Cost Effectiveness

This chapter is divided into three parts. First, equations applicable to
parametric analysis of the cost of any transit system are given to the level of
detail in which the cost of vehicles, guideways, stations, and central
facilities are each represented by lumped vartables. Cost analysis of cach of
these types of equipment can fruitfully be carried outin much more detail in
subsystem analysis. Some of this kind of analysis is indicated in later
chapters; however, for systems analysis, the above categories of equip-
ment carry the analysis to the required depth. Second, equations for
analysis of cost effectiveness are given and discussed; and, third, the
equations of cost effectiveness are applied to the analysis of specific types
of systems. This work is based on the author’s paper in the book Personal
Rapid Transit HI[1].

5.1 Cost Equations

The cost equations are given in the following list of notations following
definition of the terms.

C,. = vehiclecost per unitcapacity, If all passengers are seat-
ed, C,.1s the cost per seat, If standees are allowed, C.,.is
the vehicle cost divided by the design capacity, not the
crushload capacity. The vehicle cost is denoted per unit
capacity because, as shown by figure 5-1, the vehicle
cosl per unit capacity is not correlated with vehicle
capacity.
vehicle design capacity

C, = guideway cost per unit length. If the system uses two-
way integral guideways, C, is the cost of the two-way
integral guideway. For convenience, C, also includes the
cost of right of way.

C, = station cost including right of way, but not including
off-line ramps

Cy, = portion of cost of support facilities not proportional to
the number of vehicles

Cy, = portion of cost of support facilities proportional to the
number of vehicles, per vehicle

Cy
1]
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Figure 5-1. Guideway Transit Vehicle Cost per Unit Capacity (Data from
1975 Lea Transit Compendium)

I, = lengthof an off-line ramp as determined by the theory of
chapter 3
% = total guideway length. Given by equation (4.5.1) for net-
work systems. If system uses two-way guideways, Z is
the total length of two-way guideways, not the one-way
guideway length. Does not include off-line ramps.
n, = total number of independent stations. Given by equation
(4.5.4) for network systems.
N = the number of vehicles in the system. See equation
(4.3.25).
Subscript o&m: This subscript is applied to the cost terms to denote the
annual cost for operation and maintenance.

A, = theamortization factoron the kthtype of equipment, that
is, the annual payment on the equipment for principal
and interest divided by the initial cost. For convenience
of readers not familiar with the economics literature, the
formula for A, is derived in Appendix A in terms of ng,
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the life of the kth type of equipment, and r, the rate of

interest on capital expenditure,
total initial cost of the system

= (Cuge + Ce) N+ C,F + Cin, + Cyy,

annual cost of vehicles per vehicle
C-. = (A,Coe + Caru.JQ¢

annual cost of guideways per unit length

Coo = A, + C-,,‘,,
annual cost of an average station
C.. = AC, + C'““

annual cost of support facilities

oAm
annual cost of system

Clyr=C N+ C ¥ + C,n, + Cg,

It is also useful o compute:
(Cly1).yp = annual cost of amortization of capital equipment for entire

system

(5.1.1)

(5.1.2)

(5.1.3)

(5.1.9)

(5.1.5)

(5.1.6)

(ClyDeap = ACeceN + ALCE + A, + AACy N + Cyp) (5.1.7)

(Clyr)_, . = annual system cost for operation and maintenance

(C',yr)o&n = C“'o&nq"

5.2 Equations for Cost Effectiveness

N+ Gy + Cog i+ Cy N+ Cy, (5.1.8)

Let 14 be the average number of trips per week day carried by the system.
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Let 1,, be the average number of trips per year. Then in most cases
lye ™ 300 14 (5.2.1)

The most basic cost effectiveness parameter is the roral cost per passenger
trip or the break-even fare. If this quantity is represented by Citr,

Citr = -CYE (5.2.2)

,’f

The cost per vehicle trip, (CItr),., is the cost per passenger trip multiplied
by p.. Then

(Citr), = (Cltr)pe (5.2.3)

The cost per passenger kilometer, Clpkm, is C/tr divided by the average
trip length <L,> in kilometers. Thus

Clpkm = -g:') (5.2.4)

To determine the influence of freight hauling in addition to passenger
hauling on the cost per passenger trip, let the number of freight trips per
year, lyro be represented by

tyr, = ety dpy (5.2.%

Thus ¢ represents the ratio of vehicle trips for freight movement 1o vehicle
trips for passenger movement. The total cost per year will be increased
because of the need to provide for freight vehicles; however, if some of the
passenger vehicles are used for freight movement in off-peak hours, the
ratio of the number of freight vehicles to the number of passenger vehicles
need not be as high as e. Let this ratio be

¢ = _Nﬁ;:— <e (5.2.6)

Then, the cost per year as a function of the number of vehicles can be
written in a form analogous to equation (5.1.6) in which N is multiplied by 1
+ ¢ and n, is increased if extra freight stations are added. As a first
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approximation, assume n, is also multiplied by 1 + ¢’. Then using equations
(5.2.3), (5.2.2), (5.2.5), (5.2.6), (5.1.6) and (5.1.5),

Chr = Chr), _  Chyr  _ Cll+e)+C,
Py p'(&;+,") fee (1 + ¢)
Pe Y
in which (5.2.7

C = (C,, + AfCy, + ch,.,)Np + Gy
Co=Cof + AfCy, + CVM.

where N, is the number of vehicles needed for passenger service. Withe' =
e, it is clear that, because of the fixed facility costs, C,, the addition of
freight movement reduces the cost per passenger trip.

Consider an example. In a well-designed exclusive guideway system,
C; = C,. If, in the most extreme case, there are as many vehicle trips for
freight movement as for passenger movement[2], e = 1. Finally, assume
that half the freight trips are of such a nature that they can be handled by
passenger vehicles in the off-peak hours. Then ¢’ = 0.5. Substituting these
three assumptions into equation (5.2.7) gives

20, [ 5
Chr = '—'L( F)

w

Thus, in this extreme case, the cost per passenger trip is reduced to 62.5
percent of its value if there is no freight movement. Freight movement is
not considered in the derivation of the following cost effectiveness
parameters, but it can be considered on the basis of the above analysis as
the need arises.

