Redundancy, Failure Modes
and Effects, and Reliability
Allocation

9.1 Introduction

In the previous chapter, an equation for allocation of required subsystem
reliability (equation (8.8.3, 8.8.4) was derived, thus providing a basis for
allocating reliability requirements of the subsystems of a system in such a
way that the system life cycle cost is minimized, subject to the constraint of
aspecified level of service unavailability. The theory requires classification
of failure modes and determination of failure effects in terms of the delay
times and the number of people involved in each failure. This task is
outlined in the present chapter in enough detail to clarify the general
method and to provide some numerical estimates of the reliability require-
ments.,

In classification of failure modes for analysis of system reliability,
failures are identified not according to which specific part fails, but accord-
ing to the consequences in terms of person-hours of delay. Consequently, it
is possible to aggregate many components and sub-subsystems into the set
of subsystems specifically identified in equations (8.8.3, 8.8.4). For exam-
ple, the entire vehicle can be considered as a subsystem possessing the
failure classes defined in section 8.4. As discussed in section 8.9, if the
failure of any one of K components or subsystems causes an m-class failure
of the nth type of subsystem, then MTBF,, is given in terms of component
failures by equation (8.9.1). This equation simply states that the failure rate
of failures of the “*mn"" class is the sum of the failure rates of components
that can cause it, that is, the probability of an **mn"" failure is the sum of the
probabilities of independent events that can cause it.

Equation (8.9.1) is the series law of failures. The corresponding parallel
law is obtained by building redundancy into the system if the required value
of MTBF,, cannot economically be achieved by single components or
subsystems. The theory of redundancy is developed in the next section.
Then, a set of subsystems of a transit system is defined and specific types of
failure classes are considered in order to determine for each generally
applicable formulas for the number of person-hours of delay. As a point of
interest, the theoretical construct is then used to consider the problem of
the most appropriate type of mechanism for escape from vehicles in case
the need should arise. Finally, the various components of the theory are
assembled to give a specific example of its application to the problem of
reliability allocation.
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9.2 Redundancy

A subsystem is redundant if two or more parallel units (components or
subsystems) exist and if each is able to perform the function required of the
subsystem without interference from the failed element, but possibly with
minor degradation in service. Let MTBF, be the mean time between
failures of fther of the two parallel units. Then, the mean time between
failures of either of the two units is MTBF /2.

Let 7 be the time interval following a failure during which the failure of
the second parallel unit is critical. If the subsystem is aboard a vehicle, 7 is
the mean time interval following the first failure required to get the vehicle
off the line and into the maintenance shop; if the subsystem is at wayside, 7
is the mean time required to fix it or replace it. If the entire system is to
operate satisfactorily, it is necessary that

MIBF, ., -,
T

If predictable failures due to wearing out of parts are eliminated by replac-
ing all such parts at a fraction of their MTBFs, the remaining failures occur
randomly and MTBF /7 can be interpreted as the number of subintervals r
during which the failure of a redundant element could with equal probabil-
ity occur within the time interval MTBF,. The failure of the second element
of a redundant pair during 7 then has a probability equal to twice the failure
rate of a single unit divided by the number of time intervals MTBF,)r in
which, with equal probability, the second unit could fail. In other words,
the MTBF of both elements of the redundant pair is increased from
MTBFJ2 by the ratio MTBF z. If MTBF,, is the mean time between
failures of both elements of a redundant pair less than r apart, that is, of the
subsystem consisting of two parallel units,

MTBF,, = :"—Tz’;—"‘i 9.2.1)

For example, if MTBF, is 100 hours so that on the average the failure of
cither of two units occurs once in 50 hours, and 7 is 0.1 hour, there are 1000
time intervals each of length 0.1 hour during which the second failure could
occur. Only if failure of the second element occurs in the specific interval
immediately following failure of the first element, is a double failure of
consequence. Thus MTBF,, = 50(1000) = 50,000 hours.

The benefit of redundancy in systems that can be maintained at frequent
intervals is enormously increased over that in systems, such as spacecraft,
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in which 7 is essentially infinite. Thus the economics of redundancy in
transit systems with failure monitoring is much different from that experi-
enced in the aerospace field.

Trains

An example of redundancy in transit systems is the coupling of cars into
trains so that failure of one car does not cause a line stoppage. In a two-car
train, the mean time to failure of both cars within less than r units of time is,
from equation (9.2.1),

MTBF;, = MTPFt (9.2.2)

In @ three-car train, the MTBF for failure of any of the three cars is
MTBF,/3. The probability of failure of either of the remaining cars within
the interval 7 is 2r'MTBF.,,. Therefore the MTBF for failure of two cars
within less than 7 is :

v

(Mtgfm) ( @.f.fgrw)

The second car fails anywhere in the interval =, therefore at a mean time
0.57 following the first failure. The third car must carry the train the
remaining time 0.5r to the maintenance depot, The probability of its failure
before arrival is 0.5/ MTBF ... Therefore, the MTBF of all cars in the train
before it can arrive at the maintenance depot is

MTBF;, = 418 9.2.3)
By a similar analysis
MTBF,, = 2= OM1BFy (9.2.4)

and it follows that

MTBF;, = ( R ) r ( i‘-"j"w) (9.2.5)
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in which we can write

‘.) . 2! .. 2--3 = 2(!010...0 "~ = 21--!’:-"(‘]

It is of course recognized that the performance of an n-car train in which
only one car is operative may be marginal; but the train can be kept moving,
thus considerably reducing the passenger delay from the case in which the
train stops. If MTBF,_is given from system considerations (use of
equations (8.8.3, 8.8.4)), the mean time to failure of each car must from
equation (9.2.5) be

zu—ﬂu—lmf

n! MTBFy |in
MTBF., = 7| ——" (9.2.6)

Trains in Loop Systems

Consider a transit system in which N, trains of n cars each move between
on-line stations around @ loop. A failure of any of the N, trains causes
shutdown of the system. Thus, from equation (9.2.5) the mean time be-
tween system shutdowns, MTBF (N{n), is

MTBF; (Nn) = [2'—"’;",-'1]5'( MEFm) ©.2.7)

T

if the loop consists of two counterrotating one-way system, each of N,
trains of n cars, the system mean time between failures is found by sub-
stituting equation (9.2.7) for MTBF, in equation (9.2.1). Thus for a two-way
loop,

MTBF*
MTBE, (Njn) = "o (i), (9.2.8)

Suppose the system is designed so that MTBF; = 3000 h or approximately
one year. Suppose further that the mean time between inspections for
failures is v = 10 hr. Then

MTBF,, = O = 150 years (9.2.9)
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if we assume 3000 hours of operation per year.

