
1

Intelligent Transportation
Network System

ITNS

Control
J. E. Anderson

September 2018

2

Contents
 Page

1 Introduction 3

2 Asynchronous Point-Follower Control 17

3 Controlling Many vehicles 38

5 Maneuvers 114

6 Potential Headway Violation upon Decelerating into a Station 159

7 Headway needed to delay Speed Reduction 168

8 On-Line Deceleration 170

9 Encoder Calibration 180

10 Simulation Summary 203

11 Simulate ITNS 206

12 Requirements for ITNS Control 228

13 Distance to Slip 230

15 Potential Headway Violation upon Decelerating into a Station 239

16 Some History of PRT Simulation Programs 248

 End 261

3

Control of Personal Rapid Transit Systems

J. Edward Anderson

Abstract

The problem of precise longitudinal control of vehicles to follow predetermined time-varying speeds and positions
has been solved. To control vehicles to the required close headway of at least 0.5 sec, the control philosophy is
different from but no less rigorous than that of railroad practice. A PRT system can be designed with as good a safety
record as any existing transit system and, because of the ease of adequate passenger protection, quite likely much
better. The basis for the control of a fleet of PRT vehicles of arbitrary size is a complete set of maneuver equations.
The author's conclusion is that the preferred control strategy is one that could be called an "asynchronous point
follower." Such a strategy requires no clock synchronization, is flexible in the face of all unusual conditions, permits
the maximum possible throughput, requires a minimum of maneuvering and uses a minimum of software. Since each
vehicle is controlled independently, there is no string instability. Since the wayside zone controllers have in their
memory the same maneuver equations as the on-board computers, accurate safety monitoring is practical. To obtain
sufficiently high reliability, careful failure modes and effects analysis must be a key part of the design process, and
the control computers must be checked redundant.

Introduction

The problem of closed-loop automatic longitudinal control of a single vehicle constrained
to follow a guideway at a specified time-varying speed and position within adequate accuracy has
been solved by several investigators [1, 2], and analytical equations for the required speed and
position gains have been derived. The architecture of checked redundant microprocessor control
for automated transit vehicles has been developed and has been shown to be able to achieve a
safety record as good or better than a modern rapid rail system [3]. The major challenge in PRT
control has been to control a large fleet of vehicles operating at fractional-second headway and
merging and diverging in and out of stations and between separate branches in a network of
guideways with an acceptable level of safety, comfort, and dependability, while meeting other
essential criteria. A great deal of work has been done on this problem over the past few decades.
Much of the published work can be found in conference proceedings [4, 5, 6], in papers referenced
in those proceedings, and in results of the Urban Mass Transportation Administration's Advanced
Group Rapid Transit Program [7, 8]. While the AGRT system was designed for 3-sec headway,
much of the work is directly applicable to PRT. Together with the work of The Aerospace
Corporation PRT Program [9] and the DEMAG+MBB Cabintaxi PRT Program [10], one can
obtain an excellent perspective on the field.

In a short paper, it is not possible to describe any appreciable portion of this work, but it is
more useful to give a synthesis of conclusions reached concerning the means of controlling a PRT
system, which have been built on the shoulders of prior investigators. I first discuss the criteria
any PRT control system must meet. Then, it is necessary to discuss the problem of safe
achievement of adequately low time headway between vehicles and how the safety philosophy

4

must differ from standard railroad practice. Next is a discussion of strategies of control of many
vehicles in a network. With this background, the next topics are the information that must be
available on board the vehicles and at various wayside points, the sensing and communication
requirements, and the mathematics involved. I do not discuss lateral control because, in most PRT
systems, wheels running against lateral surfaces achieve it passively.

Control Criteria

Line and Station Throughput

Analysis of PRT networks in many applications has shown that fractional-second
headways are both needed and attainable. The 1974 UMTA Administrator Frank Herringer, in
testimony before a committee of the Congress of the United States, said: "A DOT program leading
to the development of a short, one-half to one-second headway, high-capacity PRT system will be
initiated in fiscal year 1974 [11]." This statement was a result of consensus among workers in the
PRT field in consultation with the Research and Development staff of UMTA on the need and
practicality of headways as low as 0.5 sec. Off-line stations must be designed to meet expected
input and output flows, and the system must be designed to prevent excessive congestion at merge
points and destination stations.

Safety

A PRT system must provide a level of safety in terms of injuries per 100 million miles at
least as good as a modern rapid rail system [3], and preferably better because the improvements
provided by PRT in all areas must be good enough to justify the development cost. To achieve
this level of safety, the on-board and wayside computers must be checked redundant.

Dependability

The term "dependability" is less often used than "availability," which is measurable in
conventional transit systems as the percentage of trains that arrive at stations when expected. The
quantity dependability, which is the ratio of person-hours not delayed to the number of person-
hours of operation, is a more meaningful criteria and, in PRT, can be easily measured and updated
trip by trip by a central computer [12]. In a recent PRT program, it was specified that the
undependability (1 - dependability) should be no more than 3 person-hours of delay per 1000
person-hours of operation. From our analysis, if the safety criterion is met, the undependability
will be at least an order of magnitude less.

Ride Comfort

Longitudinal maneuvers must be performed in such a way that International Standards
Organization ride comfort standards on acceleration as a function of frequency are met. As to
maneuvers, the National Maglev Initiative Office set the most recent federal standards on ride
comfort that would be applicable to vehicles in which all passengers are seated. They restrict
acceleration to 0.2 g and jerk to 0.25 g/s in normal operation. The maximum emergency-braking

5

deceleration depends on whether passenger constraints are provided. If not, the criterion must be
that the passenger does not slide off the seat in an emergency stop.

Changing Conditions

The control system must be able to reduce cruising speed in high winds and must be able
to cope with any unusual situation, such as a stopped vehicle, that would require vehicles to slow
down or stop away from a station.

Dead-Vehicle Detection

There must be a means to detect a dead vehicle on the guideway, however remote that
possibility may be. In Section 5, it is stated that the vehicles must transmit their speeds and
positions at frequent intervals to a wayside computer − a zone controller. If the zone controller
suddenly does not receive the expected signal, it must be programmed to remove the speed signal
for all vehicles in that link and transmit this information to the next upstream zone controller. Each
vehicle's control system is configured to command reduction in speed to creep speed1 if the zone
controller's speed signal is not received. Magnetic detectors are placed at specified intervals along
the guideway to inform the zone controller of passage of a vehicle. Thus, if a vehicle passes one
of these markers and not the next, the location of the dead vehicle is approximately known. Then,
as discussed at the end of Section 3.2, because the passengers are seated and can be protected and
the vehicle can be protected by appropriately designed shock-absorbing bumpers [13], a creeping
vehicle can be permitted to advance until it soft engages with the dead vehicle, whereupon the
position of the dead vehicle becomes known and an appropriate failure strategy can be engaged.