The next cost effectiveness parameter, of interest to the transit
operator, is the annual surplus, S,, where

Sa = 1, (Average fare) — (Clyr) ,  — (C/yr)y, (5.2.8)

The two components of annual cost are broken out separately for emphasis
because it is so common in contemporary transit studies to speak of a
positive surplus when the annual revenue exceeds only the operation and
maintenance costs. In capital intensive systems, (C/yr).,, exceeds (Clyr) o
often by a factor of more than two. Therefore, unless a system is under
analysis in which the capital costs have been paid, it is not appropriate to
refer only to an *‘operating surplus.”
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Another important cost effectiveness parameter is the change in cost
per trip if patronage is increased. From equation (5.2.2), this is

achr) 1 [ aChr Oy
Aty r,,,( otye - ) .29

If 1,, is increased without adding fixed facilities, but only vehicles, then,
since the vehicle fleet increases in proportion 10 &y, Clyr is of the form

Clyr = ayly + G2

where a, and a, are independent of fy,. Then

aCHr  _ _ Gz
VB

and the cost per trip decreases as patronage is added because a, is greater
than 0. If, to attract additional patronage, additional fixed facilities are
built, then the situation may be different. If patronage is attracted in
proportion to the cost of the new facilities, a; is proportional 10 f,e, and C/tr
is independent of t,,. If costs of the fixed facilities increase more rapidly
than in proportion to £, then equation (5.2.9) shows that C/tr increases as
t,, increases and these new facilitics must be defended ona basis other than
direct cost. In general, equation (5.2.9) shows that if a curve of C/yr versus
t,,is drawn, the cost per trip will decrease ast,, increases only if the slope of
the curve is less than the slope of a line from the origin of coordinates to the
point in question.

The final cost effectiveness parameter is the present value of future
savings if the system in question is built rather than if present trends are
continued. Let (CS/yr); represent the cost savings in the nth year
in the future in base year currency if the new system is built. Then

(CSIyr).l = (C/Yr)°mn4 system - (C’yr)mw YT 1y (5.2. |°)

- (C/yl‘)°w. e g

in which the cost per year of the new system is separated into the cost for
capital and the cost for operation and maintenance. The yearly cost of the
trend system and the operating and maintenance costs of the new system
increase year by year due to inflation; but, once bonds are secured, the
capital cost per year for principal and interest is fixed. If the inflation rate is
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i per year, the cost saving in the nth year in the future in nth year dollars is

(CSIyr)y = [(CIyT)irena sstem = (CIYTeu system g M1 + D"
(5.2.10
= (ClYnew systemeyy

Then, if 4 is the discount rate, the present value of the savings in the nth
year is

(CSIYT)pen = %f-i i (5.2.12)

From Equation (5.2.11), it is clear that, due to inflation, the cost savings
increases year by vear if a substantial portion of the system costis in capital
rather than in inflating costs. The cumulative present value of future
savings out to the Nth year is

N n
PV, = 3‘ %‘%’%& (5.2.13)

- Ifthe cost termsin equation (5.2, 1 1) are independent of n, the summation of
equation (5.2.13) can be wnitten in closed form using the identity

X+ 4+ 0+ L+ == Dx=-1)

Then, equation (5.2.13) becomes

PVy = [(CIY)iat sstem = (CI¥T e syssemage) =

(a) () -]

| N
= (CYThen srvtomeyy l/d[l - ( Y ) ] (5.2.19)
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Thus far, C/yr has included only the direct costs of the system. If the
indirect costs due to factors such as air and noise pollution and land
unavailable for other purposes are taken into account, as well as the direct
cost to the traveler in terms of trip time. then PV, becomes a true measure
of the present value of the new system to society. This would seem to be a
preferable measure of cost effectiveness of a new system to the more
commonly used benefit/cost ratio because it quantifies the differences
between new systems. Further usefulness of PVy lies in the observation
that, if the new system requires research and development to bring it into
practical use, it is understandable that it would be justifiable to invest a
small fraction of PV, in rescarch and development to realize the indicated
cost savings.

5.3 Cost Effectiveness of Bus Systems

For bus systems that operate on surface streets, all of the annual costs arc
approximately proportional to the number of buses. Therefore let

Clyr = Gy N (5.3.1)
in which G, is the total annualized cost of the bus system for capital
equipment, driver wages, and central facilities. In 1975, in the United
States, C,_ was approximately $50,000, of which approximately 80 percent
was driver wages.

If the minimum bus headway is given as Toun, the number of buses is
given by the following equation, analogous to equations (4.3.5):

-l
e .anTmln (5.32)

Combining equations (5.3.1), (5.3.2), (5.2.2) and (5.2.1),
Chr = (-I—SG(":‘::—YT—“; )% (5.3.3)

If the bus system is a network of lines, define the daily trip density 1, by the
equation

u=% (5.3.4)
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in which A is the area covered by bus lines. Then, substituting equations
(4.5.1) and (5.3.4) into equation (5.3.3),

- Cof 1
Chr (Wzm) w"‘— (5.3.5)

Consider a typical example of a large bus network for which g8 = 1,
VT = I mi= L6 km, and L = 0.5 mi (0.8 km). (This case corresponds,
for example, to V,, = 10 mi'h and T, = 6 minutes.) Substituting these
values and C,, = $50,000, into equation (5.3.5),

Chtr = (13.3¢) ;;g (5.3.6)

o

Equations (5.3.5) and (5.3.6) apply for values of 1, up to the point of
saturation, that is, up to the point where more trips can be handled only by
adding more buses. If the bus system is saturated, N must be determined by
equation (4.5.17) in which p, is the saturation value of the average number
of people per bus. Then, setting f, = 1 and letting

T+ <L> . <L>
V. vV

o oh<L>A
N Pe an (5.3‘7)

Substitute equation (5.3.7) into equation (5.3.1), and then equations (5.3.1),
(5.3.4) and (5.2.1) into equation (5.2.2) to give

. Cyo<L,>
Chtr = — S (5.3.8)

and the headway corresponding to p, is found by equating equations (5.3.2)
and (5,3.7), with equation (4.5.1) substituted. Thus

Tow = 07%"147 (5.3.9)
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in which it has been assumed that i, = 10t,. Assuming Cy, = $50,000, o
= 1.0, and V,, = 16 km/hr, equation (5.3.8) becomes

Chr = $1.75 == (5.3.10)

in which <L,> is in Kilometers. Equating equation (5.3.10) and (5.3.6), itis
seen that saturation of the bus system occurs when

2 Pe
s ™ 760 -Zl:s (5.3.|‘)

Equation (5.3.6) and equation (3.3. 10) for several values of Tosa» <L, and
p, are plotted in figure 5-2.

-
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1.20} ‘L’) P'
Totll  PWY N\ .
Cont émi 10
par Trip
0.80p-
_____________________ 6 15
_____ -4 10
6 20
——————————————————— a 15
0.40 - - 4 20
2 10
N e % 15
T = 12 min 6 min A min 20
0 ] 1 [ | P
D 4 8 2 16
Trip Density, thousands of trips per day per sq mi
1 A b | i .
0 20 40 &0

Trip Density, trips per day per hectare
Figure 5-2. Total Cost per Trip of Bus Systems
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Similar analyses can be carried through for the other cost effectiveness
parameters, but for bus systems that does not seem worthwhile at this
point. Understanding of the behavior of C/tr with trip density, trip length,
minimum headway, and the saturation number of people per bus gives a
good understanding of the cost effectiveness of bus systems.

The trip density can be interpreted by noting that

Ig = My T4p (5.3.12)

in which p is the number of people per square mile, 7,is the mobility, that is,
the total number of trips per person per day, and m, is the fraction of the
number of daily trips taken by bus transit. If the bus network covers only a
portion of the metropolitan area, 7, is composed of three types of trips:

1. Trips internal to the network
2. Trips from points outside the network to points inside
3. Trips from points inside to points outside

Analysis of this kind of trip distribution pattern is deferred to the next
chapter.