Now consider the problem of estimating the required MTBFof a single
car in a train of cars. The equation for required MTBF is equation (8.8.3,
8.8.4). Let each of the N, trains be the subsystems. Then, as a first
approximation, assume that the N, trains are the only subsystems ina
one-way loop system, and that there is only one class of failure—a train
stops. Then there is only one term in the summation of equation (8.8.4) and
S, = 1. For the subject configuration, N, = Nj, 7, is the mean time to
restore service (MTRS) when a train fails, and n,, is MTRS times the
average total flow of people per hour into the system, f,. Thus equation
(8.8.3) becomes

MTBF,_, = MMIRSINT, 9.2.10)

€ e PH,,

MTBF;,_isthe required MTBF of a single train. To find the vehicle MTBF
substitute MTBF; __for MTBF;_in equation (9.2.6), in which 7 is the time
interval between trips to the maintenance shop for inspection. Then the
required MTBF of each car in a one-way loop is

't (MTRSENT, |"™
MTBF:.:M - '[ .i“’:'_'mfe'ml;f;" ] (9.2- l I)

But from equation (8.2.4) PH,, is the number of person-hours of travel per ‘{
hour multiplied by the number of hours of travel per year. The latter

quantity is simply T,. therefore = £ L _,,‘ ’.",- :,;. ’ ":,'E.‘:
PH,, = (t13Tu)T, 9.2.12)

in which 7, is the number of trips per pcak hour, and 7, is the average trip
time. Thus, equation (9.2.11) becomes

1n
MTBF.., = r[~ nUMIRS)*N; ] 9.2.13)

20-2M-Wre T

In a typical case, assume r = one day or 10 hours of operation of an average
vehicle, MTRS = 1 hr, T, = 6 min (0.1 hr), and €, = 0.01. Then

(9.2.14)

s
MTBF,,, = IO[ _100n! m’"‘l]
2(.-!”.-‘ 180}
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For comparison, consider two cases: (1) There are five two-car trains (N, =
S, n = 2); and (2) the ten cars operate as individual units (N, = 10, n = 1).
Then

MTBF,, = 36 hrif N, =5, n =2

- lo.mhl'ifN¢= 10,n=1

As a matter of interest, the meaning of €, in terms of MTBF, (equation
(9.2.7)) is found from the equation

MTBF. ,
MTBF,, = g e = (MTRSE (9.2.15)

in which the second expression is from equation (9.2.10) with equation
(9.2.12) substituted.
Using the numerical values below equation (9.2.13)

MTBFs, = 1000 hours

or one failure every 100 days. If r = 10 hr, as before, equation (9.2.8) gives

MTBF,, = 190 = 50 MTBF;,

The dramatic effect of redundancy on the vehicle MTBF required to
achieve a given level of service availability is very apparent.

Single Vehicles in Loop Systems

In the above calculations, it was assumed that n is the number of cars per
train. Suppose the cars in a loop system operate singly but that each critical
subsystem aboard a car is fully redundant. Then N, is the number of
individual cars, N,, and n = 2. From equation (9.2.13), the required MTBF
is proportional to N2, In small-vehicle systems, using all of the numerical
values in the previous paragraph, MTBF ., for each individual subsystem
tends to be too high to be practical. The apparent difficulty can be solved,
however, by examining equation (9.2.13) for n = 2:
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€pecd trip

27N, "
MTBF,, = (MTRS) —-371 (9.2.16)

in which MTBF,, is the MTBF of the redundant element,

MTBF., .. can be reduced if the system can be designed in such a way
that both MTRS and r are reduced. The time r the vehicle is on line with a
failed redundant element can be reduced by introducing an independent
failure-monitoring system, the failure of which will itself signal that the
vehicle should be taken off the line. With a failure-monitoring system, =
becomes the time required to get the vehicle off the line and into the
maintenance shop following indication of failure of one of the redundant
systems or of the failure monitor. In this circumstance, = Ty, and
equation (9.2.16) reduces to

-~

112
MTBF,, = (MTRS) (%Va—) (loop systems with  (9.2.17)
e failure monitoring)

MTRS, on the other hand, is the mean time to restore service in the case
of failure of both redundant elements. To reduce MTRS to an acceptable
value, it is necessary to introduce a means of rapid removal of a failed
vehicle from the line. In a thoughtfully designed system, the vehicle will be
pushable in almost all cases. Therefore, an automated pushing (or pulling)
mode activated by the on-board failure-monitoring system should be added
1o the vehicle. (The availability of microprocessors permits the introduc-
tion of such devices on board each vehicle at modest cost.) With such a
device, it is reasonable to reduce MTRS to the order of one minute, that is,
MTRS = 1/60 hr. For say N, = 300 vehicles, MTRS = 1/60 hr, and €, =
0.01; equation(9.2.17) gives MTBF, . = 4 hours. Since this is a very modest
MTBF, much smaller unavailability is possible. For example, for e, =
107¢, MTBF,, = 400 hours required.

Single Vehicles in Network Systems

For network systems using single vehicles, it is necessary to recall that in
equations (9.2.10) and (9.2.11), the appearance of ¢, in the numerator was
based on the assumption that the number of people involved in a failure is
(MTRS)1,. This is true in a loop in which MTRS is long enough so that all
vehicles are stopped. In a loop in which MTRS is short, the number of
people involved in a failure is more nearly MTRSS,,, whose f,, is the
average line flow. Thus, if equation (9.2.17) is applied to cases in which
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MTRS is small or to a network system in which only a portion of the flow is
delayed, it should be replaced by

"
MTBF., = (MTRS) ( 2“;&*’—'& ) (9.2.18)

In loop systems, f,./t, = 0.5 if the average trip goes half way around the
loop, and the MTBF requirement is reduced 2. .
In network systems, equation (4.5.19) gives

I 2BA
and, from equation (4.5.17),
N" = ; <L‘>
pTay

in which 1, is the hourly trip density and A is the network arca. With these
substitutions, equation (9.2.18) becomes

- "
MTBF,, = (MTRS)<L> (WTfLLi —) (9.2.19)
Pt pec

From figure 4-18 assume that for a large network
<L,> = (.8A'? (9.2.20)

Then, as a specific example, assume MTRS = 1/60hr, A = 256 km*, L = 0.8
km,pS, = 1,8 =1,V,, = S0km/hr, and €5, = 107*. Then <L,> = 12.8km,
and .

