From personal to mass transit

Prof. em. Ingmar Andreasson
ingmar@logistikcentrum.se
Logititik

40 years in transportation

- Transit network planning - VIPS
- Taxi fleet management - Taxi80
- Multi-discipline PRT research - Chalmers
- Road traffic research - KTH
- 5 PRT patents
- VP, Advanced Transit Association

Storyline

- A challenging podcar application
- Five strategies to cope with large demand
- => Mass transit with podcars

The challenge

- Dense urban area in California
- Very large employers
- Severe highway congestion
- Promote non-car modes
- Transfers from Train and LRT
- Connecting buildings (horizontal elevator)

［国（

 pp施（a） －

－

Our tentative design

- 50 stations
- 48 kms main guideway (6 \% double)
- 4 bi-level intersections out of 54
- Speeds 36 and 45 kph
- Headway 3 secs (as certified)
- 900 vehicles with 6-seats

Morning peak hour demand

- 13000 passengers
- 30 \% of trips from 3 transfer stations
- 400 passengers from one train
- Many dispersed destinations

Train / PRT station

Logistikn

Morning peak demand 13000 / h

Personal Rapid Transit

- Average 1.5 passengers per vehicle
- Can carry 4800 passengers
- 24 mins waiting

Ride-matching at departure

- System knows requested destinations
- First passenger determines destination
- Destination sign over vehicle
- System assigns vehicle when enough load (5 of 6)
- ...or after max holding (1 min)

Ride-sharing morning

- In relations with >1 party per minute
- 7 \% of relations have 60 \% of all trips
- 48 \% of passengers matched
- Average load 3.9 passengers
- 11400 passengers carried
- 11 minutes waiting

Evening peak most challenging

- Many small origins
- Less opportunities for matching
- 43 \% of passengers matched (48)
- 10800 passengers carried (11 400)

Standing passengers?

- Vehicle for 6 seated +6 standing
- Limited braking => double headway
- Same capacity
- Longer station ramps

Same capacity without standees

Coupled vehicles

- Coupled in station
- Decouple in switches to different destinations
- Safe distance between couples
- 2 x line capacity at departure
- Average 1.5 en route

Vehicle pair can safely split apart

- Can serve different destinations
- More load with two destinations
- Each vehicle goes non-stop

Larger vehicle?

- 24 passengers including standees
- 6 sec headway
- Couple 2×6 seated has same capacity
- ...and can split up en route

Coupled vehicles better than big

- Can serve 4 destinations

Electronic or mechanical coupling

Logistik

Ride-sharing plus coupling

- 13200 passengers carried evening (10 800)
- 5 mins waiting (11)
- Better - but still too much waiting

Sharing to 2 destinations

- 26 \% of departures for 2 destinations
- 58 \% of passengers matched (48)
- 13300 passengers carried
- 3.5 mins waiting (5)

Second destination before or after

- Detours within 20 \%

Allow boarding to same destination

- When stopped to drop off
- Waiting passengers to same destination
- Destination sign over vehicle
- No reason not to allow boarding

Ride-sharing patterns

Sharing to 3 destinations

- 59 \% of passengers matched
- 1.2 destinations average
- 13400 passengers carried
- 3.3 mins waiting (3.5)

Adding a third destination

- Before, between or after

Matching many-to-few

- Evening demands more difficult to match
- Multiple pick-ups to common destination (transfer)
- First passengers determine destinations and route
- Stopping en route to pick up for same destinations

Stop en route to pick up

- Route fixed to one or two destinations
- Check waiting passengers en route
- Pick up for same destinations
- No passenger makes more than two extra stops

Stop to pick up

- Picking up 2000 passengers out of 13400
- 0.3 intermediate stops per passenger
- 4.5 passengers per vehicle (3.9)
- All vehicles full (6) on max link
- 2.9 mins wait (3.1)
- +10 \% ride time

Ride-sharing patterns

Network high/low speed + train

Animation $10 \times$ real speed

Empty vehicle
1 passenger
2
3
4 or more
Load/unload
Couple

13400 trips evening peak (6 000 link)

910 vehicles (1800 vph on link)

Less waiting with more ride-sharing

All strategies combined

- Up to 1800 vph on link (average coupling 1.5)
- Up to 6 passengers per vehicle
- Up to 6000 pph on link, 13400 in network
- 85% of vehicles running with passengers
- 8 \% running empty
- 7 \% in stations

APM for same capacity

- Stopping on-line => double travel time
- Can only serve 30 out of 50 stations
- Minimum headway 90 secs (40 deps/h)
- To achieve link flow 6000 pphpd
- Needs to load 6000 / $40=150$ passengers

APM or LRT

200 pass / 90 sec * 75% load = 6000 pph corridor

PRT

$6+6$ pass $/ 3 \mathrm{sec}=14400 \mathrm{pph}$ (all paired $\&$ full) Case 6000 on link, 13400 in network

Conclusions

- Apply ride-sharing and pick-ups during peaks
- On demand, almost non-stop (0.3 extra stops)
- Slightly longer trips (+10 \%)
- Can handle mass transit flow
- 6000 pph on link, 13000 in network
- Not always Personal, but very Efficient
- Mass Rapid Transit, but faster \& cheaper

