Life Cycle Cost and
Reliability Allocation

.1 Introduction

he life cycle cost of a system is the sum of the acquisition cost and the
Ipport cost. The acquisition cost is the purchase price plus the interest
ost (see Appendix A); and the support cost is the cost of labor, equipment,
sare parts, and the associated logistics required to operate the system and
vkeepitin operation during its useful life, Every chapter in this book deals
irectly or indirectly with the problem of minimization of the acquisition or
Ipport cost of transit systems, and it is found that the costs vary widely
pending on the choice of a large number of parameters. In this chapter,
le variation of the costs with subsystem reliability is considered.

In a given transit system, defined by the types of components used and
le service provided, the acquisition cost will generally increase with the
ailt-in reliability of the components and subsystems, as shown in figure
1. On the other hand, the support costs reduce as reliability increases
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because the frequency of maintenance declines. Thus the life cycle cost, as
shown in figure 8-1, exhibits the character of a U-shaped curve with a single
minimum point. Each subsystem, such as a motor, & controller, a braking
system, or a wayside computer also possesses a similar life cycle cost
curve. If each subsystem is designed so that its life cycle cost is minimum,
the system life cycle costis a minimum. If the system reliability is adequate
at minimum life cycle cost, no further analysis is needed; however, the
more usual situation is that in which system reliability must be increased.
The problem then presents itself as to how to allocate subsystem re-
liabilities in such a way that the system life cycle cost is minimized at the
required level of system reliability. Thisis a standard Lagrangian minimiza-
tion problem, the solution of which is the main subject of this chapter. After
completing this work, the author became aware that & similar approach had
been developed by Everett|1]. The author’s own original analysis of this
problem has also been published.[2].

To solve the minimization problem in a meaningful way for transit
systems, it is necessary to define & meaningful and accepted measure of
system reliability, and to establish a means of classification of failures.
System reliability is commonly measured in terms of **availability,"" and is
treated in the next section. Classification of failures then follows.

8.2 Availability and Unavailability

Service availability in transit systems has been the subject of a great deal of
analysis[3]; however, at the time of writing no completely accepted
methodology has developed nor can it develop without considerably more
operational experience with automated systems. Nonetheless, a logical
formulation is possible which can be described in enough detail for the
purpose of this chapter. The common definition of lran;i't system availa-
bility is the ratio of the nominal trip time to the nominal trip plus the average
time delay due to failures. To take into account variations in availability in
various parts of the system at various times of day and on various days, the
following definition of service availability A is more suitable:

. PH, B (8.2.1)
A =pH, + PHD,
in which PH,, is the number of passenger-hours of travel per year on the
transit system, and PHD,, is the number of passenger-hours of delay due to
failures per year,
Define “unavailability' as

. = PHD (8.2.2)
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In a perfect system, ¢ vanishes. If € is much less than 1, as it must be if the
system operates satisfactorily, equations (8.2.1) and (8.2.2) gives

= 1.
A—l+¢ l - ¢ (8.2.3)

Thus the sum of availability and unavailability is practically equal to one.
Unavailability is the more useful measure of system performance because,
as shown in section 8.5, it is the weighted sum of failure rates, and such a
formulation is advantageous in the solution for the constrained minimum
life cycle cost.

The quantity PH,, can be expressed in the form

PH,, = (Person-trips/yrAverage trip time)
= (Equivalent work days/yr)(Trips/work day) <L,>/V,,

= 3001, ~VL!—< .'> (8.2.9)

- < .’..".._'. e (=2
in which 14 is the number of trips in an average work day, <L,> is the
average trip length, and V,, is the average trip speed (see chapter 4). In the
form given by equation (8.2.4), PH,, is directly obtained from data nor-
mally available. A meaningful expression for PHD,, depends upon the
following definitions of subsystems and classes of failure.