MTBF,, = 271" (9.2.21)

if 7, is the trip density in trips per hectare. From figure 5-7, assume 7, = 60
trips per hectare (15,000 trips per square mile) is an upper limit on patron-
age. Then MTBF, . = 209 hours. Based on the work of C.L. Olson[ 1], this
is a modest MTBF. If, however, a lower requirement is desirable, equation
(9.2.19) shows that a lower value can be obtained by reducing MTRS below
one minute. The work of Bernstein and Schmitt|2) indicates that & value
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MTRS = 15 seconds may not be unreasonable, thus reducing MTBF, . by a
factor of four. MTBF,., could be further reduced by reducing the ratio of 7
to average trip length (see equation (9.2.16)). This can be done by dispers-
ing small maintenance facilities throughout the network, but is probably
not needed.

The above analysis shows that in large networks the simple expedients
of

1. Redundancy in critical elements
2. Failure monitoring
3. Automated pushing

will reduce the MTBF requirements to readily obtainable levels, even if the
time delays due to failure are of the order of 0.01 percent of travel time. This
figure means that one hour of delay is experienced in 10,000 hours of travel.
If the average regular user of the system takes 10 work trips per week of 15
minutes each for 50 weeks a year, the number of hours of travel per year is
125 hours. Assuming on that basis a total of 200 hours travel per year, € =
10~* means an accumulation of one hour of delay per person in 50 years.

The above analysis is of course preliminary since it neglects all wayside
subsystems. Also, note from equation (8.9.2) that the MTBF requirements
of the various individual vehicle-borne subsystems are higher than the
above figures in proportion to the number of them.

9.3 Subsystems and Classes of Failure

In section 9.2, MTBF requirements were developed under the simplifying
assumption that any wayside equipment is infinitely reliable. In a complete
analysis, it is of course necessary to account for the finite reliability of
wayside subsystems. As indicated in section 8.9 the subsystems should be
defined as the largest units in the system for which meaningful values of
person-hours of delay (n7) due to each class of failure can be defined. Thus
define the following types of equipment as the ““subsystems™:

Vehicles

Station entry monitoring equipment

Passenger processing equipment in stations
Merge point equipment

Diverge point equipment

Central communications and control equipment

SrbhBN-

For cach of these subsystems, the classes of failure have to be defined
separately. For the vehicle subsystem, the classes will be taken as those
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defined in section 8.4, For the remaining subsystems, the classes will be
defined below.
The above analysis and that which follows is designed to apply to any

type of transit system including systems with manually operated vehicles.
In simpler systems certain terms are set to zero, as will be apparent.

9.4 Vehicle Failures

As indicated above, the classes of vehicle failure will be taken as those
defined in section 8.4,

Class | Failures

In Class | failures, the number of persons involved in a failure is just the
average number of persons per vehicle. Thus

Ny = Py
The time delay, 7,,, is the time required to stop at a station, wait for a
second vehicle, and resume the journey. Thus

Ny Ty = P-( 2—:‘- + ‘,‘) (9.4.1)

in which .4 is the station delay time.

Class 2 Failures

In Class 2 failures, the vehicle slows down, therefore all people in a string of
vehicles that slows down are delayed. The number of person-hours of
delay, n,47y2, can be found by considering figure 9-1.

Assume that a vehicle slows down from line speed V. to a speed V* and
cruises at V* for a distance D* at which time it leaves the main track. At this
point, neglect the deceleration period. Then the time at which it leaves the
main track is * = D*/V*, The time delay on line is

A’l-’.—‘.

= ‘3—:( Vi - l) (@)
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Figure 9-1. Distance-Time Diagram Used to Compute the Time Delay due
to Slowdown of a Vehicle

in which 7, = D*/V, is the time required to traverse D* at V;. In these
calculations, neglect of jerk introduces an insignificant error, and the
neglect of the acceleration periods can be accounted for by considering V*
to be the reduced velocity in the case of infinite deceleration. In significant
cases, the error in neglecting the effect of finite deceleration is small. The
passengers in vehicle | lose the additional time given by equation (9.4.1).
Assume a second vehicle is travelling a distance vD,,, behind the first
vehicle. D, is the minimum nose-to-nose distance between vehicles and
2 > 1. Then, at t = 0 (neglecting control lags) the second vehicle slows to a
speed such that it achieves the minimum spacing, Dy, at time t*. (The
velocity profile is of no consequence.) The time lost by the second vehicle
is

A'g' "* - '.

3'—[ Ve-1-@-1 '19*" ®)
= _‘L’ - 4
in which #, = (D* — D, + vD.,..)/V,_ e
Assume a cascade of vehicles each spaced a distance vD,,, apart. Then
the time delay of the ith vehicle, Az, is found by replacing Dy, by (i -
1Dy, in equation (b). Thus
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(c)

At = %':[‘V,e- = (= v - 1)’-’5:9]
~- g, = (=0 (FD /
The number of vehicles delayed » is found by ‘assuming Aty.y = 0. Thus
(d)

1 b (v,
"'Wm;(v“ ')

If the average number of people per vehicle is p,, the total number of

person-hours of delay is
2V,

ipsges

NaTye = Py (

Substituting equation (¢), and performing the summation,

Myt = --'gi[(“ﬁ.-l)n-(v-l)%ﬂ.mi"z‘—'l]w.( W4 u) ®

Substituting equation (d)
_ D*P, vi v
s ’a'&‘—'ﬁVfD:(v‘“ ')[V“ !

+w-1 D#-]‘Fp,(z—g‘--bt.‘)

In most cases, the ratio Dy,,,/D* is much less than I, Also note that the

®

average flow f,, is
(9.4.2)

With these substitutions, equation (g) becomes



(9.4.3)

Only the first term is in the form of a flow multiplied by a time delay squared
(see equation (8.7.3)), but this is usually the dominant term.

