Performance Relationships
for Specific Systems

In this chapter, automated transit systems are classified and studied ac-
cording to the geometry of the lines. There are four classifications: shuttle,
loop, line haul, and network. All transit systems are composed of one or
more of these types. Hence, the performance of any transit system may be
studied using the relationships developed.

4.1 Shuttle Systems

Simple Shurttle

A simple shuttle is diagrammed in figure 4-1. Only one vehicle can be used,
and it follows the velocity profile of figure 2-3 in moving from one station to
the other, The distance D, between stations is measured to the center of the
stopped vehicle. For a given V;, the minimum possible value of D, is the

value of D in figure 2-4 for the case 1, = 0, or twice the stopping distance
given by equation (2.2.6).

The travel time from one station to the other counting the dwell time 1,
at cither station is derived in section 2.4 and is given as 1, by equation
(2.4.3). Because V, appears in the denominator in the second term and in
the numerator in the third, a value of V, exists that minimizes f,. By
differentiation, it is seen that ¢, is minimum if Vi = D,a,,. But, discounting
jerk, D, = Vj/a,, is twice the stopping distance. Thus, ¢, is minimized if the
vehicle accelerates to the midpoint between stations, then decelerates to a
stop. As D, increases, the corresponding value of V, to minimize f, quickly
becomes to large to be practical, and minimum ¢, cannot be attained.

D, .
= [ r.‘LL

Figure 4-1. A Simple Shuttle
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Three useful characteristic times for shuttles can be derived from 1,:
T,: The time to wait for a vehicle called from the other station

T,: The average wait time if the vehicle continuously shuttles back and
forth and waits 1, seconds at each end

T;: The effective time headway

These quantities are given by the following equations:

Ty=t,~-tp= LV):__+ —V:_+ I second 4.1.1)
T.=T,+tp=1, 4.1.2)

T, = 2T, (4.1.3)

in which we have assumed a,/J, = | second because this value gives the

maximum value of J, permissible from the standpoint of comfort.
The capacity of a shuttle in terms of the effective number of vehicles per
hour passing a fixed point in one direction is

w' © Capacity =—3600_ 1800V, _ (4.1.4)

T, D, + Viltp + —‘;l;— + 1)

Equations (4.1.1) through (4.1.4) are plotted in figure 4-2. The upper
right-hand quadrant is a plot of equation (4.1.1) for a,, = 1.25 m/s*, This
value is appropriate for standing-passenger vehicles. It is used for shuttles
because the round-trip time for a shuttle is long enough so that it is
necessary to accommodate all the people who wish service on a particular
trip, but short enough that provision for seating is unnecessary. Also, with
no scats the vehicle can be used for transporting beds, food carts, and other
objects as well as people. The lines of T, versus D, terminate on the left end
at the minimum value of D, possible for the given value of V,. The envelope
of the end points of these lines is a parabola.

The upper left-hand quadrant is a plot of equation (4.1.2) for several
practical values of 1. The lower left-hand quadrant is a plot of equation
(4.1.3), and the lower right-hand quadrant shows equation (4.1.4). Plotted
in this manner, all of the necessary performance characteristics of a shuttle
can be understood from a single chart. The dashed lines in figure 4-2 provide
an example for the case D, = 600 m, V, = 10 m/s, and 1, = 20 s, Enter the
chart at D, = 0.6 km and move up to the curve corresponding to V, = 10
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Figure 4-2. Characteristic Times for and Capacity of Simple Shuttles

m/s. Move left to the T, ordinate and read T, = 69 5. Continue left to the
diagonal line corresponding to #, = 20 s and turn 90 degrees down to the T;
axis and read T, = 89s. Continue down to the diagonal line labeled T, = 27,
and turn right to the T, ordinate. Read 7, = 178 s and continue right to the
hyperbola labeled 3600/T,. Turn down to the capacity abscissa and read

20.2 vehicles per hour.
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Simple Shuttle With Intermediate Stations

Consider the configuration shown in figure 4-3, In the time and capacity
relationships derived, we will assume there are n stations separated by
arbitrary distances D,,, each greater than the minimum possible value
shown in figure 4-2. Such a configuration is exactly analogous to an
elevator and can be referred to as a **horizontal elevator.”” It would operate
in an on-demand mode exactly as an elevator.

The time characteristics can be found from equations (4.1.1 through
4.1.3) and figure 4-2. The time to wait for the vehicle called from any other
station nonstop is the value of T, in figure 4-2 corresponding to the distance
D, from which the vehicle is called. If, however, the vehicle makes m
intermediate stops each with station delay 1, the wait time is the sum of the
values of T, corresponding to the m + 1 station spacings between m
intermediate stops plus mz,. If the D, are all the same, the wait time is

Tow = mip + (m + |)( —31— + Vi, 1) (4.1.5)
L (2P

The charactenistic times T, and 7, have meaning only if the vehicle
continues to shuttle back and forth with an average station delay #,. Then,
for an n-station system

L= D, vV
_ L
Tg‘ ;‘ (’p + _VL + d + l)
B D, Vi
=(n-1) (t,, + VL~ + an - l) (4.1.6)
=(n— DT,

in which D,__is the average station spacing. and T is found from figure 4-2
corresponding to D,,_. The effective time headway 7, = 27, _asin cquation
(4.1.3). The effective capacity is the value given in figure 4-2 corresponding
to D,, divided by n — 1.

PSS S

Figure 4-3. Simple Shuttle with Intermediate Stations
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Figure 4-4. A Two-Vehicle Shuttle

Two-Vehicle Shuttle

The major advantage of a simple shuttle is that only one guideway is
required. Its major disadvantage is that with only one guideway, only one
vehicle can be used, thus limiting capacity. Greater capacity without the
expense of a double guideway the entire length can be obtained by using a
double guideway around one or more intermediate stations. The Ford
Motor Company has used such a configuration in their installation at
Bradley Field, Hartford, Connecticut and at the Fairlane Shopping Center
in Dearborn, Michigan.

The configuration is in general as shown in figure 4-4, in which it is
assumed that D, and D,, may differ, and the middle station uses a central
platform. The length of curved guideway is minimized if it is designed
according to the theory of section 3.5.

The characteristic times for a two-vehicle shuttle are each one-half the
values for a three-station simple shuttle, given by equations (4.1.5) and
(4.1.6). The capacity is double that of the three-station shuttle.

Four-Vehicle Shuttle

Consider the concept of figure 4-4 with two intermediate stations, dia-
grammed in figure 4-5. At time zero the four vehicles are at the two central
stations, with vehicles 1 and 3 headed left, and vehicles 2 and 4 headed
right. The vehicles advance to new positions in the time interval £,, where 1,
is given by equation (4.1.2) with D, equal to the largest of the three station
spacings shown in figure 4-5. In the first time interval (z = O to 1 = 1),
vehicle 1 can move to the left end station, and vehicle 4 to the right end
station. Only one of vehicles 2 and 3 can move. In the table, the convention
is adopted that the vehicle with the lowest number takes priority. Thus, in
the first move vehicle 3 waits while vehicle 2 passes the middle segment. In
cach time step, the vehicle which must wait is encircled. We see that eight
time steps are needed to bring the vehicles back to their original positions,
and that each of the four vehicles waits out one time step twice.
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Figure 4-5. Motions of a Four-Vehicle Shuttle

We see that the period of motion is 8, and that four vehicles pass a given
station in a given direction in 8¢, seconds. Therefore, the effective time
headway between vehicles is T, = 21, exactly the same as for the simple
shuttle (see equation (4.1.3)). Consequently, the capacity is also the same,
and is given by figure 4-2.

A similar analysis assuming more than two intermediate stations shows
that the capacity remains the same as for a simple shuttle. Only with the
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shuttle. and in that case by a factor of two. The advantage of shuttle
configurations with more than one intermediate station is not to increase
capacity, but to keep the capacity constant while increasing the length of
the line. Without the intermediate stations, figure 4-2 or equation (4.1.4)
shows that the capacity drops rapidly with D,. As an example, consider a
simple shuttle in which V, = 10m/s, @, = 1.25nvs?, and 1, = 108, Thenif D,
is doubled from 300 m to 600 m, the capacity drops from 36.7 vehicles per
hour to 22.8 vehicles per hour, or by a factor of 1.6.

4.2 Station Throughput

The capacity of each of the systems discussed in the remainder of this
chapter is limited by the number of vehicles or trains per hour that can
move through a station, that is, the station throughput. In this section the
term vehicle in general refers to cither a vehicle or a train. For the purpose
of this section, stations can be divided into two types: (1) The common type
in which the vehicle flow through the station is unidirectional; and (2) the
end-of-the-line station in which the vehicles leave by backing up and then
switching to a second line.