8.3 Subsystems of an Automated Transit System

To make the analysis specific and therefore more meaningful, consider that
an automated transit system will generally contain the types of equipment
listed below:

Basic Components (without listed subsystems):
1. Vchicles

2. Guideways

3. Stations

Vehicle Subsystems:

1. Automatic vehicle door

2. Propulsion system

3. Control system including sensors and actuators
4. Power conditioning and/or supply system

5. Braking system
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6. Switching system
7. Failure detection system

Wayside Subsystems:
1. Passenger processing equipment in stations (fare collection, destina-
tion selection, ticket vending, turnstiles)
2. Automatic station doors
3. Station entry monitors
4. Station-operated vehicle dispatchers
5. Merge point communication and control units
6. Diverge point communication and control units
7. Wayside switches
8. Wayside vehicle presence sensors
9. Wayside-to-vehicle, vehicle-to-wayside communication equipment
10. Central empty vehicle dispatcher
11. Central trip register and dispatcher
12. Central power supply

8.4 Classes of Failure

Each subsystem may, in general, fail in ways which produce different
consequences in terms of the average number of passenger-hours of delay.
These different modes of failure will be defined as different “‘classes of
failure,” and they need to be distinguished in this analysis in order to
compute the number of passenger-hours of delay, and then the unavaila-
bility.
Some examples of classes of failure are the following:

Vehicle failure ¢lasses:

1. Vehicle is permitted to continue to nearest station, where passengers
must egress. Vehicle is dispatched to maintenance. The number of
passenger-hours of delay is the time lost by p, passengers in transfer-
ring to second vehicle.

2. Vehicle is required to reduce speed but is permitted to continue to
nearest station, where passengers must egress. Vehicle is dispatched
{0 maintenance. The number of passenger-hours of delay is as com-
puted in Class 1 plus time lost by people in a string of vehicles required
to slow down while the failed vehicle advances to nearest station.

3. Vehicle stops or is required to stop and is pushed or towed by adjacent
vehicle to nearest station. After people in the two affected vehicles
egress, failed vehicle is pushed or towed to maintenance. The number
of passenger-hours of delay is computed as in Class 2 but time delay is
longer.
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4. Vehicle stops and cannot be pushed or towed by adjacent vehicle.
Must wait for rescue vehicle. The number of passenger-hours of delay is
computed as in Class 3 but the total time delay is much longer and depends
on the availability of alternative paths.

Merge point command and control unit failure classes:
I. Vehicles can proceed through merge point at reduced speed.
2. Vehicles must stop until unit is repaired.
3. Collision occurs.

Diverge point command and control unit failure classes:
1. Occasional vehicle is misdirected.
2. Entire stream of vehicles is misdirected.

8.5 Passenger-Hours of Delay per Year
and Unavailability

Let

g
ry

MTBF,

L

the number of different subsystems, as identified in section
8.3

the number of classes of failure of the ith type of subsystem
the number of i-type subsystem in the transit system

the number of hours the i-type subsystems are in service per
year, If the subsystem is aboard a vehicle, T, is the number
of hours per year a vehicle is in service. Let this number be
T.. Typically T, is about 10 hours/day times 300 days per
year, or 3000 hours/year. If the subsystem is at wayside and
the system operates 24 hours perday, T, = T, = (24)(365) =
8760 hours per year. If the system operates say six days a
week and I8 hours per day, T, = 5616 hours per year.
mean time between failures of the ith class of the Jth type of
subsystem v :

The MTBF of interest in transit systems is that which occurs due to
random failures of maintained equipment. Unlike a spacecraft, a transit
system can and should undergo periodic checks at a frequency greater by a
factor of at least five than the failure rates to diagnose potential failures and
to replace components that wear out. The time intervals between preven-
tive diagnostics and maintenance are therefore short compared to the
MTBFs. In this circumstance, the probability of failure in a given time
increment is not strongly a function of time,and can be assumed, in the
service interval, to be random\.Then the number of j-class failures per year
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of a piece of i-type equipment is simply T/MTBF,, and the total number of
failures per ycar is

- r T,
. SM1BF,

=l =

Let 7, be the mean time delay of a person involved in aj-class failure of
i-type equipment, and let n,, be the mean number of people involved in such
a failure. The, nyry is the mean number of person-hours of delay due toa
j-class failure of i-type equipment. Thus,

]

9
PHD,, = S nl; 3 ﬂ"ﬁvﬂ (8.5.1)

=i

-

-

As indicated in the definition of T;, there are generally two values for T,
T, for vehicle-borne equipment and T, for wayside equipment. If there are
N, vehicles in the system, equation (8.5.1) can be written