5.4 Cost Effectiveness of Shuttles

In analysis of cost effectiveness of shuttles, the cost per vehicle trip is the
most appropriate parameter. Combining equations (5.2.1) through (5.2.3),

(Chr), = C’U' (5.4.1)

In the case of a simple shuttle, N = | and n, = 2. Therefore equation (5.1.6)
can be written

Clyr = C..% + C, % (5.4.2)

in which
Cong,™ Copg* 2C,, + Cy, (5.4.3)
It is convenient to express #4/p, in terms of capacity. The capacity of a

shuttle is given by equation (4.1.4) in which D, = ¥ and the velocity and
times are given in seconds. Let

Tox =1t + Vi s (5.4.9)
Uy
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i
/nen

talp. = 10 (_-2.-'%"{’}'};) (5.4.5)

in which « is a factor between zero and one, and it is assumed that the daily
number of vehicle trips is ten times the number of peak-hour vehicle trips.
Substituting equations (5.4.2) and (5.4.5) into equation (5.4.1),
(Citr), = Goll + C, ) (1 + CF) (5.4.6)
in which
Cy = C..,.,‘T,,ISA(IO)‘a
C, = CofCony,
Cs = UV T
Thus, it is seen that the cost per vehicle trip for a shuttle is a quadratic
function of the length of the shuttle. To give the reader a feeling for the cost
per vehicle of a typical shuttle, consider the following example:

C. = Crcqt = m-m

C, = $100,000
C, = $1000/m
Cy = $50,000

Let the vehicles be amortized over &an assumed life time of fifteen years and
the fixed facilitics over forty years, allatan interest rate of 6 percent, Then,
from Appendix A, A, = 0.103, and A, = A, = A, = 0.066. Let the annual
operating and maintenance costs for the vehicle be 5 percent of the capital
cost and for the stationary equipment be 2 percent of the capital cost. Then,
from equations (5.1.2 through 5.1.5), and equation (5.4.3),

C, = $12240 G, = $86/m

C., = $8600 Gy = $4300  C, = $33.740
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Let Ty = 30 s and V, = 10 m/s. Then
Co = 0,187/« C| = 0,00255 Cg = 0.00333

Equation (5.4.6) is plotted in figure 5-3 for several values of T, and V,, and
for @ = [. Thus, once the flow per day is determined as a fraction of
capacity per day, the cost per trip may be found by dividing the values from
figure 5.3 by a. The costs used are representative only, and computations
made for specific cases should be based on manufacturer's data. The
curves terminate at the low end at the minimum length for which the
indicated line velocity is attainable at an acceleration of 1.25 m/s®. (See the
sentence below equation (2.4.6).)

5.5 Cost Effectiveness of Loop Systems

The number of occupied vehicles required in a loop system is given by table
4-2, In the present analysis, it is convenient to use the average velocity V,,,
defined for loops by the equation

<L.,>

V - S
w T I w <L, (5.3
y —-—l’"‘- 15% '1 ) 5 1
—_——— — - 30‘ /.
S3 / 2
...... 60s / 43
2
Cost per
Vehicle
per Top
v
1 L L L L .
0 200 400 600 800 1000

Shuttle Length, m

Figure 5-3. The Cost per Vehicle Trip of a Typical Shuttle (operating at
capacity 10 hours per day 300 days per year)
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in which the equations that give y and <L,> are listed in table 4-2. Then,
using the definitions given by equations (4.5.14) and (4.5.15), the total
number of vehicles is

Nw g<'p>vfi|9 (5.5.2)
Y av

in which g = 10 Dy is the assumed daily travel. Equation (5.5.2) is
applicable until the minimum headway, given by equation (4.3.6), is
reached. If 1zis increased further, training or off-line stations must be used.

Using equations (5.1.6) and the definitions that lead to it, and (5.2.1),
equation (5.2.2) becomes

Chr = —563'—‘ [C,.q,N + G (& + Upn,) + Cony + C.,,_]
(5.5.3)
in which
Co. = ACre + Cocpy* (ACus, + Cr, ) e

‘a
Cutpy = AuCety + Coton

w = ratio of cost of curved guideway to
cost of straight guideway

and the term 2/,un, is added to the guideway length to explicitly account for
off-line stations. If the stations arc on line, this term is dropped and f, = 1.
Substituting equation (5.5.2), equation (5.5.3) becomes

C o<l Gt + C.,,‘
CIT = ~50f, Vadpdad 300

+ (2(:‘."“ tcl.)"l

o 3001, (5.5.4)

in which p/q. is the average vehicle load factor.

As indicated in the derivationof C,,, C,, and, for similar reasons, C, are
very weakly correlated with vehicle capacity. Hence, the first term in
equation (5.5.4) depends on vehicle capacity directly only if vehicle size

{



influences average speed and load factor. In on-line station systems, f, = |,
but the intermediate stops lower V,, thus raising the vehicle cost compo-
nent of the cost per trip. Larger vehicles must wait longer at stations to
increase the load factor, thus reducing V,, while attempting to increase
(p/q.). If ti.2 stations are off-line, f, may reduce to about two thirds but V,,
increases substantially, for given V., due to elimination of intermediate
stops (see figure 2-4). Also, as vehicle capacity decreases, the station dwell
time required to obtain a significant daily average load factor decreases,
thus increasing both V., and p,/g.. If the service is on demand such that the
vehicle leaves the station with only one party aboard, it is apparent that the
first term in equation (5.5.4) is minimized. If the guideway is made bi-
directional by permitting flow in opposite directions either side-by-side or
above and below the guideway, the average trip length is substantially
reduced, as indicated in table 4-1, thus reducing the vehicle cost term in
equation (5.5.4).

The numerator of the third term in equation (5.5.4) increases due to
addition of off-line stations because of the addition of off-line ramps.
However, the station platform itself is generally shorter with off-line sta-
tions, thus reducing C, . Moreover, the increased average trip speed, V,,.
possible with off-line stations generally increases #0 r,. Thus, the direction
of the net change in C/tr due to addition of off-line stations requires detailed
analysis of a range of specific examples.

For a given route length, &, the second term in equation (5.5.4) depends
mainly on C,_ and ty. The guideway cost per unit length, C,, depends on
three factors:

1. The weight per unit length of the vehicles
2. The cross sectional dimensions of the guideway
3. The maximum speed

In figure 3-4, the weights per unit length of operational and developmental
transit vehicles are plotted as a function of design capacity. Lower weight
per unit length of the vehicles permits reduction in guideway weight per
unit length and hence in guideway cost. An even more effective way to
minimize guideway cost, however, is to choose the guideway cross-
sectional shape so as to minimize guideway weight per unit length, This
subject i1s discussed in chapter 10.