Interchange Flexibility

The simplest interchange is a Y, with either two lines entering and one exiting or vice versa.
Such an interchange gives the least visual impact at any one point, but it requires that vehicles first
merge, then diverge, which creates a bottleneck after a merge. Desiring to obtain maximum
possible throughput, The Aerospace Corporation [9] used two-in, two-out, multilevel interchanges,
which permit vehicles to diverge first and then merge. With such interchanges, the input and
output capacity of the lines is the same, hence the worst that can happen is that a vehicle may have
to be diverted from the direction it would normally go. Thus, the control system does not have to
be concerned with sending too much traffic along a particular line. If Y-interchanges are used,
control is more complex and is discussed below. Since Y-interchanges are often necessary, the
control system must permit them.

1A finite creep speed permits the vehicle ahead of the failed vehicle to move safely to the next zone,

reduces anxiety, and with seated passengers is safe.

6

Vandalism and Sabotage

A system in which the control functions are distributed, and the wayside computers are
protected, for example in safe rooms under the stations, will be less susceptible to damage than a
system in which a central computer plays an essential role. To minimize the consequences of
failures of any kind, distributed control is also preferred. The required central-computer functions
should be such that the worst that can happen if it fails is that the system will operate less
efficiently.

Modularity

The control units should be easily exchangeable so that down time is minimized.

Expandability

The control system should be designed for easy expansion of the system.

Principles of Safe, High-Capacity PRT

The Headway Equation

The minimum safe spacing between vehicles is the longest emergency stopping distance
minus the shortest failure stopping distance. It is given by the equation

2

min
1 1

2c
e f

VH Vt
A A

 
= + −  

 
 (1)

in which V is the line speed, tc is the time constant for brake actuation, Ae is the minimum
emergency braking deceleration, and Af is the maximum failure deceleration. Strictly speaking
there should be a term added involving the rates of change of deceleration (jerk), but the emergency
jerk can be made high enough so that jerk does not add to Hmin. If L is the length of the vehicle,
the minimum time headway, using equation (1), is

min
min

1 1
2c

e f

L H L VT t
V V A A

 +
= = + + −  

 
 (2)

Equation (2) shows first that PRT vehicles should be as short as possible. With careful design, a
length of 2.6 m is practical. A typical operating speed is 13 m/s, in which case the first term in
Tmin is 0.2 sec. Boeing work [14] showed that vehicles can transmit their speeds and positions as
frequently as once every 40 msec. To command emergency braking requires two such
transmissions. The braking time constant, once a signal is received must be very short. With the
right technology, 100 msec is practical. Therefore, with some extra allowance, assume tc = 0.2
sec. If the minimum line headway is to be 0.5 sec, the third term in equation (2) can thus be no
more than 0.1 sec − practically zero. This means that in a fractional-second headway PRT system,

7

the design must be such that the minimum emergency deceleration must be as high as the maximum
reasonably possible failure deceleration.

The most recent indication of the practicality of close-headway control is an announcement
by the National Automated Highway System Consortium [15] that in about a year "10 specially
outfitted Buick LeSabres will take part in the first test of an automated highway." A companion
article on the same page says that these 200-inch long autos will operate at a spacing of only 6 feet
at "50-plus miles an hour." This works out to a time headway of 0.309 sec. At 30 mph the headway
would be 0.515 sec.

Departures from Railroad Practice

In railroad practice, trains may be so long that the first term in equation (2) may be several
times the term V/2Ae. Also, at grade level, it is easiest for some foreign object or another train to
quite suddenly appear ahead. In the worst case the train ahead theoretically stops instantly, in
which case the fourth term in equation (2) is zero. Relative to the size of the term L/V, this is not
a severe assumption and is conservative. In railroad practice it is standard to design for the so-
called "brick-wall" stop in which Af is infinite.

A railroad block control system depends in emergency situations on a vital relay that
virtually never fails. Its failure is likely to cause a collision, but such a failure is so rare that it is
assumed never to occur. What is implied is that the probability that the vital relay fails when it is
needed is so low that it is acceptable. There is no other choice. In any moving system the
simultaneous occurrence of two very improbable major failures may set up the conditions for a
collision.

In simple terms, in railroad practice the philosophy is that if one train is to stop
instantaneously, the train behind must be able to stop in a distance short enough to avoid a
collision. In PRT, the philosophy must and can be that if one vehicle stops instantaneously,
someone is already killed. Therefore, one must and can design the system so that, barring a
calamitous external event, it is "impossible" for one vehicle to stop instantaneously. Just as in
railroad practice, "impossible" has the meaning stated in the paragraph above.

This failure philosophy requires careful analysis of every circumstance in which a sudden
stop could theoretically occur. There are only two: 1) Something falls off a vehicle or a foreign
object appears that wedges the vehicle in the guideway and causes it to stop very quickly, and 2)
a collision with the junction point of a diverge. Making the first of these possibilities acceptably
remote requires careful design and an inspection procedure that frequently assures that nothing is
coming loose. Experience with road vehicles gives a feeling for the possible frequency of such an
occurrence, which almost never happens to a well-maintained vehicle. By more detailed analysis
than possible here it can be shown that by proper design a diverge collision will require two
simultaneous highly improbable failures plus a rare "Act of God" event.

8

If there are many vehicles on a guideway, there are two additional possibilities for a sudden
stop. One is a runaway vehicle entering a station and failing to stop before colliding with a
standing vehicle, and the other is a merge collision. By use of checked-redundant vehicle control
such as developed by Boeing [8], it is practical to design the control system in such a way that the
mean time between over-speed failures continuing to a station collision is at least a million years.
It can be shown that a merge collision would require two such failures in very close proximity in
space and time, which places its MTBF in a range more remote than the estimated life of the
universe.