N

L
PHD,. = N.T,S S -Mfu_+ T, r S Ay
" 2 % wTBF, ,.,.%, ‘2 N1Br,

(8.5.2)

in which p,, is the number of types of vehicle-borne subsystems, and py, =
P = Pu is the number of wayside subsystems. The unavailability is now
obtained by substituting equations (8.2.4) and (8.5.2) into equation (8.2.2)

8.6 The Constrained Minimum Life Cycle Cost

The life cycle cost of a system is the sum of the installed costs of all
subsystems plus the sum of the operating and maintenance (support) cost of
all subsystems. Thus it is possible toexpress the life cycle cost (LCC)in the
form

Prg P
LCC = NS LCC{xy) + 2 nLCC{xy) (8.6.1)
1

I=1 =Pyt
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in which x;, = MTBF, and the functional dependence of subsystem life
cycle cost on reliability is explicitly indicated, that is, LCC, is a function of
the MTBFs for all classes of failure associated with i-type subsystems.

The problem posed is to minimize LCC subject to a constraint—the
given value of ¢, where ¢ is a function of all x,. To find the constrained
minimum, a problem first solved by the French mathematician Lagrange
(1736-1813), assume that ¢ is solved for one of the x, say X,,. Then, in
principle, substitute x,,, a function of all of the other xy, into LCC., In this
case, the condition that LCC is minimum is

ILCC | BLCC BXpe _ (8.6.2)

axy X Xy

in which { and j take all values in the rangesj = 1, ...,qand i = I, ..., p
except for the single combination of values i = m,j = n, Sincc e = e(x,)isa
given constant,

de | de ity _
axg *ox dxy 0 (3.6.3)

for all i, j except m, n.

Place the right-hand term in each of equations (8.6.2) and (8.6.3) on the
right side of the equal sign and divide equation (8.6.2) by equation (8.6.3).
The result can be expressed in the form

BLCC  GLCC

__a.ty_ = _aiﬂ_= -
de - de A (8.6.4)
axy 1} .

in which, because x,,, could be any of the x,;, A has the same value for all ij.
The constant A is called a Lagrangian multiplier. 1\ . {.
From equation (8.6.1), a 2

aLcc _ , aLCC,
axy 'axy

(@)

in which r; = N, if the index corresponds to a vehicle subsystem. Similarly,
from equation (8.2.2) and (8.5.1) (x; = MTBF),

3-" u _Aﬁﬁd_ ®
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Substituting equations (a) and (b) into equation (8.6.4), the Lagrangian
multiplier becomes

_ | pHT, ALCC,
A ( Mo 1) MTBFu 53475, (8.6.5)

in which the substitution x,, = MTBF has been made, and T, = T, or T,
depending on the location of the equipment. The solution to the problem of
the constrained minimum life cycle cost is determined by the condition that
the quantity defined by the right side of equation (8.6.5) is the same for all
failure classes of all subsystems.

Equation (8.6.5) contains three kinds of factors:

(1) PH,,/T, is the number of person-hours of travel on the system per
hour of operation of i-type equipment, & factor determined from an under-
standing of the physical characteristics of the system and from an estimate
of patronage.

(2) nyryis the number of person-hours of delay due to a j-class failure of
i-type equipment. It is a matrix of values determined from classification of
all failure modes, from estimation of the mean delay time due to each failure
mode. and from estimation of the mean number of people involved in cach
failure mode. The latter factor, ny, is proportional to patronage, but since
PH,, is also proportional to patronage (see equation (8.2.4)), A is indepen-
dent of patronage.