It has been mentioned that the above analysis neglected the finite time
required to change speed from V, to V*. Examination of the above analysis
shows that if the position-time curve of vehicle | in figure 9-1 resumes
speed V, at r*, the only change is that in equation (9.4.3) V/V* is replaced
by

Ve . Vi |, v - vagt
V“"V‘ﬁ.[' "W’“—]

in which V. is the actual reduced line speed. It is seen that the correction
is small if D* is large compared with twice the stopping distance from a

speed V, — Vi,

Class 3 Failures

InClass 3 failures, the failed vehicle, denoted vehicle 1, isassumedto stopon
the guideway. Vehicle 2, behind it stops and then pushes it up to line speed.
Vehicles 3. 4, and so on slow down, may stop, and then resume line speed.
The position-time diagrams are idealized in figure 9-2. Assume that before
failure, a cascade of vehicles travelling at velocity V, is spaced at an
average nose-to-nose distance of vD,,,, where, as before, D... is the
minimum nose-to-nose spacing. Vehicle 1 stops at ¢ = 0. It waits until
vehicle 2 can stop behind it and push it back to line speed. Vehicle 2 stops
vDyy,/Vy, units of time later. The stopping time is approximately V /a,
where a is the deceleration rate. Therefore, counting the time required to
stop and to resume speed, vehicle 2 is delayed 2V, /a plus the delay time 7,
required for operation of the pushing mode. With these considerations,

A,,=L%:L+Z_XL_ + 7 + Ty (a)
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A |

¢

Figure 9-2. Position-Time Diagrams for Pushable Failure

in which 7,, (equation (9.4.1)) is added to account for the additional delay of
passengers in vehicle | in transferring vehicles in the station nearest the
failure. Similarly,

Af,‘ 2—;," T, +tTn
In analogy with the analysis of Class 2 failures,

2 D,
Al, - aL + T — v - ') —ﬁm (c)
2V . Dy
Al = a‘-— tn,==-2@@-1 v, =34 (d)

If n is the total number of vehicles delayed, the (n + 1)th vehicle is not
delayed. Therefore,

iy
Aty,, = 0= _~ZL- 41y = (n— Dy - 1)‘?‘2&
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and

2V, V
ﬂ"l—( a'r +")(—V;|‘)'D—.-— (e)

If, as above, the average number of people per vehicle is p,, and we take
note of equation (9.4.1),

"u"u=Pu(‘-zs[ 2—:‘-4-7,-(0'—2)(1'- l)l—)"‘l] 0

+é6Vya + Uy + T, + vD.../V,_)

If the sums of equation (f) are placed in closed form,

RysTis = Po [(" - |)[ 2—:1‘- + 7 — —L_zagm— (n - 2)]

+6—Vl- + U+ T+ "—Dn] (2)
a VL

Substituting equation (e) and simplifying the algebra

V 2
MyyTyy = P—['z(y__vf)_DZ(z‘;"" 7»)
+ WVaysn 7+ Uy +"—Dm]
a Vi
Finally, substitute equation (9.4.2). Then

2V :
Mty = _2("_"_.1.)._( —aL + r,) Sav

- p,,( LZL- + .57, + 2:,.) + F— (9.4.4)

av
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If the vehicles are trained, p, is the number of people per train. In almost all
cases, the third term can be neglected, and often the second.,

Equation (9.4.4) is valid unless the string of delayed vehicles is so long
that some of them can be shunted around the delay by @n alternate path or
unless (n = DpD,,, exceeds the total length of track occupied by vehicles
upstream of the point of failure. Thus, if D* is the length of track occupied
by vehicles upstream of the failure (analogous to the same symbol used in
analysis of Class 2 failures), equation (¢) applies if

D* > (n = 1)wDyy

I this inequality is not satisfied, substitute

n-1=-1 (9.4.5)
and then equation (9.4.2) in equation (g) to obtain
«| 2 -

- p,( 6—:L+ 2,4 + 1,) - f’:_ (h)

When equation (h) applies, Dy, is much less than D*. Therefore,

_ o 2v w-1 D*
NygTia = VL—[ 'aL""" 5 Vv, }[m

4
+ ,,,( Vit 2+ f,) + f'L (9.4.6)

This equation applies when

S

- 1)y D*
+">_(—"v.v'L\T

aninequality which may be satisfied either if the flow is near saturation (v =
1), or if the delay time 7, is unusually long. The first condition (» = 1) is not
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likely to happen in practical cases because merging becomes increasingly
difficult as v approaches 1. On the other hand, a long pushing delay, if an
automated pushing strategy is incorporated in the system, implies either a
failure in the pushing mode or a Class 4 failure, that is, one in which the
failed vehicle cannot be pushed.

Class 4 Failures

Based on the above discussion, n,,7,, is given by equation (9.4.6), in which
7, — 7, becomes the time required to restore service—Jlong compared to the
other time intervals in equation (9.4.6). Thus

D*
MTo ™ 70( an- + Pr) + }:i

But (D*/V;)f,, is the number of people in vehicles in the distance D*
between bypass tracks. This is generally large compared to p,.. Moreover,

_ T | DT
D'/v,,( Vi f“) > P

since, if the vehicle cannot be pushed, 7, >> D*/V,. Therefore n, 7y,
simplifies to

Nt = 7DV (9.4.7)

in which D* is either the mean distance from the failure to the nearest
upstream alternative path or the length of the vehicle stream, whichever is
shorter.

9.5 Station Entry Monitoring Equipment

Perhaps the most critical manuever in operation of a transit system is the
one in which a vehicle or train approaches and stops behind another
unloading and loading passengers. For on-line station train systems, this
problem is discussed in section 4.2; and for off-line station systems with
vehicles stopping behind one another, it is discussed in section 7.2, In this
section, we consider the consequences of a combination of failures that
causes a vehicle to fail to slow down on entry into a station, Such a failure
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implies a failure of all braking systems. With redundant systems, such a
failure will be rare, but the station entry maneuver occurs with every
vehicle-trip and is therefore of primary concern. One approach 1stotry to
make the vehicle systems sufficiently reliable that the probability of station
entry failure can be tolerated. Another approach, discussed here,istoadda
station entry monitor to the equipment in each station. The monitor is
designed to check the speed of each vehicle at one or more points while itis
entering the station and to actuate an independent braking system if the
speed is excessive.

The station entry monitors will of course add to the cost of the system,
and themselves may fail, thus requiring the station to be bypassed until the
repair is made. Thus the trade-off between increased reliability of vehicle-
borne equipment to meet station entry requirements and the provision of
station entry monitors need to be considered.

MTRBF berween Collisions in Stations with No Monitor

Let MTBF,, be the mean time between failures of the entire vehicle braking
system. Assume that a vehicle-borne failure monitor detects the failure
and. if the vehicle is not already committed to switch into a station, causes
the switch to be locked in the position for station bypass, until the vehicle
can be stopped safely. Thus failure of the braking system may cause a
station collision only if it occurs after the vehicle is committed to enter the
station.