In a PRT system designed as indicated above, there are no sudden stops; however, there
may be on-board failures that require emergency braking. Equation (2) shows that to achieve safe
fractional-second headway, one vehicle cannot be permitted to stop quicker than the vehicle
behind. This requires closely controlled, constant deceleration braking regardless of the condition
of the guideway, which rules out systems that rely on braking through wheels because in rainy or
snowy weather the coefficient of friction may vary along the guideway. This is the safety-related
argument for the use of linear electric motors.2 It may be noted that it is quite likely best to
decelerate at the normal rate if an on-board failure is detected. Trying to decelerate too rapidly
may cause more problems than it solves.

The final factor in the difference between PRT and railroad practice is that PRT vehicles
are light enough so that reasonably sized bumpers can absorb a great deal if not all of the collision
energy, and all passengers are seated. By using data from auto safety practice, a PRT vehicle
therefore can and should be designed so that even a collision need not cause injuries [13].

Control Strategy

General Considerations

Adequately tight control of the speed profile can be attained by using proportional plus
integral (P+I) control based on tachometer feedback. A vehicle must be able to perform any one
of the following maneuvers:

 Speed change from given speed and acceleration to new speed

 Slip given distance forward or backward from line speed

 Slip given distance from acceleration maneuver

 Slip given distance from slip maneuver

 Advance given distance in station from rest or from deceleration maneuver

2Another important reason for use of linear electric motors (with an appropriate guideway design) is to

eliminate the need for guideway heating.

9

 Emergency stop

Code must be written so that the time-varying speed and position profiles of any of these
maneuvers with any set of desired parameters can be calculated in the on-board computer and used
as commands to the controller. If during each computational or time-multiplexing interval a
wayside zone controller transmits a speed signal to all vehicles in its domain and at certain
command points can transmit to a specific vehicle a maneuver command with a parameter (the
desired speed, distance to slip, etc.), the vehicle has all the information it needs to perform the
maneuver. Moreover, by calculating the speed profile in parallel, the zone controller has all of the
information it needs to monitor the execution of the maneuver. If a vehicle moving at line speed
moves away from the desired time varying position, the integral portion of the P+I controller
corrects the position. If the tachometer drifts, as it will, magnetic markers along the guideway
provide the basis for correcting the tachometer constant, and, by commanding a slip maneuver, the
time-varying position. If the speed of the vehicle at a certain time is in error in excess of a preset
amount, the zone controller assumes a fault and removes the speed signal from its domain. The
vehicle controller is programmed to command creep speed if it does not receive the speed signal,
so any failure causes a safe reaction.

We now have a system in which the vehicles each closely and reliably follow commanded

speed profiles and are simultaneously monitored for failures by wayside zone controllers. Upon
this basis it is possible to describe the maneuvers needed to operate the system. This discussion is
based on extensive experience with a PRT-network simulation. We first consider the progress of
an occupied vehicle from the point a passenger group enter to the point that they arrive at their
destination, then we consider movement of empty vehicles.

Movement of an Occupied Vehicle

Let's join a group traveling together to the same destination by choice. We either have a
magnetically coded ticket with the destination recorded on it because we take the same trip every
day, or we must approach a ticket machine to punch in a destination, pay a fare, and receive a
ticket. With a valid ticket we approach the forward-most available vehicle in a line of vehicles
and insert the ticket into a stanchion in front of the stopped and ready vehicle. This action flashes
the origin and destination station to a central computer which has in its memory the estimated
arrival times of all vehicles moving through the system. If our vehicle is expected to arrive at its
destination station at a time when the station is full and cannot receive another vehicle, we are
informed that we must wait a specified time before we can try again. Generally, this will be a very
small time and the central computer will prioritize the unfulfilled demands for service.

When the ticket can be accepted, the station computer so informs us, causes our vehicle's
door to open, and transfers the memory of the destination to the on-board computer. We enter our
vehicle, sit down and when ready one of us presses a "GO" button. Thereupon the door is
automatically locked. If our vehicle is not in the forward-most loading berth, it must wait until the

10

vehicle or vehicles ahead move out. If it cannot yet be commanded to line speed because an
opening is not yet available, it is commanded to advance as far forward as possible.

The station zone controller meanwhile is examining the flow passing the station for an
opening. By zone-controller supervision the vehicles on the main line are maintained at
separations at or greater than the minimum separation permitted by equation (1). Note that there
need at this point be no synchronization. If there is no traffic on the main line a vehicle can be
commanded to accelerate to line speed at any time it is ready. As traffic on the main line builds
up, say with the approach of the morning rush hour, vehicles pass stations at any spacing down to
the minimum allowed.

To create an opening for our vehicle, the zone controller may command a mainline vehicle
too close ahead to slip ahead if possible and a mainline vehicle behind to slip behind at the moment
it commands our vehicle to line speed. If slipping of the mainline vehicle behind would cause the
headway between it and the vehicle behind it to fall below the minimum, the zone controller would
within a few milliseconds cause that vehicle to slip too, and so on upstream. If there would be too
much slipping of upstream vehicles or if the slipping of downstream vehicles has propagated into
the station area, our vehicle would wait until there is an acceptable opportunity to accelerate out
of the station.

When an opening appears, our vehicle is commanded to accelerate out of the station, either
from rest or from a station-advance maneuver. While our vehicle is accelerating, a vehicle ahead
may be caused to slip because of a conflict at a downstream merge point. If that happens and if
our vehicle would reach line speed too close behind the vehicle ahead after it is through slipping,
our vehicle is commanded to slip the necessary amount while accelerating and, if necessary, the
main-line vehicles behind it will be commanded to slip by the amount needed to maintain
minimum headway.

Next, suppose our vehicle approaches a line-to-line merge point. As it passes a command
point at a predetermined location upstream of the merge junction, the cognizant wayside zone
controller, having in its memory the positions, speeds and slip maneuver data for each vehicle
within this merge zone, gives a maneuver command needed to resolve any conflict. If the vehicle
ahead on the other branch of the merge is too close, the zone controller commands it to slip ahead
if possible3, or if not, it commands our vehicle to slip back. If our vehicle is commanded to slip
back it may slip into the headway domain of the vehicle behind on the same leg of the merge, in
which case that vehicle and possibly vehicles behind it are commanded simultaneously to slip
necessary amounts. Since our vehicle may thus already be slipping when passing the command
point, the on-board maneuver algorithm is designed so that it can cause additional slip of a slipping
vehicle. Such operations have been found by simulation to be completely stable.