(3) The remaining factor in equation (8.6.5) depends on the reliability-
cost relationship for cach subsystem and is determined separately for each.
The character of the function A(MTBF) may be seen with the help of figure
8-1. When the slope of the life cycle cost curve is zero, A = 0. The solution
lies to the right of this point since one would not consciously pay more for
less reliability. The function A(MTBF) is monotone increasing to the right
of A = 0if IA/AMTBF > 0 there. If A(MMTBF) is monotone increasing, it
possesses a unique inverse MTBF(A)and, as we will see, the problem of the
constrained minimum life cycle cost has a straightforward and unique
solution. To determine if A(MTBF) is monotone increasing, consider the
derivative of equation (8.6.5):

arn [ PHT JLCC #LCC
IMTBF, '( 7.,%,*)”"’5(2 amrer, * MTER 'aJTlTB'r'f)

Thus, 2A/aMTBF, > 0 and possesses & unique inverse if both the slope and
curvature of the function LCCAMTBF ) are positive, as is shown in figure
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8-1. Since it likely that LCC, approaches infinity as MTBF,, approaches
infinity, it is unlikely that # LCC/aMTBF7, is ever negative, but even ifitis,
the curve A(MTBE,) is still monotone increasing if

aLcc, .. MTBF, | #Lcc,
aMTBF, ~ 2 AMIBES

Without more information on the functions LCC(MTBF) it is not possible to
prove rigorously that the above inequality always holds, but it seems highly
plausible and will be assumed in the following analysis. Thus it will be
assumed that A(MTBF) possesses a unique inverse MTBF(A) as shown in
figure 8-2, but to cover contingencies, it will be assumed that if MTBF(A) is
not unique the lowest value is to be used. Thus, as shown in figure §-2, if A
is plotted as a function of MTBF, for each failure class of each subsystem,
the optimum value of each MTBF, for the minimization of system life
cycle cost can be found if the solution value of A for the entire system is
found.

The system value of A is found by satisfying the given constraint on
system unavailability. Combining equations (8.2.2) and (8.5.1), we can now
write

»

i &
N = gy > nl; ;‘i H%T) (8.6.6)

LI N TT

> HTBF‘

0
(MTBF,) oo,

Figure 8-2. The Lagrangian Multiplier
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in which the functional dependence of MTBF, and hence of « on A is
indicated. Thus, the solution proceeds as follows: For each failure mode of
cach subsystem, A(MTBF,) is found and plotted. The inverse functions
MTBF 4A) are found from curves such as figure 8-2 and are used to
compute the system curve e(A) from equation (8.6.6). As indicated in figure
8-3, ¢ is maximum at A = 0in the domain A = 0 and is monotone decreasing
as A increases. The latter conclusion is a direct result of the facts (1) thatall
MTBF, increases as A increases (see figure 8-2) and (2) that e(A) is a sum of
reciprocals of the MTBF (see equation (8.6.6)).

If €,pec = €(0), Where €. is the specified level of system unavailability,
A = 0 and the solution is obtained by setting all MTBF, such that all
ALCCJAMTBF, = 0. In the usual case, hOWeVer, € < €(0). Then, as
indicated in figure 8-3, the specified value of system unavailability yields a
unique value A = A,,. By entering the family of curves of A versus MTBF
with A @ unique set of values of (MTBFy). are found. These values
minimize system life cycle cost subject to the specified level of system
unavailability.

If a given subsystem has only one class of failure there is a single set of
curves like figure 8-1 for that subsystem. If in @ certain subsystem there is
more than one class of failure, it is implied in the above minimization
process that it is possible to derive the curve LCC(MTBF,)for one particu-
lar value of j while holding the MTBF,, for all other j constant. Itis not ¢clear
that this would always be possible, but if not, the implication would appear
1o be that the definition of subsystems must be further broken down.

Certainly the curves of LCC versus MTBF are not easily obtained in the
early phases of a design. Preliminary reliability allocations are, however,

i
i
1
|
]
i
|
]
]
i
!
¥

—

0 A

Fon

Figure 8-3. The System Constraint Function
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necessary if a rational design is to ensue. Therefore, LCC versus MTBF
curves must be estimated in successively more detail by a three-step

process:
1. Parametric analysis of costs as functions of various system parameters

2. Refinement of costs by analogy with similar systems
3. Engincering cost analysis based on detailed designs

Out of such analysis, increasing refinement of the functions 3LCCY/
AMTBF , can be made, but at increasing engineering cost. As indicated in
the next section, a preliminary allocation of subsystem MTBFs can be
made without life cycle cost data; then, in section 8.8, it is shown how to
obtain the next level of approximation based on preliminary values of
aLCCJaMTBF,.