Unidirectional Flow Station

Analysis of station throughput is aided by consideration of the distance-
time diagrams of two successive vehicles as they pass through a station.
Figure 4-6 shows such a diagram for a unidirectional station. The two
velocity profiles are assumed to be identical in shape and are as defined in
chapter 2. The line velocity, Vy, isthe slope of the distance-time line before
deceleration begins. The length of each vehicle or trainis L, the station delay
of vehicle 1 is tp, and the two vehicles are assumed to be separated in time
by aninterval T, The problem isto determine how the minimum permissible
time headway is related to other essential parameters.

Attention is focused on the trailing time line of vehicle 1 in figure 4-6,
and on the leading time line of vehicle 2. Consider the trailing time line of
vehicle 1 in a reference frame (x, ) with the origin in time at the moment
vehicle 1 begins to leave the station. Then, in a reference frame (x', ') in
which time and position move backwards and in which the origin in time is
at the moment vehicle 2 stops in the station, the position-time diagram of
vehicle 2 is identical to that of vehicle 1. To find it in reference frame x, 1, we
need only find the position-time diagram of vehicle | in x = t coordinates
and transform it by means of the equations

w»L-x
(4.2.1)

t'=T=tp 1t
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Figure 4-6. The Distance-Time Diagrams of Two Successive Vehicles
Entering and Leaving a Station

Generally T will be an order of magnitude or more longer than terms in
the position-time equations dependent on jerk. Therefore, in this analysis,
jerk will be neglected. Then, if aisthe acceleration, the position-time line of
vehicle 1 is

n= o @.2.2)
and .
X, = at 4.2.3)
for0=t= Vja.Fort>Vj/a
fm Vit - ke (4.2.4)
Therefore, the position-time line of vehicle 2 is
h= o 0= VJa

-Vt - g_ ¢ > Vya
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Substituting these equations into equations (4.2.1),
xg =L —alX(T— tp, = 0=¢ = V/a
(4,2.5)
wL-~V(T~tp-0+Vi2a 1 >V/a

If T~ 1, is greater than or equal 1o 2V,/a, the closest separation between
x, and x; at & given t occurs when the velocities of both vehicles are V.
Thus, x, — x, is found by subtracting the second of equations (4.2.5) from
equation (4.2.4) to give

Axpin = VAT — 1p) = Vija - L T~ 1tp=2VJa (4.2.6)
The velocities of both vehicles are equal to V;, when x; — x; = Axg,.
KT -1 x_s .lo_@_s than 2V, /a, the closest separation occurs at velocities
less than V;. Thus, Ax, is found by subtracting the first of equations
(4.2.5) from equation (4.2.2), and
Axpin = afl2 = L + /2T = 1, = 1P

In equation (4.2.6), r does not appear; however, in the present case Ax,,, is
a function of time. The minimum value occurs when

dAx 0= ar - aT -1y -
a 0=ar~al~1,-1)

that is, when
I
¢ 2
Thus
Atwa = AL BE —  7- 4 <2V/a 4.2.7)

The minimum permissible separation between two transit vehicles is
dealt with in detail in chapter 7; however, for analysis of station flows it is
adequate to let

r |
Aty = 0 (4.2.8)

in which V.., is the velocity of the trailing vehicle at minimum separation,
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and a, is the emergency deceleration rate. Thus, from equations (2.2.6),
V2,./2a, is the stopping distance of the trailing vehicle at minimum spacing
if jerk and control time delay are neglected. The constant k, called the
safety factor, is the ratio of minimum separation to stopping distance. The
available stopping distance is less than Vi./2a, because jerk and control
delay have been neglected, but more because the lead vehicle cannot stop
instantly.

If equation (4.2.8) is substituted into equation (4.2.7), in which at Axy,

V.. - a(T - 'ﬂ)

and the result is solved for T = 1, we have

T—-1p= ZJ;(‘—_-W (4.2-9)

T —tp=2Vja. U T — 1= 2V/a, Van = Vi Then substitute equation
(4.2.8) into equation (4.2.6) to give

PRPI . ka
T Ip —V;'— + r (l + E-d‘ ) (4.2.10)
When T — t, = 2 Vy/a, equations (4.2.9) and (4.2.10) give the same result:
- V| - ke
L - 1 3a, 4.2.11)

If L is greater than the value given by equation (4.2.11), equation (4.2.10)
holds; and if less, equation (4.2.9) holds.

For train systems, k is generally taken equal to at least two, and a, is
chosen only slightly greater than a. Therefore the dimensionless parameter
kal2a, is approximately equal to 1 and equation (4.2.10) holds for trains of

all lengths. If equation (4.2.10) is differentiated with respect to V, and the
result is set equal to zero, itis seen that T reaches a minimum value when

aL H}
V, = (ﬁ: ) (4.2.12)
in which
. % (4.2.13)

Substituting equation (4,2.12) into equation (4.2.10),
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2
Tom = Ip + 2[(-1 *-a‘!&] (4.2.14)

Fora ten-car train of 20-m cars, L = 200 m, and witha = 1.25 m/s*, 7, = 155,
a = 1, Ty = 50.8 5, and the corresponding value of V, is 11.2 m/s. This is
generally felt to be too low a line speed to give an adequate average speed.
If V= 25 m/s with the same values of the other parameters the headway
increases, from equation (4.2.10), to 63 s.

In order to present the results graphically, introduce, in addition to
equation (4.2.13), the dimensionless parameters

Tw (T~ tg) - (4.2.15)
L
= - La
L i (4.2.16)
Then, equations (4.2.9) and (4.2.10) become
ren L 1<
4.2.17)
= L + 1+ a r=2

Note from equation (4.2.9) that at shorter headways, the headway nto a
station is independent of line speed. Equations (4.2.17) are plotted as the
solid Tines in figure 4-7 for a family of values of a. Typically a, lies in the
range from a to 2a and k ranges from one to two. Therefore, the curves
corresponding to a = % to 1 are in the practical range. If a is greater than 1,
the second of equations (4.2.17) holds for the whole range of positive values
of L. Using equations (4.2.12) and (4.2.16), one can see that asa function of
Vy. the second of equations (4.2.17) reaches a minimum when L=1+a.
The dashed line in figure 4-7 connects these minimum points.

End-of-the-Line Station

Consider a station at the end of a transit line, which to save space and
conserve on track length is arranged so that a vehicle or train entering it
must back up onto a parallel line to continue in the opposite direction. A
diagram of the station and the corresponding position-time diagrams are
shown in figure 4-8, As before, L is the length of the train, #p is the station
dwell time, V; isthe line speed, and ais the deceleration rate. In the present
case, the position-time line turns downward in the reverse direction as the
train backs up onto a parallel track. Let L. be the extra distance the train
must move backward, in addition to the train length L, before itis out of the
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Figure 4-7. The Relationship between Minimum Permissible Headway

through Stations and Vehicle Length

way of the next train attempting to enter the station, as shown in figure 4-8.

The minimum L, can be found from the theory of section 3.4. For a
train, the displacement between paralle] tracks, /, is generally greater than
the value 2a, given by equation (3.4.5). Therefore, as indicated below this
equation, a straight section must be inserted between spiral segments, Its
length, using equation (3.4.6), is (H — 2a,) (4V/2M). Therefore the total
transition length is L., = 4VHES=a7H). For a, = 1.25 m/s* and, say, V
=20m's and H = 4m; L,.. = 95m. ;o< )

Consider ﬁgun: 4-8. Back-up stations are gemrally considered with
train systems in which there are up to ten cars per train. Thus, if each caris
say 20 m long, L is on the order of 200 m. The speed V, corresponding to a
stopping distance of L + L, = 295 m s

2a(L + Lyg) = 27 /s = 61 mi/h

Thus if V is less than this value, which will usually be the case, the train
begins 1o stop inside the distance L + L,,.,. Therefore, the time required to
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Figure 4-8. The Position-Time Diagram for an End-of-Line Station

stop from a distance L + L, can be found from equation (4,2.4) by
substituting x, = L + L,,,. Then from figure 4-8,

T-:n+2(ﬂ’vf:m-+ %’:) + é‘v'inn

The velocity of the train approaching the station is still V;, when its front is
L,.. from the station platform. Therefore substitute Axgy, in the above
equation from equation (4.2.8) with Vy,, = V.. Then

T=tp+ Vb (1 +a)+ - (L+ Lo (4.2.18)
a VL

in which a is given by equation (4.2.13). Equation (4.2.18) gives the time
headway between trains if the trains are travelling at a constant speed V,
when the front passes the point a distance L, in front of the platform.
After this point, the train begins slowing down.

Since V, is in the numerator of the second term in equation (4.2.18) and
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in the de.nominalor of the third term, 7{V,) possesses a minimum point. By
setting @7/aV, = 0, the minimum point is seen to correspond to

R
V= o 2L L) (4.2.19)

Substituting equation (4.2.19) into equation (4.2.18),

P S : (4.2.20)
Tae = tp + 2"% (L + L,..)