The influence of maximum cruising speed on guideway cost is indicated
by equation (3.6.21) which shows that, for a given guideway misalignment,
the maximum lateral jerk is proportional to the cube of the speed. Thus, for
specified maximum lateral jerk, the misalignment tolerances increase very
rapidly with speed, thus requiring a more rigid, more accurately aligned,
and hence more expensive guideway to accommodate higher speeds. In
this regard, the comparison between on-line and off-line stations is signifi-
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cant. With off-line stations, figure 2-4 shows that V,/Vy is much closer to
unity than with on-line stations. In typical cases, this ratio is in the
neighborhood of 0.6 for on-line station systems and 0.95 for off-line station
systems. Thus, for a given average speed, the maximum speed is consider-
ably lower if off-line stations are used.

Finally, the patronage term f, in the second and third terms of equation
(5.5.4) is greatest and hence the guideway cost portion of C/tr least if the
trip time is minimum, that is, if Vi, is maximum. Thus, high V,, lowers all
terms of equation (5.5.4). However, if V, is increased by increasing Vi, Gy
increases. as indicated above, and also C., increases because higher V,
requires higher motor power, approximately in proportion to V. Also, 1,
increases with Vy, as indicated by the theory of sections 3.4 and 3.5 Thus,
there is a value of V, that minimizes C/tr. Based upon detailed parametric
analysis of the cost of guideways and vehicles, and of the dependence of
patronage on V,,, the optimum value of V, can be determined in specific
cases. Determination of the optimum V; for a range of practical cases is of
fundamental importance in the cost effective design of guideway transit
systems.
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5.6 Cost Effectiveness of Line-Haul Systems

Since a line-haul system is a collapsed loop, the analysis of cost effective-
ness follows the line of argument developed in section 5.5. The headway
limitation is determined by the analysis of section 4.2 and may be different
if the end stations are reversing as shown in figure 4-8 rather than if they
permit unidirectional flow, as shown in figure 4-6. Equation (5.5.4) is used
to compute the cost per trip, in which, for line-haul systems, & is the length
of two-way lines and C,_is the annual cost per unit length of two-way lines.

In section 5.5, the terms of equation (5. 5.4) were analyzed qualitatively
to determine the variation of C/tr with various design options. Here, we will
place some numerical estimates on the parameters in each of the three
terms of equation (5.5.4). The costs assumed will be typical of several types
of line-haul systems, and the purpose of the analysis is to obtain a feeling for
the magnitudes and the ranges of variables needed to make the system
economically feasible. Much actual cost data can be obtained from the Lea
Transit Compendium([3] for specific systems of all types. However, to
avoid reference to the equipment of specific manufacturers, the numbers
assumed here must be considered representative only.

Consider the first term in equation (5.5.4), the vehicle cost per trip.
From figure 5-1, a representative value of vehicle cost per unit capacity is
about $2500 per unit capacity. Assume that the amortization factors are as
computed in section 5.4, that the annual vehicle cost for operation and
maintenance is 5 percent of the capital cost, and that the annual cost for
support facilities is 30 percent of the annual vehicle cost. Then, from the
definition below equation (5.5.3), C., = $500 per unit capacity per year.
Consider an on-line station system. Thenf, = 1 and in typical modern cases
Vye = 60 kmv'hr, Let o = 1.05. Then

<L

Cltr),. = $0.003
(CRN)enperes FY

In line-haul systems <L,.> = 8 km is representative. The number of people
per vehicle, p,, comes from equation (5.5.2) and must be representative of
rush period values, Assume pJg, = 0.2. Then

(C/tr)enseres = $0.12 (driverless vehicles)
If each vehicle has a driver, add $30,000'g. year to C,._, _. For typical train
systems, assume the vehicle design capacity is 100 pco;ﬁc per vehicle, Thus
C., = $800 and

(CItr), canies = S0.19 (driven vehicles)
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In this hypothetical case, there is a savings of 7¢ per trip by use of automatic
control if the vehicles are large. With g, = 10, the savings would have been
$0.84 — 0,12 or 72¢ per trip. Thus thercisa substantial advantage in going to
automatic control only if small vehicles are contemplated. The actual
savings is smaller than indicated if account is taken of the increased cost per
vehicle due to automatic control equipment.

While the vehicle cost term in equation (5.5.4) appears to be indepen-
dent of the patronage, I, equation (5.5.2) shows that p, declines in propor-
tion to t, with vehicles operating at a fixed rush period headway. Thus, if 14
falls below the value used to compute N, in which computation p, is
assumed to be a reasonable fraction of ge. (C/0)vensre rises because p,
falls.

In the above estimations, V,, was assumed to be 60 km/hr = 16.7 m/s.
From equation (2.4.4) or figure 2-4, such a high average speed can be
obtained only with wide station spacing and high line speed. Forexample, if
in the rush period the dwell time averages 40s, ay = 1.25 m's?, and the
station spacingis 2.4km (1.5mi), V., = 16.6m/s if V, = 30 m/s. If increased
access is desired by placing stops say on¢ half mile or 0.8 km apart, thena
V, of 30 mvs can still be achieved but this results in an average speed of only
8.73 mVs (19.6 mi/h). Thus, the values of (C/tr)enicte cOMputed above must
be multiplied by the ratio 16.68.73 = 1.9.

If the system under consideration is a street car with stops every quarter
mile or 0.4 km, the maximum achievable speed at a,, = 1.25m/s and a,/J =
| is (see equation (2.4.5)) V, = 2L.7 m/s = 48.9 mi/h. This is too high a
maximum speed for street service. Assume instead V, = 35 mi'h = 15.6
ms. Then, from the same conditions, equation (2.4.4) gives V,,, = 5.06 m/s
(11.4 mi/h). If 1 is reduced to 10 seconds, V,, = 8.14 m/s (18.3 mi'h). Thus,
in these cases, the vehicle cost per trip is increased by factors of 3,30 and
2,05, respectively.

If off-line stations are used in the same example witha trip length of five
miles, D, = 8 km in equation (2.4.4), and with @, = 1.25 m/s*, 1, = 405, and
V, = 17 mis, V,, = 15.2 m/s. Thus, the average speed is only 10 percent
below line speed. If a,, = 2.5 m/s*, assuming seated passengers, and 1, = 10
s, V,, = 16.4 m/s or only 4 percent below line speed. As indicated in section
5.5, by obtaining an average speed only slightly below the line speed, the
vehicle cost per trip can be kept low while not penalizing the guideway cost
per trip by having to design for an excessively high maximum speed.

In estimating typical levels of the second and third terms of equation
(5.5.4), it is necessary to develop a simple model for estimation of 7,. Thus,
assume a line-haul system draws patronage from an area of length ¥ + W
and width W. Then, combining equations (5.3.4) and (5.3.12),

L= My 74 pA = mrpWE + W) (5.6.1)
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In a typical case, assume W = 2 mi and & = 10 mi. In typical U.S, urban
areas, 74 is roughly three trips per person per day. Assume a nominal case in
which p = 10,000 people per sq mi and m, = 0.05. Then 1, = 36,000 trips per
day. This is typical of the trip attraction of rail rapid transit systems in the
United States(4].