3Slipping ahead is practical only if the minimum line headway is less than about one second. Otherwise

the maximum travel distance to slip is excessive.

11

After passing the merge point, suppose our vehicle next approaches a diverge point. At a
predetermined command point upstream of the diverge, the cognizant zone controller requests our
destination, which is transmitted through a transmission medium to the zone controller. The
diverge zone controller has in its memory a switch table giving the left or right switch command
for each station in the network from that diverge point. By fiber-optic line, the central computer
can transmit revised switch tables to various diverge-point zone controllers every few seconds if
necessary to avoid excessive congestion in certain downstream links. The zone controller
transmits the right or left switch command to our vehicle, which then acts on the command.

Next suppose our vehicle approaches a station. As soon as it has passed a merge or diverge
point, it is handed off to a new zone controller that asks for and receives its destination. If this
station is not our destination, the zone controller commands our vehicle to switch in the direction
opposite the station off-line guideway. If this station is our destination, the zone controller does
not give a switch command immediately but waits until our vehicle reaches a switch command
point at the farthest downstream point at which the switch can, with a tolerance, be safely thrown.
The wait is necessary because the station may have been full when our vehicle first entered the
domain of the cognizant zone controller, but the last position in the waiting queue on the station
off-line guideway may have cleared a few moments later.

When our vehicle reaches its destination station's switch command point, the zone
controller commands it to switch in the direction of the station if there is an available berth, and if
not commands it to switch away from the station. If the zone controller commands our vehicle to
switch into the station, it assigns it a berth so that the next vehicle will find that this berth is
reserved. Our vehicle switches if necessary and continues forward at line speed to a deceleration
command point. At this point, if one or more positions down- stream of the assigned berth have
cleared, a new farther-forward position is assigned, the old one is cleared, and our vehicle is
commanded to decelerate along a speed profile that first reduces the speed to a predesignated
station speed and then moves the vehicle forward, usually at station speed, until it must decelerate
at the comfort rate to stop at the assigned position. If, at any time during the deceleration
maneuver, the zone controller has advanced a vehicle out of the position or positions ahead of the
assigned position, it reassigns our vehicle to the forward-most empty or to-be-empty position and
revised the deceleration maneuver accordingly.

If our vehicle must stop at one of the waiting positions upstream of the station unloading
and loading berths, it waits until the zone controller can command it to advance into a loading
berth. If, any time during the station-advance maneuver, the berth ahead of the previously assigned
berth clears, the station-advance maneuver is revised to dock our vehicle at the new forward-most
free berth. When our vehicle stops, the door is either opened by a passenger or by an automatic
device.

 The reader may note that some PRT designers have proposed that there be separate loading
and unloading platforms. This doubles the station length, reduces the throughput, and with the

12

small passenger groups characteristic of PRT it does not significantly reduce the time required for
unloading then loading.

Synchronous, Quasi-synchronous and Asynchronous Control

In the early 1970s, the discussion of PRT control virtually always started with a discussion
of the relative merits of synchronous, quasi-synchronous, or asynchronous control. In a purely
synchronous control system, a vehicle that is ready to leave a station waits until it has a confirmed
reservation through every merge point and at the destination before being dispatched. Such a
system was discarded because it is inflexible in a slow-down or stoppage on the main line; and, if
the number of merges that must be negotiated exceeds three or four, the wait time becomes
excessive [18]. The quasi-synchronous system was therefore proposed to permit vehicles to
maneuver to resolve merge conflicts.

In his book [9] Dr. Jack Irving, while advocating quasi-synchronous control, commented

that the essential point is that a wayside computer command and monitor maneuvers, just as
described above. Until reaching a merge point, there is no need to synchronize the flow, and to do
so in advance results in more maneuvering than necessary. As in the scheme described in the
above paragraphs, whenever a vehicle arrives at the merge command point, if there is an
approaching conflict, a merge-point zone controller either commands the conflicting downstream
vehicle on the other leg of the merge to slip ahead if possible, or if not to slip the vehicle that has
just arrived at the command point back. There is no need at merges to synchronize with specific
clock times. We have also found that the described strategy requires less software than quasi-
synchronicity.

Such a scheme is asynchronous except for the technicality of having to synchronize
merging of certain vehicles with respect to one vehicle, but not with respect to a clock. In the
1970s, asynchronous control usually implied car following, in which each vehicle is controlled
based on the position and sometimes the speed of the next downstream vehicle [1]. As pointed
out above and by Dr. Irving, car following is not necessary. It complicates the control problem
and is difficult for the necessary wayside monitor because the monitor does not know
independently the profile of the maneuver. In the terminology used in the 1970s, the system we
prefer could be called an "asynchronous point follower."

Movement of Empty Vehicles

During the night when there is little or no traffic on the system, most of the vehicles are
stored at strategically located storage barns and the rest are stored at stations so that, as in elevator
service, passengers don't need to wait anxiously on deserted platforms, but instead vehicles that
are ready to leave immediately wait for passengers. The number of vehicles required to wait at
each station must be determined by an operational study.

13

As passengers start arriving at stations, the waiting empty vehicles are used up and more
must be ordered. Based on operational experience, a flow of empty vehicles can be started in
anticipation of passengers. In any case, once the number of vehicles in a station that have not been
given destinations plus the number within a specified time of arrival is less than the number of
passengers waiting, the station computer signals to the central computer via fiber-optic line that it
needs an empty vehicle. Other stations will have surplus empty vehicles either because there are
no passengers at the station and there are more vehicles in or approaching the station than the
specified minimum, or because the flow of occupied vehicles in and approaching the station
exceeds the flow of passenger groups entering the station from the street. In the later case, it will
sometimes be necessary to dispatch an empty vehicle while a passenger group is approaching it in
order to permit occupied vehicles to enter the station and unload. In this case, the passenger group
will be informed by computer voice that another vehicle will be docking in a few seconds. As
soon as a station has a surplus vehicle its computer so informs the central computer and dispatches
the surplus vehicle to the next station.

When an empty vehicle reaches the switch command point of a station, if the station does
not need an empty vehicle its computer waves it off to the next station. If this station could use an
empty vehicle, it would like to call this one in, but there may be a greater need for it at a
downstream station. So, the central computer, having a knowledge of the number of empty and
occupied vehicles in each link in the network and of the number and wait time of passenger groups
waiting at each station, has the basis for determining whether each station should accept or wave
off needed empty vehicles. Since the situation is updated every few seconds, no passenger group
need wait much more than at other stations. The average wait time can be reduced by increasing
the number of empty vehicles in the network, but at the expense of increased congestion and
system cost.