-

Consider a numerical example. If & = 2 and a, = a (typical of train
systems), fp = 15 s, and L + L,... = 230 m, T reaches the minimum value
Tai = 69.3sif V, = 17.0m/s. By comparison, from equation (4.2.18),if V,
= 22m/s, T=T71.1s,0rif V, = 12m/s, T=72.5 s, Thus a minimum headway
of say 75 s is applicable over a wide range of speeds.

In terms of the dimensionless variables given by equations (4.2.13),
(4.2.1%) and (4.2.16), equation (4.2.18) becomes

r=1+a+ 2L+ L) (4.2.21)
Comparing with equation (4.2.17), one can see that with back-up stations,

the headway increases twice as rapidly with train length at a given speed
than with flow-through stations. If V is wellabove the minimum value given

by equation (4.2.19), ‘a penalty in capacity for back-up stations can be

avoided by reducing V, as the end station is approached. Thus, in equation
(4.2.18), reduce V, enough so that T computed from this equation equals
the value computed from equation (4.2.10) with the normal V. This proce-
dure will add to the round-trip time of the vehicles but will maintain
capacity, if necessary. In determining the loop or line-haul system
minimum headway, if different values of T are found due to different
conditions at different stations, clearly the largest headway determines the
system capacity. Note that nominal headway is constant around the loop.

4.3 Loop Systems

Consider a loop transit system of arbitrary shape as shown in figure 4-9. Let
there be n stations numbered in the direction of flow, and let the distance
between the ith and (i + 1)th stations be £,,.,. Thestations may be either
on line or off line, and the vehicles may run singly or in trains.
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The Maximum Number of Vehicles or Trains

If the stations are on line, the average velocity of a vehicle or train, V,,, is
given by figure 2-4 as a function of station spacing, station dwell time, line
speed, and acceleration level; and the trip time between stations is given by
equation (2.4.3). Therefore, the time required to travel completely around
the loop is

Ty = nTe + 42 (4.3.1)
L
in which T, is the excess time given by
T =ty + Vi 4+ 9 4.3.2)
A 1
and .
(0 - z fun (4.33)

is the distance around the loop. Hence, the average velocity around the
loop is

Vag = €T (4.3.4)
With on-line stations, figure 4-6 gives the minimum permissible time head-

way T, between vehicles or trains. Therefore the maximum number of
vehicles or trains that can be accommodated is

_ ¢ _ T
Naow = T::;’;;_ = _T._:.— (4.3.5
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In practical daily operation it is doubtful if the actual number of units will be
more than half N...

If the stations are off line, the average velocity can be found from figure
2-4if D, is interpreted as the average trip length. However, the maximum
number of vehicles that can be accommodated on line is now based on the
on-line speed V;. The theory of minimum headway is developed indetail in
chapter 7, but for most purposes it can be expressed adequately by the
equation

y A :,-"’- (4.3.6)

in which L is the vehicle length and H is the minimum rear-to-front spacing
between vehicles, given by

H = Vl.’r + -‘21-(;'—— g;) (4.3-7)
- |

| Famy iy = {" L,//—& Ve 721 i -, 4

in which . is the time constant for application of the braking force that
produces the emergency deceleration a,, and a, is the failure deceleration
rate. Using equation (4.3.6) and V, for V,,, in equation (4.3.5), the
maximum permissible number of vehicles is found for loop systems with
off-line stations. Again, the practical maximum number of vehicles may be
less by a factor of two. With off-line stations, the maximum achievable
throughput of the stations is given by figure 4.8, If the vehicles operate in
platoons, L is the platoon length. Station throughput with off-line stations
has been treated by computer simulation by several investigators, the work
of which is reported in the book Personal Rapid Transit II (see note 3in
chapter 1 of this book).

The Trip-Time and Demand Matrices
For each origin station { in figure 4-9, there are n — 1 possible destinations.

Therefore it is useful in the following analysis to represent all of the trip
times in the form of a matrix.

T, T Ty ... Ty
Tll Tp Tg . T’.

Ty = Ty Te Tu .. Th
i . . . (4.3.8)
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The first index represents an origin station, and the second a destination.
Thus, for example, Ty is the time required to travel from station 2 to station
§ counting station dwell time of the vehicles but not the time the patron
must wait for a vehicle. It would be trivial to let the major diagonal terms
represent the non-trip, therefore let Ty, = Ty for k = 1 ..., n, where Ty is
the time for a complete circuit given by equation (4.3.1). Note that the
diagonal terms of the form T,,,, and T,, represent the set of n trip times
from one station to the next.

The trip time, not counting the time the patron must wait for a vehicle, is
given by equation (2.4.3), where D, is the distance between stops. Inon-line
station systems

Ty =Ty + Tiorger + oo + Ty

If we let the excess time in equation (2.4.3) due to station dwell and
acceleration be as given by equation (4.3.2), then

Ty=( = DT + Q:- (on-line) (4.3.9)

V,

In systems with off-line stations and nonstop travel from origin to destina-
tion

Ty = To +{,u. (off-line) (4.3.10)
L

Some systems have off-line stations but an elevator-type service in which
the vehicle can be called into a station on demand and the ride shared. In
these systems, T, is not unique and each case must be treated individually.

Travel demand in person-trips per hour can also be represented by a
matrix

(Dy]

in which the index i represents the trip origin and j the destination. The
major diagonal D,, represents the round trip and is zero unless recreational
trips are included. There are no simple general relationships among the D,
however, special cases such as uniform demand in which all the D, are the
same will be treated to gain some insight. Let

D, (4.3.11)

9
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and

Dy = > Dy (4.3.12)

el

By understanding the meaning of Dy, one can see that D, is the total flow in
people per hour into station i and requesting service on the system. D, is
the total number of people per hour terminating their trips at station j. In-
general the matrix Dy is a function of time; however, to determine the
number of vehicles required it can be assumed independent of time with the
terms representing the traffic in the busiest period.

In terms of Dy, the total flow in link i, i + 1 in people per hour can be
expressed in the form

nei-1 néi-2

Fun= 2 Dy+ Z Diyy * oo + Dypgyn

I=itd J=isy

a2  Ari-k-1
=S S D (4.3.13)
k=0 Juira
Cv = (Fl"‘l) T
The average line flow is e
( ' :'1"‘-.
- Fo =

Voo

it

,'T Fi\: people per hour (4.3.14)

el o *
2

&

If, in an on-line station system, the headway 7T is known, the average
number of people per vehicle (or per train if vehicles are coupled) is simply

pe = FuuT (4.3.15)

In an on-line station system, the maximum number of people per vehicle is
the maximum F,,, multiplied by T.

Ja Wt - o e e

The Average Trip Length in One-Way Loops

This is a useful concept if it is interpreted as the average weighted in
accordance with the amount of travel, that is, let

Average trip length = <L,> = passenger-miles per passenger
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<L>= S Lo (43.16)

)

Dy

i
1

in which n is subtracted from any index n = 1 + i greater than n, and

T

1
b= Exan (4.3.17)
{

T

Consider the case of uniform flow, in which all of the D are the same.
They can then be factored out of the numerator and denominator of equa-
tion (4.3.16). Thenif equation (4.3.17) is substituted into equation (4.3.16),

n Lot LI g |

1 -
L= oy 2 2 P (4.3.18)

By writing out the terms one can see that

m-14 1 l:" l‘
> % O = 2 2 Casiesm
=

Jeier k=i

in which the dummy indices have different meanings on the two sides, The
advantage of the new form is that the index i no longer appears in the
summation limits. Thus, because of the commutative property of ordinary
addition, the outer summation in equation (4.3.18) can be brought inside so
that

k.
Z 2, Ciisiasn

<L = n(n — 1) &0 j=o i=1

But

Cirsaesnr = €, (4.3.19)

| gLl
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where ¢, is the average distance between stations and it is recognized that
the result is independent of the index j. Thus

—-2 &
<L‘>"’7_E-|_2 > l:-hi'l-(l+2+3+...+n—l)
k=0 =0

But, by adding the arithmetic series 1o itself written backwards, the well
known result

1 - 2 3 4.4 (=1
+ (n-D + (n=2) * . IS S
n + n +n + ...+ n =(n—n
is obtained. Thus
<L>,= - (4.3.20)

The Average Trip Length in Two-Way Loops

If the loop system of figure 4-9 provides for flows of vehicles in both
directions, it can be assumed that cach patron will opt to travel the shortest
route to his destination. If attention is focused on one of these directions,
say the counterclockwise direction shown in figure 4-9, the demand is zero
for trips more than half way around the loop. Thus, instead of equation
(4.3.16), the average trip length is

" mal

Y X Dty
=1 i

<L> = e — (4.3.21)

in which the limit index m replaces n — 1. If the stations are approximately
equally placed and n is odd, m = (n — 1V2. If n is even, the most remote
station is just as far away in either direction. Therefore split the demand to
it in half. Thus

» *n2-1
> Dyt y + VaDusnnf c.u.n)

=1 \ =T
<L> ™ —— e - — (4.3.22)

- f+n2-1
> ( Dy + M-Dl.mm)

—
i=1 eitl
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With uniform flow and an odd number of stations, by following the
process which led to equation (4.3.20) it can be verified that

<L>, = ._(&’4"'_& (nodd) (4.3.23)

Similarly, equation (4.3.22) becomes

<L> =l " (neven) (4.3.24)
Y 4 (=1

The average trip lengths for one-way and two-way systems with uni-
form flow are summarized in table 4-1.