The critical time £, during which the vehicle is committed to enter a
station is the time interval from switch command to station stop. The
switch command must occur far enough ahead of the station diverge point
to permit the switch to be thrown, verification that it is thrown, and the
vehicle stopped before the diverge point in case verification does not occur.
At line speed V,, the time to traverse the stopping distance Vi2ais V, 2a.
From equation (3.4.3), the time required to traverse the spiral section of the
off-line track is (32H/J)'®. Finally, the time required to decelerate at the
service rate to a stop is Vy/a + alJ. Thus,

t., = time to switch and verify + V,/2a
+ (32HIN'? + Via + all (9.5.1)
For example, if V, = 15m/s,a = 2.5m/s*, J = 25m/s’, H=3m, and the
switch/verify time is say 5§, 1., = 184 s,

If the average trip time is Ty, then the fraction of braking failures in a
specific vehicle that could result in in-station collisions is £/ T If there
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are N, operational vehicles (or trains) in the system, the mean time between
station collisions with no monitor in the whole system is

MTBF sy, e ® B T lec) (9.5.2)
L

The sign **="" indicates that a vehicle braking failure in the critical period
sets up the conditions for a collision, but a collision does not occur in all
circumstances, for example, when there are no parked vehicles in the
station.

MTBF between Collisions in Stations with Monitors

Let the mean time between failures of the station monitor be MTBF . If the
monitor is inoperative, a failure detection system, operating with time
delay ty,, commands all approaching vehicles to bypass the station. Then
only vehicles already committed to enter the station will do so. Thus it can
be said that the station entry maneuver is unmonitored for vehicles within
tyg + t of the station, in which 1, is given by equation (9.5.1). The number
of vehicles in this critical period is simply N,, = (fg + 1.,V T, in which T, is
the headway between vehicles entering the station. If the vehicles are
equally spaced, the probability that one of the N, vehicles fails during the
critical period is

(g + 1,0 1 +2+ ...+ N,
= i = N N w L o
Pu-h. falbzre AlTBF-" ( )

o (g + :?t!r% . tf[_f Tw)
MTBF T

The reciprocal of this expression can be interpreted as the number of times
the station monitor can fail for every time its failure is accompanied by a
vehicle failure in the critical period. Thus, the mean time between potential
collisions in a specific station is MTBF, /P ... taaure- If there are n, stations
in the system, the mean time between potential collisions in the whole
system is

MTBF MITBF,T,,

1l + 1)l + 1 + T (9.5.3)

MTBF“"':mnlu -
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Dividing by equation (9.5.2), the improvement in MTBF,. due to the station
monitor is

MIBFye yioisce 2N, Tyt MTBF,, 9.5.4)
!  wio moritor m, (g + leeMtpg + Lo + TQ)T;
in which
T = station entry headway
ty = time constant of in-station failure
detection system
t. = value given by equation (9.5.1)
7, = average trip time
N. = number of vehicles
n, = number of stations

Typical values might be 7., = 208, g = 105, T, = 105, T, = 10min, NJn, =
10. Then the right side of equation (9.5.4) becomes 20MTBF,,, in which
MTBF,, is in hours. Thus, with redundancy in the station monitor, the
MTBF for station collisions ¢an be improved by use of monitors by a very
large factor, for example, for MTBF,,, = 1000 hours, by a factor of 20,000,
Without the monitors, MTBF,, must be improved by the same factor to give
the system performance possible with station monitoring.

Required MTBF of Station Monitors

In the previous paragraph, the mean time betweenin-station collisions inan
entire system is related to the MTBF of the station monitors, The required
MTBF of the station monitor is determined by equations (8.8.3, 8.8.4) in
which the nr and the LCC” corresponding to the monitor must be included.
If the station monitor is inoperative, there are two choices: (1) all vehicles
bypass the station until the monitor is restored to service; and (2) all
vehicles passing the station slow down to a predetermined safe speed V*
until the monitor is restored to service. In the first case, persons destined
for the failed station are rerouted to a different station and then must make
their way to their final destination by alternative means; and persons
initiating their trips at the failed station must either wait until the monitor is
restored 1o service or go to another station. The number of people thus
delayed is the sum of the flows originating and terminating their trips at the
failed station, multiplied by the mean time to restore service. The time
delay of each person is the additional time required to reach the destination
via an alternate route, Thus
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(nf)‘u“.‘ moniter; = u;m + f’o‘“XA!TRSMXA lrip time) (9.5.5)

In the second case, the entire line flow f,, slows down for a period
MTRS,,,, but there is no further delay of passengers passing the station in
vehicles, or initiating or terminating their trips at the failed station. The
corresponding #7 is given by equation (9.4.3) without the second term, and
with D* = V*r* where, from figure 9-1, 1* =« MTRS. The flow of passengers
initiating trips at the failed station is delayed if the flow of vehicles into the
station is inadequate to accommodate the initiating passengers, This flow
includes both the occupied and empty vehicle flows into the failed station.
The delay time is the same as the delay time of persons terminating at the
failed station. With these factors in mind, the corresponding nr for Case 2is

2
(P )scarion mealmry = 2(‘,—’: l)—ﬁfTRS’..(l - -i‘;: )(f.\ - 'f;‘")
(9.5.6)

in which £, is the flow of passengers initiating trips at the failed station.
Comparing with equation (9.5.5), the appropriate strategy can be deter-
mined. In terms of passenger discomfort and distress the (A trip time)
associated with going to an alternative station should be weighted more
heavily than the additional delay associated with slower movement through
the station. Thus unless the line flow is much larger than the station flow
and MTRSisoftheorderof (A triptime), the best strategy is the second one.

9.6 Failures of Passenger-Processing Equipment
in Stations

Patrons beginning their trips may be delayed at a station due to the follow-
ing types of equipment malfunction:

[. Malfunction of automatic equipment such as destination selectors, fare

collectors, and ticket dispensers
2. Malfunction of automatic equipment for assigning passengers to vehi-

cles

3. Malfunction of automatic station doors leading from the station plat-
form to the vehicle

4. Malfunction of automatic doors on the vehicle

5. Malfunction of starting equipment on vehicle

Patrons planning 1o end their trips at a certain station may be caused to
bypass the station due to failure of station entry monitoring equipment, as



242

described in section 9.5. They may also be caused to bypass the station due
to malfunction of equipment described above which prevents the free flow
of vehicles through stations. For example, failure of a vehicle to start
moving after loading its passengers blocks the station. Once all station
platforms behind the failed vehicle and all entering queuc positions are
filled, additional vehicles programmed to enter the station must be diverted
1o an alternate station. Thus, it is necessary in considering the required
MTBF of station equipment to take into account as appropriate both the
people initiating and terminating their trips at the malfunctioning station.