The major decision points for distribution of empty vehicles are the diverge points. Here,
as already mentioned, the central computer, with knowledge of the whole system, can, by fiber-
optic link, direct left or right switch commands for the next empty vehicle. Such frequent updating
of empty-vehicle commands at the last possible moment is a far easier problem to solve than the
general transport problem.

Information Transfer

With the above described control strategy, the information that must be fed to the vehicle
computer is the vehicle's actual speed and position; the cruising speed, which could be a function
of wind or position in the guideway; and, at certain command points, the number of a maneuver
with a parameter. The information required by each wayside zone controller is all vehicle positions
and speeds in its domain including hand-off of the state of each vehicle as it enters its zone, and
any information about anomalies. The information needed by the central computer is the stations
at which there are surpluses or deficits of empty vehicles, the number of empty and occupied
vehicles in each link, the destinations of and the departure times of all vehicles commanded to

14

leave stations, the arrival times, the distance each vehicle has traveled, the distance traveled at
which each vehicle is due for maintenance or cleaning, the location of and data on any faults in
the system, and the weather conditions.

To perform the required data transfer there must be a continuous and noise resistant means
for data transfer between vehicles and zone controllers, such as the three-wire communication line
developed by Boeing [14,16], a series of magnet markers to signal passage of vehicles, and fiber-
optic links between the central controller and all zone controllers. At predetermined intervals
(Boeing used 40 msec), each vehicle must transmit to the cognizant zone controller its vehicle
number, speed, position, destination on call from the zone controller, and any data about faults.
The wayside zone controller must be able to transmit to all vehicles in its domain a continuous
cruise-speed signal, and it must be able to transmit parameterized maneuver commands and switch
commands to specific vehicles when needed.

 For position and speed sensing, Boeing engineers [17] found that incremental wheel-angle
encoders with a resolution of 0.04 foot per pulse were enough as the basis for computing both.
Position measurement consisted only of counting pulses, but the calculation of speed was
"considerably more complex and, to a large extent, dictated the Programmable Digital Vehicle
Control System configuration" they selected. The vehicle must also be equipped with sensors to
detect the magnetic markers and to transmit to and receive data from the communications line.

Mathematics

Maneuver equations

Parameterized equations are needed for all the maneuvers required to run a PRT system as
described. This is not an easy task, but once the algebra is worked out, as we have done, it is
available forever. The equations can easily be programmed into the memory of the on-board and
wayside computers, which then permits accurate control and monitoring of each vehicle with a
minimum of data transfer.

Curved-Guideway Equations

In the above discussion, reference was made to the location of certain command points.
Determination of the positions of all such points requires a complete understanding of the
equations of curved guideways and their use in minimization of off-line guideway lengths and
distances between branch points.

Empty-Vehicle Movement

A general scheme of the points and times in the system where empty vehicles are to be redirected
has been given and the use of decision algorithms has been suggested. In relatively small systems,
these are quite simple, but the challenge is to optimize such algorithms as the network grows.
Some good work [9] has been done on this problem, but more is needed.

15

Conclusions

Analysis, simulation and hardware experience has shown that the problem of precise
longitudinal control of vehicles to follow predetermined time-varying speeds and positions has
been solved. To control vehicles to the required close headway of at least 0.5 sec, the control
philosophy is different from but no less rigorous than that of railroad practice. Available results
show that a PRT system can be designed with as good a safety record as any existing transit system
and, because of the ease of adequate passenger protection, quite likely better.

With maneuver equations derived in easily programmable form, one has the basis for the
control of a fleet of PRT vehicles of arbitrary size. The author's conclusion is then that the
preferred control strategy is one that could be called an "asynchronous point follower." Such a
system requires no clock synchronization, is flexible in the face of all unusual conditions, permits
the maximum possible throughput, requires a minimum of maneuvering, and a minimum of
software. Since each vehicle is controlled independently, there is no string instability. Since the
wayside zone controllers have in their memory the same maneuver equations as the on-board
computers, accurate safety monitoring is practical. To obtain sufficiently high reliability, careful
failure modes and effects analysis must be a key part of the design process, and the control
computers must be checked redundant. Work of the federal Advanced Group Rapid Transit
Program showed a decade ago how that can be done in a very satisfactory manner.

References

1. Garrard, W. L., Caudill, R. J., Kornhauser, A. L., MacKinnon, D., and Brown, S. J., "State-of-
the-Art of Longitudinal Control of AGT Vehicles." Proceedings - Conference on "Advanced
Transit and Urban Revitalization - An International Dialogue," Advanced Transit Association,
Indianapolis, 1978.

2. Lang, R. P. and Freitag, D. B. "Programmable Digital Vehicle Control System," 28th
Vehicular Technology Conference, IEEE Technical Paper, March 1978.

3. Milnor, R. C. and Washington, R. S. "Effects of System Architecture on Safety and
Reliability of Multiple Microprocessor Control Systems." 34th Vehicular Technology
Conference, IEEE Technical Paper, May 1984.

4. Personal Rapid Transit, Personal Rapid Transit II, and Personal Rapid Transit III, 1972,
1974, 1976, resp., University of Minnesota. Out of print but available in many libraries.

5. Proceedings - Conference on "Automated Guideway Transit Technology Development,"
UMTA-MA-06-0048-78-1, August 1978.

6. Proceedings - Conference on "Advanced Transit and Urban Revitalization - An International
Dialogue," Advanced Transit Association, Indianapolis, 1978.

16

7. Womack, W. "Vehicle Longitudinal Control and Reliability Project Summary," UMTA-IT-06-
0148-79-10, June 1979.

8. Greve, W. E., Haberman, D. E., and Lang, R. P., "Advanced Group Rapid Transit Vehicle
Control Unit Design Summary," UMTA-WA-06-0011-84-3, May 1985.

9. Irving, J. H., Bernstein, H., Olson, C. L., and Buyan, J. Fundamentals of Personal Rapid
Transit, Lexington Books, D. C. Heath and Company, Lexington, MA, 1978

10. Development/Deployment Investigation of Cabintaxi/Cabinlift System, Report No. UMTA-
MA-06-0067-77-02, NTIS Report No. PB277 184, 1977.