Table 4-1 Average Trip Lengths

Number of Stations 2 3 4 5 6 7 & 9 10 N n
<! S One-way : I 152 253 35 4 455 556

I, Two-way 11 E381S 182 22925 2783 32

One-way/two-way : 1 1.5 1.5 167 167 17517518 18 L83 L83

The Station Delay Time, tp, drlve hp o

Station delay time is a very important parameter in determining the per-
formance of automated transit systems. It is clearly dependent upon vehi-
cle configuration and flow. If the vehicle has only three scats abreast,
simple timing of the exit and entry maneuver shows that five or six seconds
may be adequate for 1. With six seats, three forward and three backward
and one door, it may take roughly twice as long to vacate and reload a
vehicle. In larger vehicles somewhat less time per person per door is
required, and the result depends on the width of the doorway.

The average walk speed is about two miles per hour or three feet per
second, therefore the maximum rate of discharge of passengers per door is
roughly one per second, onc abreast, or two per second, two abreast. These
kinds of considerations tempered with simple experiments and observa-
tions at transit stations can determine the mean time required for egress and
ingress for a given vehicle configuration. Unfortunately, at the time of
writing the author cannot point to any literature that presents data on
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passenger flow in and out of vehicles. Accepted standard values of station
dwell are needed for the purpose of predicting the performance of various
types of transit systems.

The Required Vehicle Fleetr Size
The required size of the vehicle fleet is given by

N=N,+ N, + N, (4.3.25)
in which

N, is the required number of occupied vehicles needed to meet the peak
demand if there are p, people per vehicle;

N. isthe number of empty vehicles in circulation during the peak demand
period as a result of nonuniform demand; and

N, is the size of the maintenance float, that is, the number of extra
vehicles required to account for the possibility of rush period break-
downs.

The number of occupied vehicles, N,, is simply the number of people
riding at any one time during the peak period, divided by the average
number of people per vehicle, p,. The number of people riding at any one
time is the peak period flow in people per unit time multiplied by the
average trip time. The peak period flow used to determine N, must be
averaged over an accepted period such as fifteen minutes or one hour. Ifa
shorter period is used for averaging, a larger fleet will result, but the
average wait time for service in the peak period will be reduced.

It is a policy decision to balance the desire for minimum wait with the
added cost in vehicles needed to provide it. For the sake of economy, a
certain measure of staggering of demand is needed. Any transit system can
be swamped at some time by too great a demand, and the author's experi-
ence is that the public understands this and will either accept the need to
wait longer in unusually busy periods or individually adjust their schedules
to avoid the busiest periods. With these thoughts in mind, the author
recommends that in public transit applications, the peak flow for computa-
tion of N, be obtained as the average flow over the busiest hour. On the
other hand, if the application is 1o carry students between classes in which
the break period is say 15 minutes, then the peak flow used to compute N,
must be the flow averaged over the time period between the carliest and
latest arrivals at the stations that permit the students to arrive at the next
class on time. This is an interval of approximately seven minutes if the
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break period is fifteen minutes. If the starting times between classes are say
thirty minutes apart, obtained by staggering class schedules on different
campuses, then the average can be taken over a period of 30 — 8 = 22
minutes, instead of 15 — 8 = 7 minutes. Thus, by such a change in class
scheduling, the peak flow is reduced to 32 percent of its former value.

Using the notation of the demand and trip-time matrices,

N, =1 2 DT, (one-way)  (4.3.26)

0
Pe 5 =i+

in which the terms of the demand matrix are averaged over an appropriate
peak period as discussed above, and one-way flow is assumed. Let

n +n—1

Dpux =Y X Dy (4.3.27)

=1 =1

be the average pcak flow on the whole loop system, regardless of flow
direction. Then, using equations (4.3.9), (4.3.10), and (4.3.16), cquation
(4.3.26) can be written . , 7

e

LT e
N, = ;'- [‘yTu + i‘!,‘-:i ]D...- (one-way) (4.3.28)

14

in which <L,> is given in general by equation (4.3.16), and for the case of
uniform flow by equation (4.3.20). In on-line station systems,

and, in off-line station, nonstop systems,
y=1 (4.3.29b)

In the case of uniform flow, Dy is the same for all i and j. Then equation
(4.3.27) becomes

Dyess = nln = Dy (4.3.30)



and

" -1
1

> 2 U-9

y . — —e——
i nln = 1) & wias

- m":*.; SR T ‘i‘-']

=1 =i = J=is1

. 5: [i(n-l)+ Ej]-(n—l)ii
=1

-1

I n a1 R n
T 1 N il= = (4.3.31)
o (£1)( )3

The ratio of the number of vehicles required in an on-line station system
to the number required in an off-line station systemis of interest. In the case

of uniform flow and one-way loop traffic, this ratio is found from equations
(4.3.28), (4.3.29b), and (4.3.31). Thus

<L>V
N, (on-line) !2._ * "_T;;_L

. = LIV,
N(off-line) 1+ _'-11._

Consider a typical example in which V, = 15 m/s, a,, = J, = 2.5m/s, and 1,
= 15s. Then, from equation (4.3.2), T, = 22s. Letn = 7 stations and <L,>
= 1.5 mi = 2400 m. Then <L,>/V, T, = 7.27, and the ratio of equation
(4.3.32) is 1.30. Thus, in this case, if all parameters are equal, an on-line
station system requires 30 percent more occupied vehicles to serve a given
demand than an off-line station system.

In two-way systems, the number of vehicles on each track is obtained
from an equation analogous to equation (4.3.26) if the upper limit on the
inner sum is changed as in equations (4.3.21) and (4.3.22). If the demand is
roughly equal in the two directions, and n is odd, the total number of
occupied vehicles required in both directions is

(4.3.32)

v > ! <L>] & waghe
N, == |yT + =22 Y 2
N ke VL]::: o
= ,:_ ¥yl + <V—L:2 ]b.... (two-way)  (4.3.33)
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in which <IL,> isgivenby equation (4.3.21) ingeneral, or by equation
(4.3.23) in the case of uniform flow. With off-line stations, y = 1 as before,

and with on-line stations and n odd,

i H+in-1N2
- ( j - 0 D

yo EL T TETY odd) (4334
" *in-12 Du (wo_way

=i

In the uniform flow case, by following the derivation of equation (4.3.31), it
can be verified that, if n is odd,

+ 1

(n odd)

(4.3.35)

The computation of N, is summarized in table 4-2 (7, is always found
from equation (4.3.2)), and is based on the form of equation (4.3.28).

Returning to equation (4.3.25), consider the computation of N,. In
on-line station systems, service is scheduled and the concept of dispatching

Table 4-2 Computation of the Required Number of Occupied Vehicles

Case Flow Directions Stations ¥ <Ly Dyre
General  Oneway  Online (e (3060 (4327
Off-Line I (4.3.16) 4.3.27)
o
Two-Way odd no iin 4.3.21) (4.3.27)
On-Line
even no. (e (4.3.22 (4.3.27)
odd mo. 1 (4.3.21) (4.3.27)
Off-Line
cven no. I (4.3.22) (4.3.27)
Uniform Flow One-Way On-Line 02 (4.3.20) (4.3.30)
Off-Line | (4.3.20) (4.3.30)
Two-Way ) odd no., (m+ 14 (4.3.23) (4,3.30)
On-Line @324 (43.30)
even no, dn -1
odd no. 1 (4.3.23) (4.3.300
Off-Line
oven no. I (4.3.29) (4.3.30)

';d-l;mba;i-n mr-u.l;s-e: are cquation nu:béu.

"Obtained from equation 4.3.22 by the substitutions 4, becomes J = i; fi.1 + we Decomes n,2,



n

empty vehicles to meet demands is not applicable, therefore all vehicles are
considered occupied, and N, = 0. The number of empty vehicles required
in off-line station systems is zero if the demand is completely uniform, and
depends on the nonuniformity in demand. Let EX,, be the excess flow of
vehicles into station j, that is, the number of vehicles in excess of those
needed to meet the demand for service at station j. Then, in one-way
systems,

1 -'):-I Do .