For elevated rail systems C, is in the range of $10 million to $20 million
per mile. For subways, the cost rises to the range of $40 million per mile,
and for surface systems, it may be as low as $2 million per mile. Assume, as
insection 5.4, A, = 0,066 and C.M /C, = 0.02. Then, from equation (5.1.3),
C,, = 0.086 C,. For convenience in this estimation, assume C‘,O =
0.2C,,#. Then the guideway cost per trip term in equation (5.5.4) is

- C‘ug + C%
((,l‘(r),.m., - —W“

_ 0.103C,%
- Bm" (5.6.2)

Substituting for 7, from equation (5.6.1) and then the numerical parameters
listed under that equation,

(CAD)guseway = 0.095(10)°C,

Thus, if C, = $2(10)%, (C/r) gigeway = 19¢ per trip, and it is clear that even
with modest guideway cost, the component of cost per trip due to the
guideway is well above the component due to the vehicles. If a twenty-
million-dollar-per-mile guideway is used, it can be justified only if the
patronage is substantially higher. From equation (5.6.1), patronage can be
increased by increasing the mode split m,, by considering such a system
only in very high population density corridors, or by increasing the arca
coverage. Assuming V,, is already as high as practical, m, can be increased
only by improving access to the system by drawing from a larger arca.
However, many studies of rapid rail including access modes indicate that,
in most communities, a daily mode split of even 10 percent is highly
optimistic[4]). With on-line stations, attempts to increasc access and hence
m, by placing the stations close together resultin lowered V,, and hence the
sought-after increase in m, is not impressive. V,, can be kept high and m, at
a maximum only with off-lin¢ stations, and nonstop, on-demand service,
Even then, if the system only serves a narrow corridor and not an area, the
expected increase in m, is generally not impressive, From the analysis of
(C/) puptenwny it seems clear that the promise of guideway transit lics in
keeping C,under $2 million per mile and m,as high as possible by providing
minimum trip-time service.
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Consider the station contribution to cost per trip. From equations
(3.4.3) and (2.2.6), the length of an off-line ramp into off-line station is
approximately

i
I =V, [( 372‘1 ) + gi__«» {7‘] (5.6.3)

For off-line station systems, assume for the present analysis thata,, = J =
J, = 2.5m/s*, V, = 15m/s, and H = 2.5 m. Then [, = 100 m. For these
systems, also assume that u = 1.2 and C, = S2(10)* per one-way mile or
$1250 per meter. Thus C, = 0.086 (§1250) = S107.50/m and 2 Coleit =
$25.800 per year. For off-line station, small-vehicle systems, C, has been
estimated in the range of $100,000. Thus, using the same amortization
factor and ratio of capital to operating and maintenance costs as for guide-
ways, C, = $8600 per year. Thus, for off-line station systems, we estimate
the total station cost per year as

2 Gyl + C,, = 534,400 per year

But, for a two-way line-haul system, each **station™ is two one-way sta-
tions with a cost of $68,800 per year. With.# = 16 km (10 mi), we estimated
Coi + Cyy, = 0.103 C, % orwith C, = $4(10)° per two-way mile x 10 miles,
C, & + Cy, = $4.12(10)* per year, If there is one station per mile, n, = 11,
and the lota.r annual cost for stations if $68,800 (11) = $757,000 or I8 percent
of the guideway cost. If the stations are half a mile apart, their annual costin
this example is 35 percent of the guideway cost. Usually, the cost per
two-way mile of guideway is not twice the cost of one-way guideway
because of economies in placing two guideways on a single set of supports,
but in the range of 30 percent less per unit length. If this is the case, the
station cost is 26 percent and 50 percent of the guideway cost, respectively,
in the above example.

If the stations are on-line, the platforms are generally larger and the
structure larger. Costs of rail rapid transit stations are quoted in the range of
$500,000 to $1 million and higher, which exceed the cost of off-line stations
counting the off-line ramps. For this reason, and because of high guideway
cost, the so-called “‘light rail"' transit option is often considered. It is
attractive if it does not require exclusive right of way, if the track can be
conveniently laid at surface streets, and if enclosed stations are not needed.
In these cases, the components of cost due to guideways and stations
become manageable. Unfortunately, however, lower cost ways and sta-
tions usually mean interference with street traffic and hence reduced aver-
age speed, which increases the vehicle component of cost per trip.
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If the line-haul system consists of forty-passenger buses operating in
mixed traffic or on freeways, the major cost is the vehicle cost. Then, in the
above example, the driver cost term in the cost per year is in the neighbor-
hood of $30,000/40 = $750 and (C/Ar)wemeses 18 approximately 21 ¢ per trip, if
Ve = 60 kmv/hr, and rises in inverse proportion to V,,.

Again, it must be emphasized that the above calculations are represent-
ative only, and that conclusions for policy purposes should be based on
analysis of specific sitvations. By following the above analysis, however,
the reader can quickly estimate the cost per trip in specific cases. The other
cost effectiveness variables derived in section 5.2 can be computed readily
once the cost per trip and number of trips per year are known, and these
need no further elaboration here.

5.7 Cost Effectiveness of Guideway Network Systems

In section 5.3, the cost per trip of network bus systems was discussed,
Here, a similar analysis is carmied forward for network systems in which
automated vehicles run on exclusive guideways. For the analysis of net-
work systems, equation (5.5.4) is still the basis, except that an additional
term must be added to account for extra ramps at interchanges. Equation
(4.5.6) gives a formula for the number of intersections in a network system.

Figure 5-5 shows two basic types of interchanges: the multilevel in-
terchange and the Y-interchange. Both permit two perpendicular streams
10 go straight or turn through the interchange. The multilevel interchange
has the advantages that traffic streams diverge before they merge, and both

Multilevel Interchange Y«Interchange

Figure 5.5. Network Interchanges
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streams going straight through do not have to turn, It has the disadvan-
tages, however, that the through guideways have to be at different levels,
and the visual impact of guideways at one location may not be acceptable.
The Y-interchange has the advantages of being all at one level and of
minimum visual impact, but the disadvantages that the traffic streams must
merge before they diverse, thus doubling the flow on the line through the
interchange, and that the traffic on one of the lines must make unwanted
turns through the interchange. In the cost analysis the difference is that the
multilevel interchange uses four ramps and the Y-interchange two. Thus,
define an interchange factor Z, where Zis equal to 1 for Y-interchanges and
2 for multilevel interchanges. Therefore, equation (5.5.4) becomes

- 1 Ce o <L!> R
o mr[ T, Varlpla G

+ ‘l‘, Co ¥ + QC, L + Con, + 2ZLuCy ny + C.,..“

The network values for £, n,, and n; are given by equations (4.5.1, 4.5.4,
and 4.5.6), respectively; and, from figure 4-18, let

<L,.> = vA'? (5.7.2)