11. Department of Transportation and Related Agencies Appropriations for 1974, Hearings
before a Subcommittee of the Committee on Appropriations, House of Representatives, 93rd
Congress, Part I, page 876.

12. Anderson, J. E. "Dependability as a Measure of On-Time Performance of Personal Rapid
Transit Systems," Journal of Advanced Transportation. 26:201-212, Winter 1992.

13. Anderson, J. E. "Safe Design of Personal Rapid Transit Systems," Journal of Advanced
Transportation 28:1-15, Spring 1994.

14. Nishinaga, E. I. and Colson, C. W. "A Vehicle Collision Avoidance System Using Time
Multiplexed Hexadecimal FSK (Frequency Shift Keyed)," 33th Vehicular Technology
Conference, IEEE Technical Paper, May 1983.

15. Holusha, J., "A Smart Road Starts to Take Shape in California," New York Times, September
1, 1996, p. 25A.

16. Nishinaga, E. "Digital FSK Receiver Capable of Operating in High Impulse Noise
Environments," 31th Vehicular Technology Conference, IEEE Technical Paper, April 1981.

17. Lang, R. P. and Warren, D. J. "Microprocessor Based Speed and Position Measurement
System," 33th Vehicular Technology Conference, IEEE Technical Paper, May 1983.

18. Anderson, J. E. "Synchronous or Clear-Path Control in Personal Rapid Transit Systems,"
Journal of Advanced Transportation. 30-3 (1996).

17

Asynchronous Point-Follower Control

Table of Contents

Chapter Page
 References 2
I Introduction 2
II The Control Strategy 3
III Follow a Vehicle through a Network 4
IV Hardware & Software Elements 7
V The System Software Elements 10

5.1 Control of a Vehicle 10
5.2 Control of a Station Zone (SCZ) 10
5.3 Control of a Merge Zone (MCZ) 11
5.4 Control of a Diverge Zone (DCZ) 12
5.5 Central Control (CC) 12
5.6 Empty-Vehicle Movement 13
VI Command Points and Actions 13
6.1 Switch Command Point 13
6.2 Deceleration Command Point 14
6.3 Diverge Command Point 14
6.4 Merge Command Point 15
6.5 Station-Exit Command Point 16
6.6 Procedure for Exercising Command Points 16
VII Test for a Headway Violation upon Decelerating into a Station 17
7.1 Kinematics of two successive vehicles moving into a station 17
7.2 Results 18

VIII Boundaries of the Forbidden Zone 20
Figure

7.1 The velocity profiles of a pair of vehicles entering a station 17
7.2 Kinematics of a pair of vehicles decelerating to station speed 19
7.3 Separation and minimum allowable separation between two vehicles

entering a station
19

8.1 Boundaries of the Forbidden Zone 21

18

References:

1. Transit Systems Theory, Lexington Books, D. C. Heath and Company, Lexington, Mass. 1974.
2. Jack Irving et all, Fundamentals of Personal Rapid Transit, Lexington Books, D. C. Heath &

Company, 1978, www.advancedtransit.net.
3. William E. Greve, Donald E. Haberman, and Robert P. Lang, “Advanced Group Rapid Transit

Vehicle Control Unit Design Summary, Boeing Aerospace Company, UMTA-WA-06-0011-84-3,
May 1985, 249 pages.

4. “System Control,” PRT Design Study, Chicago RTA, 1992, 72 pages.
5. "Synchronous or Clear-Path Control in Personal Rapid Transit," JAT, 30:3(1996):1-3.
6. "Longitudinal Control of a Vehicle," JAT, 31:3(1997):237-247.
7. "Control of Personal Rapid Transit Systems," JAT, 32:1(1998):57-74.
8. “A Review of the State of the Art of Personal Rapid Transit.” JAT, 34:1(2000):3-29.
9. “Some History of PRT Simulation Programs,”13 pages, (2007).
10. “Overcoming Headway Limitations in PRT Systems,” PodCar Conference, Malmö, Sweden, 9-10

December 2009.
11. “Transitions,” 2014, 45 pages.

I. Introduction
The above-listed references provide the basic background used to develop the work described herein. The
serious reader needs to be familiar with this work before delving into the details developed in this document.
The system under discussion is referred to as an “Intelligent Transportation Network System” (ITNS) to avoid
direct use of the generic name “Personal Rapid Transit” or PRT because this type of “transit” has been identified
with railroads, which have been for over a century subject to the 1911 Railroad Safety Act, which requires a
minimum headway between trains such that if one train stops instantly, the one behind can stop without
colliding. Based on experience discussed in the above references, with today’s technology used as specified
we can safely operate at substantially shorter headways, and we have been advised that one step is to stop
calling the system a form of transit. The true proof, however, must come with extensive operation in daily
practice. But the fact is that in this discussion we can’t avoid using the term PRT because it is so ingrained in
advanced transit culture.

Reference 7 provides the first description of an asynchronous, point-follower system published and explains
how I concluded that it is the best way to control the vehicles in ITNS. Here is a quote from the abstract:

“The problem of precise longitudinal control of vehicles so that they follow predetermined
time-varying speeds and positions has been solved. To control vehicles to the required close
headway of at least 0.5 sec, the control philosophy is different from but no less rigorous than
that of railroad practice. The preferred control strategy is one that could be called an
"asynchronous point follower." Such a strategy requires no clock synchronization, is flexible
in all unusual conditions, permits the maximum possible throughput, requires a minimum of
maneuvering and uses a minimum of software. Since wayside zone controllers have in their
memory the same maneuver equations as the on-board computers, accurate safety monitoring
is practical.”

http://www.advancedtransit.net/

19

The key to a practical asynchronous point follower is possession of the exact equations for all of
the transitions, which are developed beginning in Reference 1 and improved over the years as a
result of teaching engineering mechanics and transit systems analysis and design. In a companion
paper “Transitions,” Reference 11, equations are derived from which to compute the transitions 1)
from any speed and acceleration to rest in a given distance, 2) from any speed and acceleration to
line speed while losing a given distance called “slip”, and 3) from one speed and acceleration to
another speed. Many of these transitions are derived in Appendix A of Reference 2. With the
equations of Reference 11 developed, a high-gain controller designed according to Reference 6
causes the vehicle to follow the commanded speed-position profile very accurately. In
Asynchronous Control there is no clock synchronization. All vehicle movement is a result of
events. In the Section III a series of such events is discussed. In Point-Follower Control of ITNS,
every transition follows the code derived in Reference 11.