EXy= - 2 (Dy=Dy=~ Y~ 747 (4.3.36)
P (=j+1 7,

If EX,, > 0,there is an excess of vehicles at station j; and if EX,; <Othereisa

shortage. If the quantities EX,, are known for all , they can then be used to

compute a schedule of empty vehicle dispatching commands to provide

vehicles where needed. The total excess of vehicles is

S EXy=0 (4.3.37)
1

as may be seen by noting from equation (4.3.27) that D peqx can be found by
first summing over all destinations from a given origin, or first over all
origins to a given destination. Therefore, the problem is one of optimal
redistribution of empties.

The number of empty vehicles required is determined by summing the
products

EX,/Ty

in which j corresponds to the stations for which EX,, > 0,and T, is the time
required for these vehicles to reach their destination stations. This is a logic
operation and can be written in general in the form of a computer program
but not neatly in an equation, It is more transparent, however, to consider
each case directly once the EX,; have been computed from the demand
matrix. Consider the counterclockwise loop system illustrated in figure
4-10.

The small integers are the station numbers and the bold number next 10
station i is EX,, in vehicles per minute. In a loop system with off-line
stations, under the restriction that no empty vehicle travels the full circuit,



-18+16=-02

=1.3 vehicks/min

+16
Figure 4-10. Example Computation of the Empty-Vehicle Fleet

it makes no difference in the total number of empty vehicle miles travelled
to which stations the excess vehicles are dispatched. Then, consider the
dispatching schedule. Arbitrarily start with station 1. IfEX, > 0, asis true
in the example of figure 4-9, mentally start 3.2 vehicles per minute (one
vehicle every 18.7 seconds) moving around the loop looking for vehicle
shortages. The first “'sink™ (EX, < 0) is station 3 which demands 1.3
vehicles per minute. Since EX, > |[EX, |, station 1 can supply all vehicles
needed at station 3. At station |, subtract 1.3 v/min from the total excess to
get 1.9 v/min remaining. Station 4 can use more than this number, therefore
dispatch 1.9 v/min from station | to station 4, Deducting this number from
EX,, = -2.5 leaves -0.6 v /min. All vehicles from station 1 have found
destinations. Therefore move to station 2 and repeat the process, Then
move to station 3 and note that its requirement is satisfied. Similarly, the
need for vehicles at station 4 is satisfied. The remaining shortages at station
S and 6 are then made up by circulation of vehicles from station 7. By
drawing flow lines from “‘sources™ to **sinks'" and labeliing them with the
vehicle flows, an equation for N, can be written directly from the diagram.
Thus
N, - |-3T“ + 1-91‘“ +0.6T,. + 1-61‘:- + 0-2Tn + 1.617.

Using equation (4.3.10), Ty, = T, + €JV,,

N, = T.NEX,, + v, ¥ FLOW,
¢ u; o Lo U’U (4.3.38)
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in which + EX,, is the sum of all positive EX,, and in the example is 7.2 v/m.
The second sum, in the example, is

YFLOWy = 1.3(4, + €a)

+ 1.9y + €33 + €30

+0.& €y + €3)

+1.& oy + €5 + £y)

402083 + €as + €3 + € + )
$1.6(6ys + € + Ly + € + £y + &)

= 5.08,3 + 72605 + 5963 + 346 + 1.6€4 + 1.8¢;,
If the flow is two-way, equation (4.3.36) is replaced by a pair of

equations, one for counterclockwise flow in the directions of the indices
shown in figure 4-9, and the other for clockwise flow. Thus,

™ R =
Ex" Q. 3 D“ “+ ”D]--'!J - z, Dﬂ o %DIJ-N!

Py i-m =i+l
¥ WES =
EX, = y A 2 Dy + VaDyuny — Dy = VaDyy
© o\ (=pel (===
. (4.3.39)
in which
m= i;_l for n odd
— n_ -
= 1 for n even

and the terms not under a summation sign are dropped if # is odd. 1f an
index is greater than n, n is subtracted from it; and ifanindexis less than 1,
nis added toit. Based upon equations (4.3.39), the procedure for determin-
ing the size of the empty fleet is the same as in the case of one-way loops.
Returning again to equation (4.3.25), consider the computation of N,
Scheduled mainienance should be done in the off-peak hours, and then
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does not enter into N,,. The fleet N, is needed rather to maintain N, + N,
vehicles in operation during the peak period even though some vehicles
may fail and require unscheduled maintenance. Assume that if a vehicle
fails during a rush period, it can be returned to service inatime MTTR, that
is, the mean time to repair. MTTR is made up of the following components:

MTTR = (mean time to dispatch vehicle to maintenance)
+ (mean time to ready vehicle for repair
including time to obtain needed parts)
+ (mean time to replace faulty part or subsystem)
+ (mean time to dispatch vehicle back in service)

Let the mean time between vehicle failures be MTBF, and let T, be the
length of the rush period. Then the number of vehicles that fail during the
rush period is

(N, + N) (T.uo/MTBF)

If MTTR is of the order of T, but not so long that the vehicle cannot be
restored to service by the next rush period,

‘V. = (N. + N() (TmJl"TBF’ (4.3.%)

But, if MTTR is much less than T,.,.

Nu = (N, + N) (MTTR/IMTBF) (4.3.40b)

Thus, the importance of easy-maintenance design so that subsystems can
be quickly replaced is apparent. Life cycle cost is minimized if an expen-
sive vehicle is returned to service as rapidly as possible. In a well-designed
system, N, should be no more than about one percent of N, + N,.

The Average Number of People per Vehicle and
Time Headway

If p, is given, N, + N, can be determined from the theory of the previous
section. Then the average time headway between vehicles, 7, is found from
equation (4.3.5). Thus

= o LT,
! V“Q(No + N,) N, + N, (4.3.41)
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In small-vehicle automated systems in which private party service is of-
fered, p, is the size of the average group traveling together, and 1s usually
assumed to be about 1.5, In larger vehicle systems, however, the service
must be scheduled to a given value of 7. Then equation (4.3.41) is used to
compute N, + N,, and equation (4.3.15) is used to compute p,.

Capacity

The capacity of a loop system is the total number of people per hour the
system can handle. The achievable capacity depends on the distribution of
demand as characterized by the demand matrix. In on-line station systems,
it is limited by the achievable station throughput, derived in section 4.2. In
off-line station systems, capacity may be limited by either station
throughput or line throughput. If there is only a small number of stations,
station throughput, determined by the theory of section 4.2, is the limiting
factor. But with a small number of stations, off-line stations often cannot be
justified. With a large number of off-line stations, the line capacity, deter-
mined by equations (4.3.6) and (4.3.7), limits the system capacity. The line
flow in each link can readily be determined from the demand matrix Dy,

4.4 Line-Haul Systems

A line-haul system is @ collapsed one-way loop which may have either
continuous flow or reverse flow at the end stations. As indicated in section
4.2, loop end stations cut the achievable headway at a given line speed
almost in half and hence without a speed change almost double the capac-
ity. But they take more space and are more expensive than back-up end
stations. Therefore, the back-up end station is often used. Headway with
these can be maintained if the trains are caused to slow down well in
advance of the end stations, The intermediate stations may use either side
platforms or central platforms, the latter of which are more economical of
space. As indicated in figure 4-11, the stations of line-haul systems are
usually on line. Also, to obtain adequate capacity, the vehicles are usually
trained.

The maximum number of trains is given by equation (4.3.5), in which
the minimum headway is found from section 4.2. As with on-line station
loop systems, the actual number of trains required is found from equation
(4.3.5) with the desired scheduled headway T, substituted for Ty, In
on-line station systems, there is no deliberate circulation of empty vehicles;
therefore, N, = 0 and N, is the result found by using equation (4.3.5).
Equation (4.3.15) is used to find p,, the average rush period number of



1%n
2 n—1

Side-platform staticns, end loops

1 2 3 n=1 n
Central-platform stations, back-up ends

Figure 4-11. Line-Haul Configurations

people per train. In line-haul systems, however, the summation limits are
different. Using the station designations of figure 4-11 for flow to the right,

15§
o = = DT,
P Nc % I:l-#l v
Substituting equation (4.3.9),
1 <L>
Pe N_..("T" e )b,..k (4.4.1)
in which
a1 )
Dyeax = > Dy (4.4.2)
=1 =it
A=l n
y=—— ¥ ¥ Dy~ (4.4.3)
b" =1 J=itt
and
l a1 n
<L>= S Y Dty (4.4.9)
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In a given peak period, the terms of the demand matrix Dy, corresponding to
flow to the right in figure 4-11 are usually quite different from those
corresponding to flow to the left. Thus p, will be different in the two cases,
and for the purpose of computing the number of cars per train p, must of
course be taken as the larger of the two values. If the car capacity is given,
the number of cars per train is

No. cars per train = (4.4.5)

“(car capacity)(load factor)

in which **load factor" is the desired fraction of car capacity used during
the rush period averaged over all cars in the system headed in the direction
of maximum flow.