Using these equations and equation (5.3.4), equation (5.7.1) becomes

C,‘avA"’

|
O = 35| T Vaipdad

(QBILNC,, + 2 + ZBuC, L/L + C, /L] + Cy /A
4 - a
Ie
(5.7.3)
To give a feeling for magnitudes, consider a specific example. A typical
automated system suitable for network operation and for which cost

data[5] is available is the Cabintaxi system under development since 1970
by DEMAG Fordertechnik and Messerschmitt-Bolkow-Blohm GmbH,
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The parameters for this system are as follows:

q. = 3 o = 1.03
Coe = $1450 I = 1.2
C, = SI125/m A = 7
Ca = $55% Ver = 10m's
Car, = S180,000 i, = 9m
Z = 1 plg. = 05

In addition let the line spacing be L = 800 m. Then consider the two
network sizes depicted in figures 4-16 and 4-17. Thus, for:

Figure 4-16
AR = 3L= 2400 m
B = 4/3
v = 1.21 for two-way flow (fig. 4-18)
= 1.44 for one-way flow
Figure 4-17
A = 5L = 4000 m
B = 1.2
v = 0.99 for two-way flow (fig. 4-18)

1.21 for one-way flow

The costs given above are for two-way guideways and stations, with
vehicles running above and below the guideway. With one-way guideways
and stations, the cost of these facilities, in the Cabintaxi system, is reduced
by about 25 percent.

The quantity 10 in the first term of equation (5.7.3) is approximate and
has units of hours per day. Therefore, with V. in meters per second, the
first term must be divided by 3600 seconds per hour. The quantity fy in
equation (5.7.3) is not a true trip density because, in its definition given by
equation (5.3.4), it is divided by the arca bordered by the guideway. If,
however, I, is broken down into components, as indicated by equation
(5.3.12), it is usual to think of p as the average number of people per unit
arca within the area served by the network area. Call this area A'. Then, for
the network of figure 4-16, assume that A" = (4L)*; and for figurc 4-17, A" =
(6L), that is, A"/A = (4/3)* and (6/5), respectively. Now, to be able to
consider f, in equation (5.7.3) as a true trip density, multiply 7, by A’/A.
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With those modifications, equation (5.7.3) can be written in the form
Chr=C, + Cylly (5.7.49)

Values of C, and C; together with key geometric and performance param-
cters are given in table 5-1. In the table, it is assumed that the units of 74 are
trips per day per hectare (1 h = 10 m*, 1 5q mi = 259 h).

The performance parameters for the data of table 5-1 are plotted in
figure 5-6 as functions of trip density. The curves labelled **S™" correspond
to the network shown in figure 4-16 for a line spacing of 800 meters or one
half mile, and the curves labelled **L"" correspond to the network shown in
figure 4-17 also for a line spacing of 800 meters. Data are plotted for each of
these networks for both one-way and two-way lines.

In the upper graph of figure 5-6, the lines proportional to trip density
give the fleet size. In each network more vehicles are required if the lines
are one way because the trip length is longer in that case. In the two-way
network, half of the vehicles are on each side of the guideway.

The average headway is derived from equation (4.5.18) except that for
two-way lines, T, is doubled because half of the vehicles are on each side

Table 5-1 Geometric, Performance, and Cost Parameters for a Typical
Network System—L = 800 m, V,, = 10 m/s

AM W 3L = 24km SL = 4km

Guh;a;y RS T-:«»- ;l'ay - “OJ;:-W;y : i;o-;Va; o Onc-;b'a; B

v (fig. 4-18) 1.21 1.44 0.99 1.21
<lL,>,¢q.(5.7.2) 2.90 km 3,46 km 3,96 km 4.84 km

¥ leg. 4.5.1) 19.2 km 48 km

n, (eq. 4.5.4) 24 o0

Nit, (eq. 5.5.2) £.50 10.15 26.10 1.9
Touls (eq. 4.5,18) 465 s 1955 179 155 5

(232 %) (189 5)

fuis (eq. 4.5.19) | 7.7 people/hs 18.5 p/iwr 9.5 p'he 23.2 pthr
Si.Jie(eq. 4.5.2001 2,13 phhr 4.28 p/hr 1.92 pihr 384 phr
Tonele (€¢q. 4.5.22) | 970 min 485 min | 2766 min 1383 min

s 0.120 0.144 0.164 0.200

C,$/day-h 12.33 9.40 13.17 993
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of the guideway and the two groups of vehicles do notinteract. If, however,
the two-way network uses Y-interchanges, the average headway between
merge and diverge points is not doubled. This headway is indicated by the
dotted curves. Itis seen in figure 5-6 that the average headway is a stronger
function of provision of one-way or two-way guideways than of the size of
the network. The capacity constraint on the system is due to the minimum
headway, which is a fraction of average headway. The ratio Tyun/Tay de-
pends on the nonuniformity of demand, and the lines and stations should be
located to make this ratio as near unity as practicable. Knowledge of T,,
gives a feeling for the probable range of Tain, UL Ty must be determined
from & detailed operational simulation.

In the lower graph of figure 5-6, the lines proportional to trip density
give the average line and station flow. The upper four lines marked
“line,"" give the average line flow, and it is seen that even for the very high
trip density of 200 trips per day per hectare (51 ,800 trips per day per square
mile) the average flow is under 2000 persons per hour for two-way lines, but
in the range of 4000 persons per hour for one-way lines. The maximum
flows exceed these vilues by the ratio T/ T, as discussed above. The
average station flows can be compared with published data[6) from simula-
tions on the maximum flows obtainable. With single-platform stations,
flows of 600 to 1000 vehicles per hour are achievable according to the
simulations.

The nonstop wait time, computed from equation (4.5.22) and presented
as the family of hyperbolas in figure 5-6, is important from the viewpoint of
the type of service provided. The reader is referred to the discussions
following equation (4.5.22) for an interpretation of the meaning of Ty
Since the average trip time <L>/V,, ranges, from table 5-1, between 4.83
min and 8.07 min, it is seen from figure 5-6 that the nonstop wait time is
equal to or less than the average trip time only for densities above about 180
trips per day per hectare. The implication is that a service concept in which
the first rider to board a vehicle must wait, say, at least To. 10 sce if
another party can board going to the same stop will more than double the
fleet size needed if the vehicle leaves when the first party boards. Such
service will also substantially decrease patronage because the total tip
time is more than doubled. Thus, group riding services require many
intermediate stops, which also increase the total trip time and hence the
cost of the vehicle fleet. Group services may in some cases be of interest in
handling particularly high patronage between a pair or a small number of
points if the headway requirements cannot be satisfied with single-party
service: however, in these cases it should be determined if it would reduce
the cost per trip by splitting the line into a pair of single party service lines.