In group-riding transit systems, it is generally felt that automatic vehicle
doors are necessary because no one individual can be expected to take
responsibility for opening or ¢losing the doors. In single-party, demand
systems, on the other hand, manual doors may more likely be satisfactory.
In either case, attainment of reasonable MTBFs requires that the doors be
provided with a manual override both inside and outside to minimize both
the number of people inconvenienced and the Mﬁ;s 1f the vehicle doors
are designed so they cannot lock and trap people inside, and that at worst a
door malfunction is cause for dispatching the vehicle to @ maintenance
shop, they need not be considered further in this analysis,

To prevent people from accidentally or purposefully entering the path
of vehicles moving through stations, and to improve the station climate, it
has been thought that automatic station doors that slide open directly
opposite the vehicle doors are a necessity. This is, of course, a degree of
refinement not accorded many conventional transit systems. In new off-
line station automated transit systems the vehicles move more slowly
through the stations, and the wait time is minimum. Thus, the need for
automatic station doors may in many cases be marginal. They can, how-
ever, be considered as one of the components in the following analysis.
These doors should also be equipped with manual override devices which
can be operated from either side.

For purposes of systems anlaysis, the failures that impede the flow of
passengers as a result of malfunctions in stations can be divided into three
classes:

1. Malfunctions that affect only the passengers initiating trips at the
station in question

2. Malfunctions that affect incoming and outgoing passengers but do
not divert passengers to other stations

3, Malfunctions that are serious enough to cause passengers to be
diverted to other stations

Equipment on board a vehicle that affects its ability to start on com-
mand may be the same as that which could cause a malfunction while on
line: but should still be included in the computation of required MTBF of
the station equipment. The reason is that in the systems analysis, we
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compute the required MTBFs of the various classes of failures, not of
specific components. The required MTBF of the components or subsys-
tems is determined as indicated in section 8.9.

For Class 1 failures, the number of person-hours of delay can be found

by considering figure 9-3, which shows the position-time lines of groups of
passengers entering a station. Let p,be the average number of people per
group.
The first group entering the station following a malfunction is delayed 7,
units of time. The second group, walking in at an average speed V., moves
up 1o a minimum separation /i, behind the first group and waits until the
malfunction is cleared. If 7, is the normal time headway between groups
entering the station, the second group begins waiting T, - Hein Vo units of
time later than the first group. If 7,,,, is the minimum time headway through
stations, corresponding to the maximum flow rate of py/ Ty people per unit
time, the second group begins moving T.,,, — hipin/ Ve later than the first
group. Thus the second group is delayed 7, — (T, — Ty Similarly, the
third group is delayed =, — 2(7, — T,.,). If ¢ is the number of groups
delayed, it may be seen from figure 9-3 that

. T,
s (@)

min

s — D/DIII

\ Y%

Figure 9-3. Position-Time Diagrams for Passengers Waiting for Service as
a Result of 4 Delay of Duration 7,
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Then. the total number of person-hours of delay for Class | failures of
station equipment is

) = o S I = (i = IXTy = Tog)] ®)

=1

= plgr, = (T, = Todg — Da2)

=B+ 1) ©

In cases of consequence, g is much greater than 1. Then, after substituting
equation (a) into equation (c),

(nt), = fSeami (9.6.1)

where

- Pe__
fea = 31 270 (9.6.2)

is an equivalent station flow. If the station is operating at maximum capac-
ity when the failure occurs (T, = Tww), (n7), approaches infinity in theory,
but in practice maximum flow will occur only for a short period so that the
smallest average value of T, is greater than T,,. If T, varies with time, (n7),
can be found by direct summation of equation (b) for all values of g for
which the summand is positive,

For Class 2 failures, the number of person-hours of delay is (n7),, given
by equation (9.6.1), plus a corresponding term for the people terminating
their trips at the failed station. The latter term is approximately of the form
of equations (9.6.1) and (9.6.2) even if each vehicle carries more than one
group. Thus

_ I |
(s = ‘?( Tow = Tam ' Trge = Toum )" @6

in which T.... is the same value in both cases because of continuity of flow,
and 1, is the mean time to restore service for Class 2 failures.
For Class 3 failures, substantially all of the vehicles terminating at the
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failed station are diverted to another station. The number of people thus
involved is 7, times the flow into the station from the line, f5,, = p,/T,, in
which T, is the equivalent minimum headway if there were only one group
per vehicle. The delay time is the time added to the trip as a result of
diversion to an alternate station. Thus

(n7)s = (nms)y + P"i)-A—Tm (9.6.4)
A

in which (nry), is as in equation (9.6.1) with 75 substituted for 7,.

9.7 Merge Equipment Failures

Wayside merge equipment is needed to avoid collisions in car-follower
systems by transferring the image of cach car to the opposite branch of the
merge, and in point-follower systems by sensing vehicle positions and
commanding vehicles to slip slots. In cither case, a failure of wayside
cquipment could in the worst case cause two vehicles to wedge together in
the merge point. This is one of the worst types of system-caused failures in
automated guideway transit (AGT) systems.

Failure monitoring is needed 10 minimize the consequences of merge
equipment failures. If a failure occurs, the action can be either to stop the
two streams of traffic entircly, or to slow them to a safe speed. In the latter
case, the number of person-hours of delay is greatly diminished. Equations
(9.4.3,9.4.4,9.4.6and 9.4, 7) apply directly to this case if account is taken of
the involvement of two streams of traffic instead of one,

9.8 Diverge Equipment Failures

The purpose of wayside diverge point equipment is to read the destination
of each car, determine the direction it should be switched, and cause the
switch to be actuated. If the switch is in the track, the diverge point
equipment includes the switch; if the switch is in the vehicle, it is included
in vehicle-borne equipment.

Failures of diverge point equipment may be divided into two classes:

1. Some of the vehicles are misdirected and must either be rerouted or
passengers must make their ways to their destinations by alternate routes.

2. The switch is locked in the middle thus requiring all vehicles to stop
until it is restored to service.

In Class | failures, the number of person-hours of delay is

(n7), = (Misdirected flow)7)Atrip time) (9.8.1)
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in which 7 is the mean time to restore service, and (Atrip time) is the extra
time needed 1o arrive at the destination by an alternate route.

In Class 2 failures, (n7); is the same as a Class 4 vehicle failure and s
given by equation (9.4.7).

9.9 Failures in Wayside Communications Equipment

In some types of automated transit systems all essential control equipment,
except for wayside merge and diverge equipment, is aboard the vehicles. In
this case the failure of wayside communications equipment, if there is any,
may cause person-hours delay when some other failure has occurred or
may decrease system capacity, thus causing delay in the peak periods. In
other types of systems, the wayside communication link is essential to all
control functions and its failure is of major consequence. To be meaningful,
computation of n7 for these failures must be left to specific cases.

9.10 Failures in Central Control Equipment

Use of central control equipment in AGT systems may vary from complete
control of the movement of every vehicle from a central facility, to super-
visory functions in a central facility, to no central control.