8.7 Approximate Solution to the Problem of
Reliability Allocation
Equation (8.6.6) suggests the preliminary assumption
MTBF y = CligaTuns (a)
in which C is a constant and, to avoid confusion later, the dummy sub-
scripts have been changed. This formula suggests that the MTBFs be
allocated in proportion to the number of person-hours of delay due to a

particular kind of failure. The constant C can be found by substituting
equation (a) into cquation (8.6.6). Thus

I S :
C —G’«—P"" ..i, riaq, (b)

Substituting equation (b) into equation (a)

- MHonT N1
MTBF.. = fa_n Ny ’: Y (©)
in which
Pos
7 |
v=y _:.N_ § 4 8.7.1
=1 q' + T' L J (-'u‘l ’ ! ( )
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is the sum of the total number of failure classes defined for vehicle subsys-
tems plus a weighting factor times the number of failure classes in all
wayside subsystems.

In many cases M, can be expressed in the form

Man = TTomn (8.7.2)

in which n1., is the mean flow of people involved in a failure of subsystem m.
(Cases in which n,,, is not proportional to a flow are of lesser importance to
system availability and, in any case, can be treated simply by substituting
N TOT NyToe.) Thus, equation (¢) becomes

MTBF,, = it gﬁ?& s (8.7.3)

Cagec

The strong dependence of the required reliability on the time delay due to
failure, 7., is clearly evident from equation (8.7.3), thus indicating the
importance of developing operational strategies in which failures can be
cleared as quickly as possible. Since #t,, N, and PH,, are all proportional
to patronage, the required MTBF is proportional to patronage, a conclusion
that is intuitively reasonable. Also, equation (8.7.3) shows that, for a given
patronage, if N, increases due touse of smaller vehicles, MTBF,, increases
unless by design changes 7, is decreased enough so that the product Nethe
does not change. Thus, if 7, varies as N the reliability requirements do
not worsen in small-vehicle systems.

8.8. Approximate Solution to the Problems of
Minimization of Life Cycle Cost and
Reliability Allocation

Equation (8.7.3) allocates the reliability requirements in proportion to the
number of person-hours of delay due to each type of failure, but makes no
allowance for the possibility that the life cycle costs of some subsystems
may change more rapidly with MTBF than others. Toaccount inas simple a
way as possible for such variations, assume in equation (8.6.5) that, in the
region of interest, the slopes of the curves of LCC, versus MTBF, are
constant, that is, independent of MTBF. Then equation (8.6.5) can be
solved for MTBF,:

172
MTBF, -( - FT;,‘%) (8.8.1)
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in which

If equation (8.8.1) is substituted into equation (8.6.6), the result can be
solved for A'2, Thus

&
Mm = (jlil_;m-z rT}? z (M.;LCC'“)W (8.8.2)
1

”~

On substituting equation (8.8.2) into equation (8.8.1) and changing the
dummy indices i,j to m,n in equation (8.8.1), the MTBFs are seen to be
allocated according to the equation

MuTrmn Nole
MTBF,, = —g:—ﬁ{,: 2_. (8.8.3)
. . /,I;’ - '(*&‘r._.__({‘/{‘): e S o ol
in which PHy Pr %a Tisir » Ay foe

g

(%)

S (_mge Lecy \"°
;'| RloaTmn Tu.

(l_rw)in P r 9 nyry LCC! 1t

(8.8.4)

If subscript m corresponds to a vehicle subsystem, T,, = T, and the
second double summation, dependent on the wayside subsystems, is
weighted by the ratio (T,J/T,)', which is greater than one if T, is greater
than 7,. If subscript m corresponds to a wayside subsystem, T, = T, and
(T,JT,)"* factors out of equation (8.8.4). The second double sum is again
weighted with respect to the first by the factor (T/7,)"*. As indicated in
section 8.5, in most cases (T,/T,)'* = (8760/3000)'* = |.7 > |, Thus the
systems in operation longer weigh more heavily in determining the
reliability requirements, as should be the case. It is also seen from equation
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(8.8.4) that, since LCC,,, is in the denominator, failure modes for which
LCC increases more rapidly with MTBF are allocated a smaller MTBF, the
correct direction to minimize life cycle cost. Moreover, even without
accounting for variations in LCC’, equation (8.8.4) is more realistic than
equation (8.7.1) in that failure modes for which myry is larger weigh more
heavily in determining the subsystem MTBF requirements. Since the LCC”
appear in equation (8.8.4) only under square-root signs, variations in the
corresponding ratios have a diminished effect on the MTBF requirements.