II. The Control Strategy

1. A Hierarchy of three levels of control:
a. VC – vehicle controllers
b. ZC – wayside zone controllers
c. CC – central control

2. Asynchronous point follower, i.e., no clock synchronization of vehicle positions.
Vehicles follow calculated transitions commanded by the ZC. Each ZC checks the
movement of each vehicle within its jurisdiction.

3. Adjacent ZCs pass vehicle position and speed data. Each upstream ZC informs the
downstream ZC of the arrival of a vehicle, indicating its number, position, speed, and
maneuver. Each downstream ZC informs its upstream ZC of the number, position, speed,
and maneuver of the vehicle closest to it to warn of a slipping vehicle, i.e. one that has
been commanded to a slip back to maintain prescribed minimum headway from the
vehicle ahead.

4. A time interval called a “time multiplexing interval” (TMI4) is established. (This may
not need to be a fixed interval, just an interval long enough so that the necessary
information can be passed.) During each TMI a speed signal from the cognizant ZC is
sent to all vehicles in its jurisdiction, and each vehicle in that zone sequentially transmits
to the ZC its ID, speed, position, and any fault information. The TMI must be short
enough so that in the case of an anomaly, action can be taken before a dangerous
situation can develop. In 1993 Raytheon settled on a TMI of 200 msec. In the early
1980’s, Boeing used 40 msec, but in a GRT system with fewer vehicles.

5. The number of vehicles that can be managed by one ZC depends on the reliable data
rate.

4 A term first introduced by Boeing Company in their study of AGRT for UMTA.

20

6. The electronic engineering team must establish the maximum number of vehicles that can
be accommodated by one zone controller, and this determines the maximum zone size.

7. Each VC is configured so that if it misses a speed command two TMI in a row; it is
commanded to reduce to creep speed, which at this time must be zero. (For the sake of
reducing passenger anxiety by moving affected vehicles into stations, it would be better
to reduce to a non-dangerous speed such as 2 mph. Substantial testing is needed to prove
that a non-zero speed is safe.)

8. If a ZC misses the information or senses anomalous information from a vehicle two TMI
in a row, it removes the speed signal from the faulty vehicle and those upstream of it, so
as to signal them to reduce speed.

9. When the controller in a vehicle commands the vehicle’s switch to be thrown, it initiates
a command to stop one second later, which command is cancelled by a signal from a
proximity sensor that indicates that the switch has been thrown.

III. Follow a Vehicle through a Network

We explain the events the software must perform by following a vehicle through a network:

Start with a vehicle leaving a station. Having met the conditions needed to be commanded out of
the origin station (discussed in Section VIII), the vehicle reaches the Station-Exit Command Point,
i.e., the point of intersection of the main guideway with station by-pass guideway. At this point,
a routine called ResetOnStationExit resets various quantities to either the next station or if none on
the link to the merge or diverge point ahead.

Assume the vehicle we are following then approaches the command point ahead of a merge. (The
positions of all of the command points were calculated and stored in setup programs.) When our
vehicle reaches the merge command point (MCP) the merge zone controller (MZC) goes into
action. It determines if our vehicle will merge with the closest vehicle behind on the other leg of
the merge at a headway closer than the established minimum headway. If so, the MZC commands
the other vehicle to slow down and then return to line speed (called “slip”) sufficiently far back to
achieve the specified minimum headway through the merge. If in slipping back, the vehicle behind
would violate the minimum headway criterion that vehicle is also caused to slip, and so on
upstream until no more slipping occurs. A routine calculates slip in upstream station areas and
upstream of any branch point in the network. The longer the minimum headway the farther
upstream these slips will propagate.

The MZC can cause our vehicle to slip ahead instead of behind if 1) it would not reduce the
headway to the vehicle ahead to less than the set minimum headway or 2) if there is sufficient
space on the guideway to move the MCP back enough to permit slipping ahead.

21

Next assume the vehicle approaches the switch command point (SCP) of a downstream station that
is not its destination. The cognizant station-zone controller (SZC) causes the vehicle to switch
away from that station. The vehicle continues downstream to ResetOnStationExit and then until
it reaches say a diverge command point (DCP). The cognizant diverge zone controller (DZC)
reads the vehicle’s destination, looks up the appropriate switch direction, and gives it a command
to switch either to the right or left depending on which direction provides the shortest time to its
destination. The CC can change these switch commands if necessary to balance the flow in the
network.

Now assume our vehicle reaches the SCP of the desired destination station. The cognizant SZC
determines if the destination station is or is not full of vehicles. If the station is full the vehicle
must be “waved off”, i.e., switched away from the station, whereupon it must proceed through the
network until it returns for a second try. If there is room in the station, the SZC commands the
switch to be thrown in the direction of the station and assigns our vehicle to the forward-most
empty berth.

Next, our vehicle approaches the deceleration command point (DCP) where the SZC re-determines
the forward-most berth and commands the vehicle to stop at that berth. Having received this
command to stop in a specified distance, the VC calculates the appropriate sequence of positions
and speeds at each time interval dt that will cause the vehicle to slow down comfortably. These
positions and times become commands to the onboard control system to cause the vehicle to slow
to a stop. During this maneuver, a berth or berths forward of the commanded stopping position
may have opened, in which case the SZC commands our vehicle to a new farther-forward stopping
position. This process continues at each computational interval until the vehicle has stopped.

If our vehicle is commanded to stop in a berth upstream of the station loading-and-unloading
platform, it waits until it can be commanded by the same routine to stop at a berth farther forward.
When it stops at a station berth and there are no empty positions ahead of it, if the vehicle is
occupied the vehicle’s door is commanded to open and the passengers begin to disembark. Once
the passengers have left the vehicle, the vehicle is either available for a new group of passengers
right away or it is moved forward to fill any empty berths before loading.