Complete Central Control

If all control functions pass through a central control facility, a breakdown
in this facility requires that all vehicles be stopped. Because of the exces-
sive level of inconvenience this will cause, the system should be designed
so that the vehicles can then move at slow speed under battery power into
the nearest stations. Because of the possibility of a general power failure,
such a back-up system is mandatory,

The corresponding value of nr is composed of two groups of people: (1)
those on the system at the time of failure; and (2) those seeking service, For
the second group, the number of persons delayed is the total flow rate into
the system 7, multiplied by the mean time to restore service, MTRS. Thus
the number of person-hours of delay is

(nr)y = t,(MTRSY
For the first group, the number of persons delayed is the number of persons
riding the system at any one time. From cquationt4:5-17), this number is #,

v
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times the average trip time, Tirip- The delay time depends on whether or not
batteries are provided on each vehicle, If they are not provided, the delay
time is MTRS. If batteries are provided, the delay time is the increase in trip
time due to the decrease in speed from V, to V*. From equation (2,5.3) this
time interval is approximately (D/V,XV,/V* ~ |) since the term Via, is
generally small.

Summarizing, the total number of person-hours of delay due to a central
control or power failure is

(M7)conirms = (MTRS + T, )MTRS no batteries
(9.10.1)
= BIMIRS* + T,u(DJV,XVV* = 1)] with batteries

Central Supervisory Control

The consequences of failure can be reduced by decentralizing as much of
the control as possible into the vehicles, stations, and switch points, It is
still, however, desirable to exercise supervisory control at a central loca-
tion for two reasons:

I. Prevention of overloads on specific lines and in specific stations by
delaying the dispatching of vehicles to potentially overloaded stations

2. Optimum routing of empty vehicles

Central Register/Dispatcher

In the first function, rerouting along different paths to prevent line over-
loading can be accomplished by use of diverge point routing computers
which communicate with downstream merge point computers. However,
to avoid denying access to a station by vehicles programmed to that station
because too many vehicles have been routed to it, central supervisory
monitoring and control is necessary. The cquipment is simple. All that is
necessary is 1o communicate to a central register the estimated arrival
times at the desired destinations of all trips ordered. If an arrival time
comes into the station-i register too soon after the previous arrival time to
station {, a communication is sent back to the origin station to order a
specific time delay in dispatching of the vehicle so that the arrival rate does
not exceed a specified value, Thus, before permitting a vehicle to leave a
station, the station dispatcher asks permission of the central register. The
central register then causes vehicles to be dispatched on a first-come,
first-serve basis with time delays if needed. These delays will normally be
too short to be recognized as delays.
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The above-described central reigster function is simple enough to be
inexpensively duplicated to reduce its required MTBF. If it doesn't work,
the consequence is that a vehicle may arrive at its destination only to be
aborted, that is. caused either to stop at an alternate station or to circle back
for a second try. Causing vehicles thus to circle adds to the flow along lines
already near their maximum flows, and thus may induce instability in a
network AGT system. The problem is eased, however, by the existence of
diverge point computers operating as described above. The number of
person-hours of delay due to failure of the central register/dispatcher is best
determined in @ computer simulations of specific systems,

Empty Vehicle Dispatcher

The possibility of failure of a central computer/dispatcher which routes
empty vehicles in an optimum way introduces a requirement for a subop-
tional but simpler empty vehicle dispatching scheme in which computer/
controllers at each station are able to rid the station of excess empty
vehicles by dispatching them to the next station, and to call for empty
vehicles from one or more stations up stream.

Failure of the optimal dispatcher may cause excess time delays because
of a temporary local shortage of vehicles, particularly if it occurs during the
rush period. Computer simulation of specific networks are again required
to determine the number of person-hours of delay due to failures.

9.11 Escape Mechanisms

A means for escape from an AGT vehicle must be provided in two circum-
stances:
I. The vehicle is stuck on the guideway and cannot be removed in a
reasonable time.
2. There is & fire on board.

The kind of escape mechanism that should be provided depends on the
probability of each type of emergency and the cost and safety level of the
mechanism. The control system enters the consideration of escape
mechanisms insofar as it may reduce the probability of emergencies. As
indicated in section 9.4, inclusion of a pushing mode in the longitudinal
control system will greatly reduce the mean time between instances in
which passengers must be removed from the vehicle. Addition of redun-
dancy and monitoring equipment at merge and diverge points will greatly
reduce the need for emergency escape at those points.
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The most commonly mentioned escape mechanism is an emergency
walkway along the entire length of the guideway. Such a walkway should
be designed to be serviceable in inclement weather by the less agile mem-
bers of society and permit people to walk safely a distance of up to half the
station spacing. The advantages of emergency walkways lie in their
simplicity and continual presence. Their disadvantages are cost and visual
impact, both of which may significantly reduce the viability of the system.
If escape mechanisms are not required very frequently, a small fleet of
trucks equipped with hydraulic lifts may be satisfactory. A third
mechanism, which also may simplify guideway maintenance, is a vehicle
designed to run on the side of the guideway such as has been designed by
DEMAG-MBB for their systems. See figure 9-4, One such vehicle in each
loop of the system on standby at a station would be required.

In the case of fire, it may be equally satisfactory to cause the vehicle to
proceed to the next station, usually no mote than a minute away, as to let
the patrons egress onto a walkway in highly unfavorable weather condi-
tions. The extent to which the vehicles can be made fireproof and to which
fire extinguishers can be provided will of course influence this tradeoff.

A long delay due to a vehicle stuck on the guideway is a Class 4 vehicle
failure, and the number of person-hours of delay due to such a failure is
given by equation (9.4.7). It can be anticipated that if the required MTBFs
are computed to satisfy system requirements, the frequency of use of
escape mechanisms will be very low. In this circumstance, the use of
systems other than walkways appears warranted even though they involve
a delay before egress is possible.

9.12 Reliability Allocation

The required reliabilities of the various subsystems and components can
now be allocated by substituting appropriate nr values such as estimated in
sections 9.4-9.10 for all failure classes of all subsystems into equations
(8.8.3, 8.8.4). The calculations require knowledge of the slopes of the life
cycle cost curves LCC'y; however, to gain some insight and to illustrate
application of the theory some simplifying assumptions about the LCC,
can be made. For some equipment it is not particularly expensive to
increase reliability, thatis, LCC'yis small and the corresponding equipment
does not enter strongly into equation (8.8.4). In other cases, it may initially
be sufficient to assume the LCC'; are all the same.