4.5 Network Systems

A network transit system is one in which there is more than one path
between some of the stations. Fixed route, fixed schedule bus systems are
usually network systems; the New York subway system is a network
system. If network systems involve transfers from one branch to the other,
however, they can be considered as being composed of a series of loops or
line-haul branches. In these cases, the theory of sections 4.3 and 4.4 can be
applied directly, and further elaboration is unnecessary. Thus, the present
analysis is restricted to networks in which the vehicles may transfer from
one loop or branch to another. Except in very small networks, the econom-
ics favor the use of off-line stations because: (1) they allow use of smaller
vehicles and lower maximum line speeds, and hence guideways of lower
weight per unit length; (2) they permit lower average trip time and hence
reduce both the number of vehicles of a given size required and the total
vehicle fleet cost; and (3) they increase patronage because of the reduced
trip time. Therefore, the network analysis of this section assumes off-line
stations. ot S

Networks may use multilevel interchanges to accomplish vehicle trans-
fer or they may use Y-interchanges.”Use of Y-interchanges has the advan-
tage that the guideways can all be at one leveland the visual presence atany
one location is minimized, but the disadvantage that, at interchanges, vehi-
cles must merge before they diverge thus reducing the capacity. With
multilevel interchanges, the vehicle streams diverge before they merge,
thus preventing bottlenecks. The disadvantage of the Y-interchange can be
reduced by designing the system so that vehicles run both above and below
the guideway, thus providing two-way traffic. (A side-by-side two-way
system is not practical in network configurations because of the size and
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complexity of the interchanges.) A two-way, over/under system more than
doubles capacity with a given set of line and station locations because, as
shown in Table 4-1, the average trip length reduces. With reduced trip
length, trip time reduces and with it the number of vehicles. Hence the
minimum spacing between vehicles increases. The analysis will, however,
treat both multilevel and Y-interchanges: and both one-way and two-way
networks,

If a specific network is under consideration; that is, a network with
specific line and station locations, and the analyst has the data nceded to
make a detailed performance, cost, and patronage analysis, then the
analysis of performance characteristics should proceed by extending the
theory of section 4.3 for loop systems. The same basic framework of
analysis is still applicable, but the analyst must take into account that the
travel time matrix Ty, is not unique, but depends upon the choice of route.
The network should be designed, however, so that the nominal path
minimizes T,. Nonminimum paths would be used only in abnormal circum-
stances such as unusually heavy demand on certain routes, or in the case of
breakdowns. Equation (4.3.10) is still valid, therefore the minimum 7, are
found by first finding the minimum €.

The formula for average trip length is analogous to equation (4.3.16)
with the summations extending over all stations; and the theory of the
required fleet size follows directly. Equation (4.3.26), with the summations
again extended over all stations, shows that the minimum 7, produce the
minimum fleet size. The computation of the required empty vehicle fleet
size proceeds by first computing the EX,, from equation (4.3.36) with new
summation limits. Having the EX,,, the choice of destinations to which the
vehicles are routed is more complex than in the case of loops. This problem
has been treated by Thangavelu[2], by Irving[3], and by others. A trial
selection of the empty vehicle destinations can be made on the basis of
minimizing the total empty vehicle travel time. Then the total flow on each
link must be computed, and the empty vehicle destinations and routes
adjusted until a given link capacity constraint is satisfied.

Rough computations of vehicle fleet size can be made on the following
- basis: If the flow is completely uniform, D, = Dy, and no empty vehicles are
required. On the other hand, if the demand is unidirectional in the sense
that if Dy # 0, D, = 0, the occupied vehicles going from i to j must circulate
empty from j to i. In this case half of the vehicles are empty. Therefore, the
assumption that one-third of the vehicles circulate empty is a good com-
promise between these extremes. A number of computer simulations have
produced the result of approximately one-third empty vehicles.

In initial analysis of network systems, before specific line and station
locations are chosen, it is necessary to be able to estimate the performance
and economics in specific situations. Also, a theory of performance and
economics of networks at this level is algebraically simple, and it is easy to
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determine the influence of parameters such as line and station spacing. The
theory is developed in two parts: geometric parameters, and performance
parameters.

Geometric Parameters

The parameters derived are line density (length of guideways per unit area),
station density, intersection point density, and average trip length. Con-
sider the idealized network of figure 4-12. Let the network be square with
line spacing Land n + 1 lines in each direction. Then the total length of lines

¥ =2nl(n+ 1)
= % (nLy (l . %)

But (nL)* = A = the area of the network. Therefore,

& = %pa (4.5.1)
where
B =14 LAV 4.5.2)
The line density is therefore
Pe AT L B (4.5.3)

Let the stations be placed at the midpoints as indicated by the dots in
figure 4-12. There are three reasons for this: (1) itis awkward to incorporate
stations in the intersections and such a procedure increases visual impact at
the intersections; (2) for a given L the maximum rectangular walk distance
is L/2 if the stations are at the midpoints but twice as great if the stations are
at the intersections (Even if the street pattern is not a rectangular grid, the
rectangular walk distance is more realistic than the shortest distance ““as
the crow flies.””); and (3) for a given line density, the station density is
maximized if the stations are at the midpoints. The third reason will be clear
from the following analysis.
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Figure 4-12. An Idealized Transit Network

The number of stations in the network of figure 4-12 is
_ 2
n, = 2n{n + l)-l-,—ﬁA

The station density is therefore

Py = tzi_ﬁ

The number of intersections in the network of figure 4-12 is

nl-(ll*l)’-rl!—”l‘

Hence the intersection density is

b

Thus the ratio of station density to intersection density is

pdpr = %‘

(4.5.9)

(4.5.5)

(4.5.6)

4.5.7

(4.5.8)
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Figure 4-13. Idealization of the Average Trip Length

Thus, for a given line density, the station density is almost twice as great if
the stations are at the midpoints rather than at the intersections. On the
other hand, for a given station density (the parameter that determines the
patronage), the line density is greater by 2/8 if the stations are at the
intersections rather than at the midpoints.,

Consider the average trip length <L,> on the network of figure 4-12. If n
is large, <L,> can be approximated by integrating the rectangular trip
length over the network area, as shown in Figure 4-13, and by assuming
every station is both an equally likely origin for travel and an equally likely
destination. This is the assumption of uniform travel as introduced in
section 4.3. If n is large, reference to figure 4-13 gives

nl;

<L> = '(#L“L J.“Lu‘l"' = Xg| + |y — yadx, dy, dxs dys

= 2 ]lf-dx3 [] "(Xg _ x.)dx, + ] nl. (,t‘ _ x’)dx']
(nLy 1, N -

- (”z L-L[ @gi —nlx; + x;]dx,

- %-(nL) - %Am (4.5.9)

Thus, in the limit as n approaches infinity, the average trip length with
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Figure 4-14. Four-Station Square Loop

uniform demand is two-thirds the square root of the network area. In finite
networks, <L,> is larger than this limit value because of indirect routing.
Consider the series of cases illustrated by figures 4-14 through 4-17 with
uniform demand.

Figure 4-14 shows the simplest case, consisting of the basic four-station
square loop. Let the distance between stations be L. Then for one-way
travel,

<L> -—‘%*—3’_ L= 2L = 24'% (4.5.10)

and for two-way travel

<L>=-0E3ED fo4np =134 (4.5.11)
5

Crr

3

Figure 4-15. A Two-Loop Network

Figure 4-15 shows the next level of complexity. If the flow is one way,
say counterclockwise, the average trip lengths from each of the five num-
bered stations are different and are as follows:

Origin Station <L,>/L

1 3219
2 26/9
3 409
- 44/9
5 389



A
g

AL ’ s
wl- ’

N
.
Y
\
<*r
.~
s e anases an by
-~ -
’
.

L
/
4
Y

N P —

s
p -t

Figure 4-16. A Five-Loop Network
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By symmetry, the average trip length from the other five stations are the
same. Therefore, the average trip length for the two-loop network with
one-way flow and uniform demand is

<L>w= %’)- L = 4L = 2.31A' (one-way flow)  (4.5.12)
Similarly
<L> = %‘; L = 2.88L = 1.66A"" (two-way flow)  (4.5.13)

The next level of complexity is illustrated in figure 4-16. In this case the
process of calculating the trip lengths is complex enough that a systemaltic
procedure is desirable. Let the stations be divided into two types of groups
of two stations each: A groups and B groups as shown in figure 4-16. Let A,
— A, represents the trips from cach of the stations in group A, to each of the
stations in group A;, and note that there are four such trips. Then

A=A= Y > A—A
’
i*j

represents all of the trips between A groups except for the trips internal to
each A group. These are denoted by

A= 2 A= A
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The totality of trips in the network of figure 4-16 can be represented by the
expression

A, +(A = A+ (A= B)+ B, + (B— A)+ (B— B)
16 + S28)+ B(16)+ 8 4+ 432+  4(12)= 552 trips

The numbers under the group symbols are the numbers of trips generated in
each type of group combination. Since the total number of stations is 24, the
total number of trips is 24(23) = 552. The total length of trips in each of the
six groups is given in table 4-3 for one-way and two-way flow,

Table 4-3 Computation of Average Trip Length in Five-Loop Network

Growp Number of Trips —;om! Length of Trips/L
One-Way Flow Two-Way Flow
T T e T T e
A=A 224 8(120) 8(108)
A— B 128 R(64) B(S4)
B, 8 48 4“%)
E— A 128 4152) {112
B8 4% 460) 452)
s T " 200

<L> 1.444'7 121A"

in which A'* = 3L,

The network of figure 4-17 has 60 stations and 60(59) = 3540 trips. Using
the same types of groupings as in figure 4-16, the average trip lengths are
determined in a similar manner and are as given in table 4-4. Recognition of
symmetries greatly simplifies the process of counting the trip lengths.