If all failure delay times are held constant except T, and equation
(8.7.2) can be used, MTBF ., is proportional to 7., not to 72, asis the case
with equation (8.7.3); however, if all of the 7., are reduced in the same
proportion, MTBF,, still reduces in Proportion o 7h,. If one of the 7y is
large, all of the MTBF,, must suffer an increase in order to meet the
specified system unavailability, €ge. This is clearly as it should be.

Note from equation (8.8.3) that, if equation (8.7.2) is substituted,
MTBEF ., is proportional to the ratio i/ PH,,, thatis, the ratio of flow rate in
people per hour to person-hours of travel per year. This ratio is indepen-
dent of patronage; however, N, is proportional to patronage (see chapter
4). Therefore, the MTBF requirements are proportional to patronage and to
the number of vehicles in the system at a given patronage level. If the
reliability requirements are not to increase in smaller vehicle systems
(larger N,), it is necessary that the operational control system be designed
so that the squares of the delay times due to failures decrease in the same
proportion as N, increases, that is, that the product N7, remain fixed. As
the system size increases, PH,, increases in proportion to N,; therefore,
the reliability requirements change as the system grows only insofar as the
flow rates may be larger in a larger system.

Note in equation (8.8.3) that MTBF , is inversely proportional to PH,,.
This may seem counterintuitive, but, from equation (8.2.2), at fixed € an
increase in PH,, implies an increase in the number of person-hours of delay
per year. An increase in the latter quantity clearly implies a decrease in
MTBF requirements.

8.9 Reliability Allocation in Sub-systems

A transit system is composed of vehicles, stations, wayside equipment, and
central facilities. For the system as a whole, each of these systems is a
subsystem. But a subsystem in this sense may be composed of *‘sub-
subsystems.” For example, if a vehicle is called a subsystem, its propul-
sion system, braking system, control system, and so forth, may be called
“sub-subsystems.”” Each of these *“sub-subsystems”’ can further be bro-
ken down into components or **sub-sub-subsystems.™ In application of the
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theory culiminating in equations (8.8.3, 8.8.4) the classification of subsys-
tems is arbitrary. The user should, however, pick as “‘subsystems'’ the
largest units for which specific failure consequences can be defined. Sucha
unit may be an entire vehicle because fatlures of its **subsystems’’ produce
consequences such as defined in section 8.4 regardless of which **subsys-
tem'' failed. Similarly, several different types of station failures may cause
identical consequences in terms of passenger delay. The requirement for
selection of subsystems is that it be possible to derive a specific value of
Nun7un fOr each of its classes of failure,

" A “class of failure” may or may not be uniquely identified with a
specific component or sub-subsystem failure, If it is, then the correspond-
ing MTBF,,, uniquely defines the required MTBF of a specific component
or subsystem. If not, any one of a number of failures can cause a failure of
class “‘mn.”" In the latter case, one can write

X
MIBF-L, = > MIBF . (8.9.1)

A=

in which there are K **sub-subsystems™ or components, the failure of any
one of which will cause a failure of class “‘man"". Equation (8.9.1) states
simply that the failure rate MTBF ' of a failure class or “*system'” is equal to
the sum of failure rates of a series of independent units, the failure of any
one of which produces a “*system’” failure.