Figure 5-7 shows the total cost per trip of the Cabintaxi system as a
function of trip density. By comparing with figure 5-2 for given parameters,
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one can see under what circumstances the automated system has a lower
cost per trip than a bus system, and it is scen that the comparison is
favorable to the automated system for the higher range of trip densities,
above about forty trips per day per hectare (10,400 trips/mi®). Itis cautioned
that this comparison should not be taken too literally because of sensitivity
to parameter changes and that specific conclusions should only be drawn
from more detailed analysis of specific cases. Infigure 5-7.itis seen that the
two-way system is more expensive per trip for the large network below
about 83 trips per day per hectare, and for the small network below about
130 trips. The two-way system is cheaper at high trip density because fewer
vehicles are required and the vehicle cost term becomes more dominant as
trip density increases. The larger network has higher cost per trip because
the average trips are longer. Note that below 40 trips per day per hectare the
estimated costs are very sensitive 1o errors in estimation of patronage.

At the bottom of figure 5-7, the modal split to the transit system is
plotted as a function of trip density in accordance with equation (5.3.12). In
this equation, the term p is to be interpreted not as the residential popula-
tion density but as the number of people per hectare who live, or work, or
shop, or seek recreation within the area of the transit network. If the
network is placed in an area of major activity within the urban arca, the
latter density exceeds the residential population density by a large factor;
however, if the network covers an entire city, the two average densities are
roughly the same. Thus, it can be appreciated that, as the network grows,
the cost per trip must increase if the modal split remains constant. How-
ever, a larger network puts more destinations within reach and can there-
fore be expected to increase the modal split, thus reducing the cost per trip.
The plot of mode split versus trip density is made for the specific case of a
mobility of three trips per person per day. This is representative of cities
like Denver and Minneapolis, but, in cases in which a different value is
more appropriate, the plot can be adjusted accordingly. The mode split in
figure 5-7 includes trips totally within the network area as well as trips part
within and part without. These mode splits will of course gencrally differ,
and the differences must be taken into account in more detailed analysis.

A cost per trip in the range of thirty cents requires a trip density of eighty
trips per day per hectare. With 74 = 3 and m, = 30 percent, Citr = 30¢
requires p = 89 people per hectare or 23,000 people per square mile. This is
a low density for an active central business district, but m, = 30 percent is
well above that obtained by conventional distribution systems. Thus, to
make the guideway system feasible, some auto-restrictive policies in the
network area may be needed, If the network is used for freight movement,
the cost per passenger trip may be reduced up to about 25 percent, as
indicated in the discussion of equation (5.2.7).

The cost per passenger-kilometer, as defined by equation (5.2.4), is
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plotted in figure 5-8, based on the data of table 5-1. Note that there is a small
economy of scale in this parameter, and that the one-way system is some-
what lower in cost per passenger-kilometer for all trip densities; whereas, if
the comparison of costs is based on the trip, the one-way system is cheaper
at low trip density but more expensive at high trip density. Again, at low
trip density, the economic analysis is extremely sensitive to errors in
estimation of patronage.

For network systems, it is worthwhile to consider the cost effectiveness
parameter, PV, given by equation (5.2.13). Let the trend system in equa-
tion (5.2.10) be the auto system and assume the auto cost per vehicle-
kilometer is in the range of 9¢ to 15¢ (15¢ to 25¢ per vehicle mile). Assume
also that the average trip length is the same by both modes, Then

(C1yThoeat syem = 3000 “E (C/veheKM) s (5.7.9)

in which 1, = 740A" is the total number of trips per day. Assume the new
system is part auto and part automated network, and that the mode split to
the automated system is m,. Then

(Clyhew symmeem = 30014 <L,> [(C/veh-km)yg (1= m)ip,

(5.7.6)
+ (Clpass- km)y.m,]

Substituting equations (5.7.5) and (5.7.6) into equation (5.2.10),

(CS/yr); = 300 L, A'<L;> pL (Civeh-km),u, -(Cfpass-km)...«] (5.7.7)
» .

in which 1y = mggp.

In this simple example, assume the system is all built at once and then
that (CS/yr); is the same each year. The sum in equation (5.2.13) can then
be written in the following closed form:

. (CSiyn) _ 1
PVy= PR |y - _—‘.7,-] (5.7.8)
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For illustrative purposes, consider the specific example in which the dis-
count rate d exceeds the inflation rate / by 2 percent, and N = 20 years.
Then equation (5.7.8) becomes

PVy = 16.4(CS/yr); (5.7.9)

Economists do not agree on the most appropriate value for d — i, therefore
a range of values must be used and the results compared. In figure 5-9, the
present value of future savings over a period of 20 years is plotted for the 4
x 4 kilometer network of figure 4-17 for p, = 1.5, for a range of auto costs,
and for the range of trip densities for which PV is positive. It is interesting
to note by companing with figurc 5-8 that the present value is negative in the
range below 40 trips per day per hectare in which the cost curves rise
steeply. Itisalso noted, from figure 5-8, that the present value would be less
for the smaller network. A trip density of 40 trips per day per hectare
corresponds at m, = 0.30 to a density of 45 persons per hectare or 11,500
persons per square mile, or at m, = 0,50 to a density of 27 persons per
hectare or 6900 persons per square mile, Thus, for a wide range of existing
urban densities, the automated system looks attractive from the standpoint
of direct cost savings if mode splits in the indicated range are achievable.
To achieve mode splits in this range, however, may require the imposition
of policy restrictions on auto use such as high parking fees and narrowing of
streets, by converting them partly or wholly into malls.

In a real situation, it would be desirable to build the network and put it
into service stage by stage, Then, in the present value calculation, (CS/yr)y
changes from year to year and equation (5.2.12) must be used directly. Such
a calculation is carried out in the author’s paper in Personal Rapid Transit
111 for an exponential urban density model[ 1].

5.8 Summary

In this chapter, basic system cost equations are first derived applicable to
any transit system, Then a family of cost effectiveness parameters are
developed. The most fundamental of these is the total cost per trip, mean-
ing the annualized capital cost plus annual operating and maintenance costs
divided by the annual patronage. This parameter directly indicates the
percentage of subsidy required for a given fare, and, if it is in a good range,
the other parameters are usually satisfactory also. However, for a variety
of purposes, other cost effectiveness parameters are denived. These are
discussed as follows:

1. The cost per vehicle trip. This is of interest in comparing certain
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systems, but is not a parameter of fundamental importance in the eco-
nomics of transit systems,

2. The cost per passenger kilometer, which is of interest in comparing
transit systems with the automobile, and is Wvemest fundamental economic
unit of transit performance. -~

3. The cost per passenger trip if freight is hauled on the transit system.
If freight is hauled, more vehicles and more stations are needed, thus
increasing the cost, but more revenue is generated, thus reducing the cost.
Equation (5.2.7) includes both of these effects and shows, by the example
given, that the potential for reduction of passenger cost per trip if freight is
hauled is about 35 percent,

4. The annual surplus, which is of obvious interest to transit agencies,
and to legislative bodies responsible for taxes to support the system if the
surplus is negative, which is usually the case.

S. The added cost per trip required to attract one additional passenger
per year. This marginal-cost parameter shows the point at which further
cxpansion of the transit system cannot be justified on a direct economic
basis. If all indirect costs are included with the direct costs, it is a true
indication of the point at which to stop expansion.

