the lower speed, it will be
shorter. The solution to this problem is lengthy, butitis included because of
its importance in reducing guideway cost in certain applications. Instead of
a simple cubic, the transition curve is given by the more complex expres-
sion, equation (3.5.19).

Spiral guideway can be more expensive to manufacture than guideway
of constant curvature, therefore it is useful to know under what circum-
stances it is possible to approximate a spiral section by one or more
scctions of constant curvature. Such a transition may be possible within the
jerk-comfort limit if the lateral suspension system of the vehicles can
compensate for the lack of a spiral transition. Thus the problem is solved by
considering a vehicle withgiven lateral suspension dynamics negotiating an
abrupt change in curvature in the guideway. For the case of a linear
spring-dashpot suspension system, the solution is worked out in detail.
Equation (3.6.17) and figure 3-4 show that the greatest change in curvature
can be permitted if the damping ratio if the lateral suspension system is one
third. With this damping ratio, the minimum tolerable radius of curvature
is given as a function of line speed, maximum tolerable jerk, and maximum
suspension system deflection by equation (3.6.20). This equation possesses
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an interpretation of more general interest: It shows that, with a given
change in curvature and a given suspension system, the maximum jerk
experienced by the passengers is proportional to the cube of the speed. If a
change in curvature is considered as a typical imperfection in the straight-
ness of the guideway due to manufacturing tolerances, erection tolerances,
or ground shifts, then in general the discomfort of the ride in terms of jerk
worsens in proportion to the cube of the speed, and indicates why it is so
much more important to keep the track straight at high speeds. The re-
quired tolerances are relaxed if the lateral deflection capability of the lateral
suspension system is as large as possible, and if the damping ratio is
properly chosen. More analysis is nceded to determine if the optimum
value of one third computed for the case considered would be different with
different kinds of imperfections.,

Finally, superelevation as a method of reducing the length and radius of
curves is considered in enough detail to provide necessary design informa-
tion. It is shown that the reduction in the radius of curvature practically
possible is a factor of about 1.8 for scated passengers, and 2.6 for standing
passengers. Thus, superelevation is well worth considering.

Problems

“ 1. A scated-passenger guideway vehicle system is to be designed to
permit right-angle turns at constant speed on city streets for which
clearance available for the guideways is 40 m to the centerline of the
guideways, that is, if two sets of paraliel lines 40 m apart are drawn
perpendicular to each other, the centerline of the guideway in making a
right-angle turn must lie inside the boundaries of these lines.

a. Sketch the curve and label all parts.

b. With no superelevation, what is the maximum velocity for which
the curve can be designed.

c. Assuming the maximum velocity, compute the coordinates of the
endpoints of the transition segments with respect to the street
corner intersected 45° through the curve, and plot the curve.

d. If the normal line speed is 20 m/s, what is the deceleration length

that must be allowed for before the curve is negotiated.

¢. Whatis the length of each spiral section, and what is the length of
the section of constant curvature? (Make all length computations
to the nearest ¢cm.)

2, For aseated-passenger vehicle system in which the line speed is 20 m/s,
design a constant velocity transition to a parallel guideway ten meters
away.
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a. Make a careful sketch of the transition and label all parts. (Note
comment following equation (3.4.5).)

b. Compute the coordinates and slopes of all points between transi-
tion sections and lay out the transition curve on graph paper
making use of symmetry properties where possible.

¢.  Write an equation for the total length of the transition in terms of V,
H, and a,, and compute the length. By what percentage is the
length greater than the maximum length of an all-spiral transition at
the same velocity?

d.  Whatis the percent error in length of the transition as computed by
equation (3.2.10) instead of by the exact formula (3.2.9). (Hint:
integrate the second term in the expansion of cos 6.)

. With standing-passenger vehicles, a constant deceleration spiral is
designed to turn the guideway through the maximum possible angle
with Vg = 10 mvs.

Compute V.

Compute fy..

Compute the length of the spiral section.,

Compute the x — y coordinates of the end point.

What is the length of a constant velocity spiral with V = V, and the
Same oy ?

penTE

. For standing-passenger vehicles with lateral suspension systems hav-
ing @ maximum permissible deflection of 10 ¢cm and an optimum damp-
ing ratio, the line speed is 15 m/s. Itis desired to build a right-angle turn
using a minimum length of curved guideway, using segments of two
different constant curvatures, and maintaining constant line speed.

a. Sketch the curve and label all parts.

b. Iftwocycles of oscillation of the lateral suspension system must be
completed before entering the second segment, what is the length
of each segment.

What is the total length of the minimum length right-angle curve?
What are the coordinates of the endpoint of the total right-angle
transition with respect to the initial point? (Hint: Follow the deri-
vations of equations (3.3.2) to (3.3.7.)

ok

. Assume the constant curvature section of the transition curve of Prob-
lem 1is superelevated a maximum permissible amount. With the same
velocity as computed in Problem 1, how much narrower could the
width of the streets have been as a percentage of the given width? How
much higher could the velocity have been with the same width of
streets as a percentage of the velocity with no superelevation?