Todevelop a specific illustration, assume the only subsystems that need
to be considered are the vehicles, the station monitors, the station
passenger-processing equipment, and central control. For the first three
subsystems, assume four, one, and three classes of failure, respectively, as
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computed in sections 9.4, 9.5, and 9.6. For central control, assume one
class of failure—a power failure. Let the subscripts in equations (8.8.3,
8.8.4) correspond to these subsystems and failure classes in the same order.
Then in the application of equations (8.8.3, 8.8.4) it is more convenient to
write them in the form

MTBF.. = MmTma""(TJT)? <
- CpectuTieip -

4
=N, Y (mgy)® (9.12.1)

-1

"
+(T—') {n.[('!nm)"’i- .g_: (nufu)’“]ﬂn..fu)"’]

v =

in which it is assumed that all LCC' in equations (8.8.3, 8.8.4) are approxi-
mately equal, n, is the number of stations, and PH,/T, has been made
specific by substituting equation (9.2.12). From section 8.5, it will be
assumed in the following analysis that (T,/T,)'* = 1.7. To be specific, also
assume that €, = 1074, that is, that cach regular traveler on the average
will experience one hour of accumulated delay every 10,000 hours. Assum-
ing 200 hours of travel per year, this corresponds to one hour of delay every
50 years, or in other words, every fiftieth regular passenger will expericnce
one hour of delay per year.

For the vehicle failure classes, the corresponding nr are given respec-
tively by equations (9.4.1, 9.4.3, 9.4.4, 9.4.7). In these equations, it is
reasonable to assume for a first-order estimate that only the terms propor-
tional to f,, are important. Then

N ([ Jy Ld Flp v -
g ~o ’"”Hi»-ﬁ][w(‘* )

. ° "
+ 2_at +r,,]+(f. 3'—) ] (@)

in which 7, is the pushing delay time, and 7, is the time required to remove a
nonpushable vehicle. From equation (9.5.6), for the monitor,
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ur
(ny73)'* = [Z_(V“:-—l)—] MTRS,.(I - ;E‘) w1+ foulfe)'™ (b)

From equations (9.6.1) through (9.6.4)

e

R

i 1, Mt
+ f{ T.—m_—T"— +_f, ™ ) ] (c)

From equation (9.10.1),

(ngra)'™ = MTRSM‘" (d)
, ong— WY
“in which it is assumed that batteries are used and, in the second form of
equation (9.10.1), the second term is negligible.

As an illustration, let us compute the required MTBF for pushable
vehicle failures in?loop system. Then (M, 7wa)'? is the sum of the second
and third terms in equation (2) and f,,/r, = 1/2. Assume the triptime is Tyyyp
= 0.1 hour. For (T/T,)"* = 1.7 and €, = 107, equation (9.12.1), form =
1, n = 3, becomes

) .
MTBF,, = S(10) ( W 4 :,,) ]-'.,r s (e)

in which it is assumed that the average flow is at the rather high value of one
half the maximum possible, that is, » = 2. To estimate the summation in
equation (¢), it can be assumed in equation (a) that =, is by far the largest
time parameter. Thus, only the right-hand term will be included. In equa-
tion (b) assume V*/V, = 0.5 and note that on the average fu,[fSi = Ny the
number of stations. In equation (c) assume pye==t¥, 1, = 7, << 7y, and T,._
= 2T . But p,fT..’“n = f$,. With these assumptions,
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In equations (c) and (f), assume D*, the distance between stations, is S00m.
V, = 10 m's, @ = 2.5 m/s. Then equation (¢) with equation (f) substituted
becomes

8+ "
MTBF,, = saoy ) { )
uz
- 1.7[ Aﬂgsut(n{ + n,) + n}"ﬁ( 2'— + er‘!) +2 A'TRsmwv]]
1

(9.12.2)

Assume N, = 300, n, = 7. Then let the delay time for nonpushable failures
be r; = 1 hour, the time to restore a station monitor to service be MTRS,,,
0.5 hour, the MTRS for a serious station failure be 7; = 0.5 hour, and the
MTRS for a power failure chargeable to the system be MTRS,.,.... = | hour.
Further, assume ATy, /rs = 1. Finally, let the time to push be 7,, = 15
seconds. Then, if the terms are listed in the same order as in equation
(9.12.2),

MTBF,, = 319 I 354 vehicles
+ 3.2 station monitors
2.2
+ 2’«8 passenger processing

+ 241+ control station

« 14,000 hours
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This is too high an MTBF to be practical with single-chain components.
With redundancy, equation (9.2.1) shows that the required MTBF of each
redundant unit is

MTBF.m“ = [27( ‘4-m)]'n

in which 7 is the time required to get the vehicle off line after the failure has
occurred. Let 7 be the trip time of 0.1 hour, thus implying on-board failure
monitoring. Then

MTBF ;. = 53 hours

The above is an example calculation to illustrate the method. The numbers
are guesses but are felt to be representative, and all elements in the system
have not been taken into account.

9.13 Summary

In chapter 8, a theoretical method is developed toallocate the reliabilitics of
the subsystem of a general system in such a way that the life cycle cost is
minimized while a given constraint on service availability is met. While it
was not treated explicitly, the case in which some of the subsystem re-
liabilities are already known can be treated in a straightforward manner by
replacing the unavailability factor € by the net unavailability requirement of
the subsystems with underdetermined reliabilities. By considering the
subsystems as conglomerates of series-connected components, it was
shown how the reliabilities of subsystems and components at all levels can
be allocated in an optimum way.

The purpose of chapter 9 is to expand on and to illustrate the use of the
theoretical method of chapter 8. It begins with the consideration of parallel
connections between components, that is, redundancy. Itis shown how to
compute the reliability of systems of redundant members and that, with
failure monitoring, redundancy greatly increases the service dependability
of transit systems. Assuming only vehicle failures, the theory of redun-
dancy is used to develop equations for the reliability of loop and network
transit systems,

Next, the full application of the reliability allocation theory is initiated
by developing formulas for the average number of person-hours of delay
(n#) in a variety of classes of failure of vehicle and wayside subsystems. In
specific systems, it may be possible to develop corresponding formulas for
all significant failure classes; however, sucha comprehensive treatment is
not attempted. The purpose, rather, is to develop enough of the nr formulas
to illustrate application of the reliability allocation theory. In the final
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section of chapter 9, the reliability allocation theory is assembled and
applicd to a particular case.

Application of the reliability allocation theory is of fundamental impor-
tance both in the development and design of new transit systems and in the
improvement of existing systems, and gives a great deal of quantitative
insight into the most efficient and appropriate means of meeting system
reliability goals at minimum cost. In particular, it shows the dramatic
improvements in system reliability that can be made possible by introduc-
ing redundancy, failure monitoring, and rapid automated pushing of failed
vehicles.
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