In Figure 4-18, the average trip lengths corresponding to the square
networks of figures 4-14, 4-16 and 4-17 are plotted. Also, the limit given by
equation (4.5.9) is shown as a dashed line. This information is as much as is
useful to obtain for the case of uniform flow.

Performance Parameters

The parameters derived are fleet size, average headway, line flow. station
flow, and nonstop wait time. The fleet size is given by equation (4.3.251and
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Figure 4-17. A Thirteen-Loop Network

the derivation of each term in that equation proceeds in the same manner as
for loops. With networks, however, it is useful to define the parameters

N

C = NIN (4.5.14)
N,

b= NEN, (4.5.15)

Then

_aN,
N= 7:" (a)

Table 4-4 Computation of Average Trip Length in Thirteen-Loop Network

Growp Number of Trips Toral Length of Trips
One-Way Flow Two-Way Flow

A, . 830 7 é(l32) —&98) -
A=A 8(252) 8(3262) &1370)
A—=B 8(72) $(840) 8326)
B, 4(6) 424) 424)
B—+A & 144) 4(804) 4(648)
B~5 “an___ «14) L

iS40 21,344 17,536

<l> 1214 0.99A"
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Figure 4-18. The Average Trip Length in Finite Networks with Uniform
Demand
In analogy with equation (4.3.26)
N, = (0 A) Tu/p, (b)

in which 1, is the trip density, that is,the number of trips carried on the
network system per hour per unit arca, A is the network area, and p, is the
average number of people per occupied vehicle, In analogy with equation
(4.3.10), the average trip time is

<L>

Tuw = Tex + =y (4.5.16)



Combining equations (a), (b), and (4.5.16), the fleet size is

N= I;’-‘;: (r.. + Sﬁl),q (4.5.17)

If the vehicle makes intermediate stops, T,, must be multiplied by the
average number of intermediate stops, as indicated by equation (4.3.9).

The average time headway, T, is found from an equation analogous to
equation (4.3.5), that is, by observing that the number of vehicles on line,
Nler, is equal to the total line length # (equation 4.5.1)) divided by the
average nose-to-nose spacing between vehicles. The latter quantity is
T,.Vae, where V,, is the average velocity. Thus, using equations (4.5.1),
(4.5.17) and (4.5.16),

T = £ . __2pSfp
- (Nle)V,, .LT‘HDV.V

But Ty, V,e = <L,>. (Note by combining equations (2.4.5) and (4.3.2) we
see that V, T, T,, = D.) Thus

~

= .,_"p e
y P I.L< S (4,5.18)

and, as can be expected, for a given trip density, T, is independent of A.

The average line flow in people per unit time, f,,, is the line flow in
vehicles per unit time, I/7,,, multiplied by the number of people per
vehicle, p.f,. Thus, using equation (4.5.18),

S = ’-;‘.—ft - —'l"—z%& (4.5.19)

The average station flow in people per unit time, f3,,, is the total
demand per unit time, fA, divided by the number of stations. Using
equation (4.5.4),

Foay = 9,;‘- = -—’3“% (4.5.20)



and it is interesting to observe that
Sov = foay (<L>/L) (4.5.21)

Finally, the nonstop wait time T, is the average time a vehicle must
wait at a station after one party has boarded for a second party headed for
the same destination to arrive and board. This quantity is the average time
headway between arrivals of parties at a station, pJ/fs,,, multiplied by the
number of possible destinations (1, — 1). Thus

T = peln, = 1) Pr("ai‘ Dn,
e Ssay nA

For n, >> 1, and using equation (4.5.4),

4 B A2 3
Tt = PfiA = ,;:%,( A+ |) (4.5.22)

This equation is meaningful if the demand is relatively uniform, but T,
will in general differ a great deal between station pairs. Note that, for a
given trip density, the nonstop wait time increases with the area of the
network. Thus, for a given trip density, the type of service that requires a
party to wait in a vehicle until a second party boards becomes increasingly
unattractive as the network grows. Also, such a service concept increases
the total trip time and hence the vehicle fleet size. Other service concepts
can be considered. For example, if intermediate stops are permitted and the
average number of stops counting the trip end stop is s, the average time to
wait at a station for a second party going to one of these s stops is T,,./s. In
another case, if it is desired to increase the vehicle load factor further by
waiting for n, extra parties going to any one of s stops, the wait time of the
vehicle and the first party is n,T.,./s. Thus knowledge of T, determines
the vehicle wait time for a range of service concepts.

4.6 Summary

The purpose of this chapter has been to develop the theory of performance
of various types of transit systems. By ““performance’’ we mean quantities
such as characteristic times, trip lengths, average speeds, line flows, sta-
tion flows, required numbers of vehicles, and average vehicle occupancy.,
Table 4-5 gives a classification of types of transit systems. Four basic types,
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classified according to the geometry of the lines—shuttle, loop, line-haul,
and network—form the headings of the major sections of the chapter. Each
of the four basic types may be further classified according to the geometry
of the lines and stations, as indicated in table 4-5, and according to the type
of service provided. Dropping the nonapplicable classifications, twenty-
five different possibilities remain. In exploring the basic types of systems
more deeply, we find that further subclassifications are practical, and
discuss these in individual sections.

In section 4.1, shuttle systems are considered. First the simple shuttle is
analyzed and it is found that all of its characteristic times can be described
in one chart—figure 4-2. Here, based on the distance between the two
stations and the line speed, the wait time to call a vehicle from the otherend
is found. Then, given the average station delay or dwell time, the average
wait time, effective headway, and capacity in vehicles per hour are found.
Next. the shuttle with intermediate stations is considered. This case is
exactly the same as that of an elevator with stops at intermediate floors. Itis
shown how to find the characteristic times from figure 4-2 and that the
capacity in vehicles per hour is found by dividing the value given in figure
4-2 corresponding to the distance between stops by n — 1, where n is the
number of stations. If a bypass is placed at an intermediate station, as
shown in figure 4-4, it is possible to run two vehicles on the shuttle and the
capacity is doubled. If, however, the same idea is tried with two inter-
mediate stations and four vehicles, the capacity does not double again but
returns to the value for a simple shuttle of the same length. It is shown,
therefore, that the advantage of including two or more intermediate bypass
stations is not to increase capacity but to keep the capacity from reducing
as the total line length increases.

In the next major section, section 4.2, the question of limitations on
system capacity due to vehicles stopping at stations is considered. The
criterion upon which the calculation is made is to keep the minimum
distance between vehicles or trains greater than the required stopping
distance if a failure should occur. For the case of a direct flow-through
station, which may be either on-line or off-line, the results are summarized
in a single dimensionless graph, figure 4-7. Here, the minimum time head-
way T can be found as a function of vehicle or train length L, station dwell
time 1p, line speed V;, normal and emergency deceleration, a and «,. and
the k-factor, where k is the ratio of the minimum distance between vehicles
to the stopping distance of one vehicle. The case of end-of-the-line or
back-up stations is then considered because this configuration is ofzenused
in line-haul systems to save space at the ends of the line. A dimansioniess
formula, equation (4.2.21), for the minimum time headway is g2z, a3 itis
shown that, for the same line speed, the back-up station izimzases the
minimum headway, but that, by reducing the line speed rzar 52 end
stations, the headway possible at intermediate stations Saf fe masisaed.
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Table 4-5 Classification of Transit Systems

Shasele Loop Line-Haul Nerwork

Stations: ' _ }

On-Line A A A A*

Off-Line N/A A A A
Lines:

One-Way A A N/A A

Mixed A N/A N/A N/A

Two-Way A A A A
End Stations:

Loop N/A N/A A N/A

Back-up A N/A A N/A
Service:

Group A A A A*

Individual N/A A Av A
A—Applicable,

N/A—Not Applicable,
*In small netwoeks only,
*Not for very high capacity.