But the theory of equations (8.8.3, 8.8.4) defines MTBF,,,,. Then equa-
tion (8.9.1) may be considered as a constraint equation upon the basis of
which the sub-subsystem MTBFs can be allocated to minimize the life cycle
costofthe subsystem, Thus, replace € inequation (8.6.4) by MTBF . Then

IMTBF' _ | @)
aMTBF, =~ MIBFi

Equation (8.6.4) now takes the form

A = MTBF} a"’fcﬁ (b)

Following the denivation of equations (8.8.3, 8.8.4), solve equation (b) for
MTBF,. Thus

MTBF, = N"™(LCCy)'* (©)
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Substitute equation () into equation (8.9.1), solve for A'* and drop the
subscripts mn for brevity. Then

K
AVE = MTBF Y (LCCY)™ (d)
k=1

in analogy with equation (8.8.2). Now change the dummy subscript in

equation (¢) and substitute equation (d) into equation (¢) 1o obtain the
desired result:

X L1
MTBF, = MTBF Y LG (8.9.2)
=\ LCC;

Equation (8.9.2) shows that the MTBFs of cach of a set of K sub-
subsystems should be allocated in proportion to the known required mean
time to failure of the subsystem, and weighted in inverse proportion to the
square root of the corresponding slope of the sub-subsystem life cycle cost
curve. If all of the LCC;, are the same, then MTBE, = K(MTBF) asis tobe
expected, that is, if each of K components can fail in such & way as to
produce a failure of the sub-subsystem of which they are a part, the failure
rate of the sub-subsystem is greater than the failure rate of each of the
components by the factor K.

Equation (8.9.2) together with equations (8.8.3, 8.8.4) lay the founda-
tion for allocation of reliability requirements of all components and subsys-
tems in a system of any degree of complexity.

8.10 Simultaneous Failures

The form of equation (8.5.1) assumes that failures act independently, that
is, that if two failures were to occur simultaneously the total number of
person-hours of delay would simply be the sum of the corresponding terms
for independent failures. This is clearly not always the case because itis
possible that the simultaneous occurrence of two independent failures
could cause a collision, If precautions have not been taken in advance (o
minimize the consequences of collisions, the sum of the nyry for two
simultancously acting failure modes could greatly exceed the correspond-
ing sum if the two failures occur at different times.

Strictly speaking, then, we should add to equation (8.5.1) terms corre-
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sponding to interactive failures. These terms will contain products of the
MTRBF, in the denominators and, in the differentiation process leading to
equation (8.6.5) and the subsequent equations for required MTBFs, will
lead to fundamental complications—de/dx, becomes a function of all in-
teractive failure modes, not just of x;,. But, in a well-designed system, the
probability of collisions involving greatly increased delay must be very
small. Therefore, it is better to use the theory developed and to proceed
iteratively 1o consider the consequences of simultaneous failures. The
following procedure is recommended: First compute the required MTBFs
from equation (8.8.3). Then, having the required MTBFs for individual
failures, compute the MTBFs for simultaneous, interactive failures and
estimate the corresponding nyry for them. If the corresponding contribu-
tions to equation (8.6.6) add significantly, to €, then a new smaller ;.. must
be defined and the calculation repeated until the €. plus the € correspond-
ingto collisions does not exceed the desired e, counting all failures, A case
of simultancous failures is considered in section 9.5,

8.11 Summary

A method is developed for allocation of the reliability requirements of the
subsystems and sub-systems of an automated transit system in such a way
that life cycle cost is minimized. Besides a complete classification of the
subsystems and their failure modes, the method requires knowledge of (1)
the vearly number of hours of operation of the vehicle-borne and wayside
equipment, (2) the mean number of person-hours of delay due to each
failure (failure effects analysis), and (3) the slopes of the curves of subsys-
tem and sub-subsystem life cycle cost versus MTBF.

The solution is given by equations (8.6.5) and (8.6.6); however, using it
the numerical solution is graphical. An analytic approximation, adequate if
the vaniation in the slopes of the life cycle cost curve are small, is given by
equations (8.8.3, 8.8.4) and equation (8.9.2). The latter solutions have the
additional advantage of providing a great deal of insight into the behavior of
MTBF requirements with various parameters, for example, the MTBF
requirements are:

1. Proportional to patronage
2. Independent of system size
3. Proportional to the square of the time delays due to failure
4. Proportional to the number of vehicles.
Thus, if, with a given patronage, the vehicle size is reduced so that N,
Increases, vh, must be caused to decrease in the same proportion if the
MTBF requirements are not to worsen. Thus, more sophisticated
control systems are required in small-vehicle systems than in large-
vehicle systems,

-
’
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