6. The present value of future savings if the system is built. This
parameter is developed by estimating the total transportation cost per year
in each future year, say twenty years in the future, in the area in which a
new transit system is to be deployed or extended, and is determined first
without the new system and then with it, If the difference between these
quantities is positive in a particular year, there is a cost savings in that year
if the new system is built. If the savings in each future year is discounted to
the present time and summed, the result is an indication of the size of
research and development effort that can be mounted to bring the new
system into being. If the costincludes all indirect as well as direct costs, and
the accumulated present value is not strongly positive, the new system
cannot be justified. This is a much stronger indication of the importance of
the project to society than the more commonly used benefit/cost (b/c) ratio,
which is too subjective in application. To use the b/¢ ratio, one must make a
subjective judgment as to how far above unity it should be to justify the
project, and it provides no quantitative information about costs.

In use of any of the cost effectiveness indicators, it is the responsibility
of the analyst to compute a range of these indicators as a function of each of
the variables to give the policy maker a sound basis for decision and a
knowledge of the consequences of error.

In the third part of this chapter, the cost effectiveness equations are
applied to each of the four basic types of transit systems listed in table 4-5.
Network bus systems are discussed first. The cost per trip is given by
equation (5.3.5) in terms of the scheduled headway and the trip density.
But, as the trip density increases, a point will be reached at which the bus
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capacity is inadequate for the given headway. To increase patronage
further, the headway must be reduced or lines must be placed closer
together, in either case adding more buses in proportion to the added
patronage. In this case, the cost per trip is independent of patronage and is
given by equation (5.3.8) in terms of the saturation value of bus occupancy,
that is, the maximum number of people the bus system can handle divided
by the number of buses. Thus, the saturation value is well below the
saturation occupancy of a given bus. For a typical case, the cost per trip of
network bus systems is plotted in figure 5-2. The horizontal lines indicate
the minimum cost per trip at saturation. The steeply rising curves, away
from saturation, depict the situation of contemporary bus systems. As the
population density has decreased, the trip density has decreased more than
in proportion because lower density means longer service intervals at a
given cost, and hence greater attractiveness of the automobile. Steeply
rising cost per trip curves means rapidly increasing deficits, which lead to

. reduced service in terms of the number of buses orincreased fares, either of
which reduces patronage further.

Next, the cost effectiveness of shutties is considered. Equation (5.4.6)
shows that the cost per vehicle trip of a shuttle is a quadratically increasing
function of the length of the shuttle. Thus, while relatively short shuttles
have found practical applications, longer ones quickly become prohibi-
tively expensive. Figure 5.3 shows a family of typical cases.

The cost per trip of loop systems is given by equation (5.5.4). Below it
the variation of cost per trip with its parameters is discussed. A point
worthy of emphasis is that, based on the data of figure 5-1, the capital cost
of a vehicle per unit capacity is independent of vehicle capacity. Therefore
the portion of the cost per trip due to vehicle capital cost is not a function of
vehicle size but only of load factor, that is, relative occupancy. In most
cases, the guideway cost term dominates. It is shown in chapter 10 that in
urban applications the required guideway mass per unit length is propor-
tional to the vehicle mass per unit length. Figure 5-4 shows that the mass
per unit length of transit vehicles increases rapidly with vehicle capacity,
indicating that minimum guideway size and hence cost is obtained with
minimum vehicle size.

In section 5.6, equation (5.5.4) is applied to the analysis of the cost per
trip components for line-haul systems. Typical numerical values of the
various parameters are used to give the reader a feeling for the relative
importance of vehicle, guideway, and station terms. It is shown that the
unit cost of guideways must be very low compared to contemporary values
if the guideway term is to reduce to the neighborhood of the other two
terms. It is also shown that the introduction of automation is a significant
factor in reduction of system cost only if the size of the vehicles is substan-
tially reduced from current practice.

Finally, in section 5.7, the cost per trip equation is modified for use in
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analysis of the cost effectiveness of network systems. The result is equa-
tion (5.7.3). As a specific example, performance and cost effectiveness
curves are developed for the case of a specific network system for which
cost data is available. The basic performance parameters are shown in
figure 5-6, and the cost effectiveness is shown by means of figures 5-7, 5-8
and 5-9. Note in particular that the nonstop wait time is, in almost all cases,
too long to make it practical to have vehicles wait for a second party if the
trip is to be nonstop. The cost per trip curves of figure 5-7 should be
compared with the corresponding curves for bus systems, figure 5-2, Tt is
seen that at high trip densities, the guideway system is cheaper. Note that,
with the bottom chart relating trip density to mode split, figure 5-7 shows
the range of parameters for which the guideway system is an economically
justifiable alternative, and that in many cases the implication is that some
form of auto-restriction policy is necded if the guideway system is to be
economical. Figure 5-8 shows an economy of scale in going to large net-
works if the trip density does not decrease too much as the network size
increases, and that the one-way line system gives a significantly lower cost
per trip than the two-way line system. Finally, figure 5-9 shows how high
the trip density must be if construction of the system is to be justified ona
direct economic basis in comparison to an automobile system. Note from
figures 5-7 and 5-8 that in the region of trip density in which the system is
expensive, the cost per trip is very sensitive (o errors in computing patron-
age; however, if the trip density is above about forty trips per hectare, the
system is quite economical and insensitive to errors in computing patron-

age.

Problems

I. Municipal bonds at 4 percent interest are used to finance a public
investment of $120,000,000 which has an estimated useful life of 40
vears. What is the annual cost for capital and interest?

. A city of 200,000 people with an average population density of 8000
people per square mile desires to install a network of scheduled bus
lines using 60 passenger buses. The average line spacing for the net-
work is 0.75 mi. It is determined that the average bus speed will be 11
mi/hr and that the average load factor can be no higher over the whole
city than 25 percent. The average trip length can be taken as 40 percent
of the square root of the area of the city, The cost parameters are those
given in the text. It is proposed that a fare of 30§ per trip be charged.
Assume the mode split is 1.2 times the fraction of the area of the city
that can be reached from an arbitrary point in the city without transfer-
ring, assuming that people will walk up to 0.25 mi from a bus line.

1
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a. Write an equation for the modal split in terms of the area of the city
(see section 6.8), and compute it for the given case.
b. Compute the total number of trips per day usmg parameters
suggested in the text, </ L .l e,
c. Compute the required number of buscs nf the transit authority
choses to base the number on the average flow in the busiest hour,
d. Compute the headway in minutes needed to achieve the computed
patronage.
Compute the cost per trip and the annual surplus per resident.
If the area of the city increases by 2 times and 5 times, what is the
“ surplus per resident if the headway and’ JEnsnty remain the same?
If the bus speed decreases by 30 peuenl due to increased street
congestion, how does the annual surplus per resident change from
that computed in e?

®m ' ™o
.. .

3. It is proposed to establish a line-haul commuter service between a
major urban center and a satellite city 100 km away. Discuss the
economics of this proposal in terms of the amount of travel needed to
make it pay, the size satellite city implied, and the guideway cost. Use
cost data discussed in the text.
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