The major section of the chapter, section 4.3, is devoted to loop sys-
tems. Here, basic performance equations are developed related not only to
loops, but also to line-haul systems, which can be considered as collapsed
loops, and to network systems, which comprise a multiplicity of connected
loops. Six different types of loop systems, listed in table 4-5, are consid-
ered. Trip time matrices, demand matrices, and flow vectors are defined
and it is shown how to find from them the average trip lengths and the
required number of vehicles. The average trip length ratios, given in table
4-1, show that the capacity in a two-way system increases over that of a
one-way system not only because there are two lines, but because of the
decrease in average trip length. Thus, in comparing loops of say eleven
stations, the capacity of a two-way system will be increased over that of a
one-way system by a factor of 2(1 .83) = 3.66. With on-line stations, the
required fleet size is the number of occupied vehicles required plus the
extra vehicles needed in case of breakdowns. With off-line stations
additional extra vehicles are needed to allow for redistribution of the
vehicle fleet as a result of nonuniform demand. These are empty vehicles
and the required number of them must be computed separately after the
required number of occupied vehicles is found. Computation of the re-
quired number of occupied vehicles is summarized in table 4-2 for cases in
which the average vehicle occupancy is known. For group systems, how-
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ever, the number of occupied vehicles is found for a given schedule head-
way from equation (4.3.5) and then the average vehicle occupancy is found
from the equations tabulated in table 4-2. The required number of empty
vehicles is determined from the demand and trip time matrices and is
computed most easily by the diagrammatic method shown in figure 4-10,
because the assignment of empty vehicles is not unique in loop systems.

In section 4.4, the theory of loop systems is applied to line-haul sys-
tems, considered as collapsed loops, and minor variations needed for the
case of line-haul systems are given. Finally, the theory of network systems
is considered in section 4.5. First, a series of geometric performance
parameters, including the average trip length, is derived for a square
network but in a form in which they are approximately applicable to any
network. Figure 4-18 shows how the average trip length approaches a limit
value as the network size increases. Then, the performance parameters—
fleet size, average time headway, average line and station flow, and
nonstop wait time—are derived in a form applicable to networks. Of these
parameters, the nonstop wait time bears comment: It is the time one would
wait on the average for a second party headed for the same station. If this
time is short, then group service nonstop between stations is practical. If it
is long, nonstop group service is not practical and should be replaced by
either a group service that permits stops at a number of intermediate
stations, or by individual nonstop service. Since the nonstop wait time
increases with the size of the network, the practical service policy for large
networks is either nonstop on-demand or multistop scheduled. The differ-
ence in trip time in these two cases is found by subtracting equation (4.3.10)
from equation (4.3.9), that is, it is the number of stops multiplied by the
excess time. In practical cases, from equation (4.3.2), the excess time isin
the range of thirty to forty seconds. A computation of nonstop wait time is
given for a particular case in figure 5-6.

Problems

l. A simple shuttle is to be built to carry a maximum of 1500 people per
hour per direction between two points S00 meters apart. The maximum
cruise speed of the vehicle is 48 km/hr. Each vehicle has two doors, one
through which people egress and the other through which they ingress.
Four people per second can move through each door. If the vehicle is
filled at peak loading, what is the required vehicle capacity?

2. Ancelevator service is to be provided for a 120-f, 10-story building. The
maximum flow rate for which the elevator system is to be designed is
500 people in 10 minutes during the morning or evening period in which
people are traveling only in one direction. If each elevator makes an
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average of four intermediate stops, dwelling at each floor for 5 seconds,
how many elevators are needed? The maximum lift rate is 200 ft/min,
the acceleration is 0.5 g, and the capacity of each elevatoris 10 persons.
. Develop an expression for the capactity 3: an on-line station loop
system with unidirectional stations in per hour if the vehicles
are coupled into n-car trains and the length of each car is L., Plot the
capacity as a function of n in the range | = n = 10 for (a) standing-
passenger vehicles in which a, = a, and (b) scated-passenger vehicles
in which a, = 2a. In both cases assume k = 2, V, = 25 m's, L. = 15m,
and 1, = 15s. - i ' :
- A heavy-rail system is used as a line-haul transit system with back-up
end stations (L,,, = 95 m) and eight-car trains. (a) Using the paramet-
ers of Problem 3 for standing-passenger vehicles, what is the capacity
in people per hour if each car can hold 80 people and the average load
factor is 60 percent. (b) By what percent is the capacity changed if the
back-up end stations are replaced by loops, but the line speed around
the loops must be reduced to 15 m/s? Did the speed reduction increase
or decrease the capacity?
. Assume that instead of coming directly into the station platform, the
vehicles stop at a holding point where they wait for a platoon of n
vehicles to load and leave together. The vehicles in the holding point
then move forward together into the normal platform position. Deter-
mine the throughput of the station as a function of n and other pertinent
Kinematic parameters.
. Consider the following loop systems. Distances between stations are
given on the figure,

8§5m
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The demand matrix is as follows:

0 20150160 140 20 10 |
40 6130170 160 30 20
0 5 0 S0 40 30 20
D, = 1S 10 40 0 30 20 10
S 10 30 40 0 5 15
1S 5120140160 0 10
S 20170150 180 10 ©

in which the units are people per hour.

Two different systems are to be considered, each in both one-way and
two-way configurations:

System 1: On-line stations, standing-passenger vehicles operaung in R
trains of two vehicles each to increase reliability. The line specd is 15m/'s,
the-vehicles.can be assumed 10 be 40:-m-dong, k = 2, and a =

System 2: Off-line stations, seated-passenger vehicles operating singly.
The line speed is 10 m/s, t ehxcles are 2.6 m long and accommodate 3
people. The-average load f4ltoris 1.5 pcoplc per vehicle and the dwell time
is-5-seconds. Assume k = | and a, = 2a. :

Both types of vehicles can be loaded at a rate of $we persons per second.

—. a. For one-way, counterclockwise flow, compute from D, the flow
f into and out of each station and the total demand.
* b. Assuming the shortest length trip is always taken, separate the
demand matrix into clockwise and counterclockwise components.
¢. Fortwo-way flow, compute the flow from the street into and out of
each station, considering the platforms from which vehicles are
boarded for travel in opposite directions to be separate stations.
This information is used to size the stations.
d. Compute the total flow in each segment for one-way flow, and for
two-way flow, on each track.

For System 1:

. e. Write a formula for minimum headway, 7, based on station
throughput considerations, (5 is expressed as a function of vehicle
capacity C,.)

f. For the one-way configuration, write a formula for C, in terms of
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minimum headway, T, assuming full vehicles on the busiest seg-
ment. Solve this equation, together with the equation from ¢ for C,
and 7. Round C, up to the nearest multiple of &¥€“and call it the
vehicle capacity, then round 7 up to the nearest multiple of 10s and
set the headway at this value. Compute 1, and round it up to the
nearest multiple of 5 seconds, Compute the excess time 7.
Compute the circuit time and, as a matter of interest, the average
speed. For the one-way configuration, compute the number of
trains and the number of vehicles required.

For the one-way configuration, compute the average number of
people per vehicle noting that it is the ratio of the average person-
flow to the vehicle-flow.

For the two-way configuration, assume the same vehicle capacity
as in the one-way system. Based on the flow of full vehicles in the
busiest segment in each direction, compute the required headway
in each direction. Compute the required number of two-vehicle
trains and vehicles in each direction,

For the two-way configuration, compute the average number of
people per vehicle in each direction.

For System 2:

k.

Compute the excess time T, and compute the average trip length
for counterclockwise, one-way flow. Note that the corresponding
matrix for clockwise flow is simply the transposed matrix.
Compute the average trip length for the two-way configuration in
each direction,

. Compute the number of occupied vehicles for the one-way and the

two-way configuration.

Compute the excess-flow vector, EX,, for the one-way and the
two-way configuration.

Draw a diagram for the dispatching of empty vehicles for the
one-way and the two-way configuration, and compute the required
number of empty vehicles in both cases.

Based on the total flow of vehicles on the busiest link, gompute the
minimum operating line headway for the one-way Dr the two-way
configuration, and compute the minimum nose-to-tail spacing.
If the failure deceleration rate is twice the emergency deceleration
rate, and the control time constant is 0.6 s, compute the ratio of
minimum nose-to-tail spacing to the minimum no-collision spac-

ing. 5 .

Compute the maximum station throughput in vehicles per hour,
and with p, = 1.5 compare it with the maximum required flow into a
station in vehicles per hour, making certain to account for the flow



96

of empty vehicles. If the requirement exceeds the maximum per-
missible throughput, the station must have more than one loading
berth.

5. If both types of vehicles cost $3000 per unit capacity (see figure
5-1), compute the fleet cost of each of the four configurations.
Recompute the fleet cost of the two versions of System 2 for a line
speed of 15 m/s.
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