If the vehicle in the first berth in a station is empty, if there are no passengers wanting to board,
and if there are vehicles waiting to enter the station platform, the SZC will give that first empty
vehicle the destination of the nearest storage station, whereupon based on the criteria given in
Section VIII it is commanded to leave the station. The ID number of this vehicle is also placed in
a register of empty vehicles headed to storage, with these numbers referenced to each station. For
this purpose, every segment of guideway is assigned to a station. Now, if according to an
established criterion a station needs an empty vehicle, its SZC looks upstream from station to
station until it either finds an available empty in one of the empty-vehicle registers or it reaches a

22

storage station where an empty vehicle is available. The SZC then simply changes the destination
of that empty vehicle to its own, whereupon the vehicle is committed and no longer available to
be diverted to another station. The priority in which stations seek empty vehicles is important.
During each computation interval, in a routine called SetupCallEmpty the priority is taken in
accordance with wait time for stations in which passengers are waiting, longest wait first, then for
the remaining stations the order is randomized differently each computational interval. If the wait
time at a certain station has become unusually long, its call criterion can be increased so that
vehicles can be called sooner.

Line speed changes are of two types: 1) due to high winds the line speed must be reduced according
to a formula and then increased after the wind dies down, and 2) at specific points in the network
where the vehicle must slow down for a curve and then increase speed again after passing the
curve. Code for these functions is included in the routines ChangeLineSpeedDueToWind and
ChangeLineSpeedAtSpecificPoints. In the latter routine, increasing speed at a specific point has
no effect on the vehicles behind, but in decreasing speed, if a vehicle behind is too close, the
headway between it and the vehicle ahead may go below the minimum allowable unless it is
commanded to the new line speed at the same time, which is done. The criterion for slowing a
vehicle down simultaneously with one that has reached the speed-change command point is
derived in Reference 11.

Converting the above commands into code is a straightforward iterative process that can be
appreciated in detail only through the process of writing code. To do it one must simply plunge
in. Only then will one appreciate the conditions that arise and that must be corrected though code
revision and addition. To catch errors in the developmental program, the primary but not only tool
is a Headway Checker, which stops the simulation program if a headway violation is found. It
provides enough information so that with the Randomizer off5 the program can be run again and
again until the exact cause of the error is found and corrected. Often quite a number of runs are
needed to discover the exact cause of the error. While laborious, it is essential that the programmer
not guess at a cause of an error. Much more often than not the real cause is not obvious. The
present stage of the developmental program is such that hundreds of runs have been made with no
error. While laborious and requiring a great deal of patience, the development of the program
needed to simulation an ITNS network is a straight-forward application of mathematics,
mechanics, and logic, and has been developed by almost every PRT developer (See Reference 9).

5 With the Randomizer off the program generates the same sequence of pseudo-random numbers each time.

23

IV. Hardware & Software Elements

The Control System needed to operate ITNS consists of the following elements.

Hardware:

WHAT HOW

Instruments on board the vehicles to sense speed
and position.

Encoders mounted on wheels convert motion
into a series of electrical pulses that can be
converted into digital information. Since we
use the main support wheels only for
suspension and not for propulsion and braking,
such devices provide accurate information on
both distance and speed and are commercially
available. Averaging left and right encoder
outputs gives the correct position and speed
around curves and providing encoders in both
front and rear wheels provides redundancy.

Instruments at wayside to separately sense speed
and position of vehicles for wayside computers.

The best-known scheme uses magnetic
markers, pairs of which permit speed to be
measured by measuring the time between
closely spaced magnets.

A secure, environmentally friendly
communications medium.

Leaky cables are commercially available at low
cost and can be mounted inside the guideway
to act as the communications medium. There
are many suppliers.

Transcevers to transmit and receive information
between vehicles and wayside via the leaky
cable.

It may be necessary to design these devices
from scratch to conform to the specific
requirements.

Transducers, i. e., devices that convert
information from one type to another – analog
to digital, digital to analog.

Commercially available.

Means for propelling and braking the vehicle. Linear induction motors (LIM) driven by
variable frequency drives (VFD) provide all-
weather operation and are commercially
available. A pair of parking and emergency
brakes will be provided, in which a high-
friction pad presses down on the running
surface and is operated by a ball-screw
actuator. For parking this brake operates every

24

time the vehicle stops. It is used for
emergencies in the rare case that LIM braking
is not available.

Means for permitting a vehicle to switch from
one guideway to another.

The preferred means has an on-board switch
arm that can engage a switch rail on either the
left or right side. The guideway has no moving
track parts.

Computers to be used in dual duplex sets. Commercially available.

Software:

Software to convert information from sensors
to digital information.

Commercially available.

Software to convert information from digital
to voltages and frequencies.

Commercially available.

Software in vehicle computers to cause the
vehicle door to open or close.

Commercially available, e. g. for operating
elevator doors.

Software in vehicle computers required to
operate the heating, ventilating, and air
conditioning equipment.

Commercially available.

Software in vehicle computers required for
calculating speed and position commands,
comparing them with actual speeds and
positions, multiplying them by suitable gain
constants, and outputing commands to analog
devices.

Commonly known to control engineers. See
paper “Longitudinal Control of a Vehicle.”

Vehicle software that corrects for step
changes in position due to encoder calibration
without the controller seeing a step change in
position.

When the encoder must be calibrated, the
same correction must be fed into the
command position.

Software in each wayside computer to receive
speed-and-position information separately
from each vehicle in its domain, to verify that
that information is correct, and to take
corrective information if not.

This is the monitoring and safety function of
the zone controller.

Software in each wayside computer to
interpret the position and speed of each

The methods are described in open literature
and the needed code has been developed.

25

vehicle in its domain and to send the
appropriate maneuver command when needed
to a specific vehicle. Different software is
needed in station zone controllers, merge zone
controllers, and diverge controllers.

Software in a central computer to calculate
the switch table needed in diverge-zone
controllers and to adjust it for traffic
conditions.

This is a straightforward process using known
methods.

Software to permit wayside diverge-point
computers to command vehicles to switch left
or right based on transmitted knowledge of
the destination.

When a vehicle reaches a diverge command
point, the cognizant wayside computer
interrogates the vehicle for its destination,
looks up in a switch table the right or left
switch command for that destination, and
transmits it to the vehicle.

Software to permit wayside merge-point
computers to command vehicles to slip when
necessary to maintain pre-set minimum
headway.

When a vehicle reaches a merge command
point, the wayside ZC for that merge checks
the positon of vehicles on the other branch
and commands slip when needed. These
actions have been programmed.

Software to permit speed to be changed in
different parts of a network, to reduce speed
in high wind conditions, and to increase it
again when the wind dies down.

This process has been programmed.

Software in wayside computers called “zone
controllers” to permit one zone controller to
pass vehicles to the next zone controller.

A straightforward programming task.

Software in wayside zone controllers to pass
status information from vehicles to a central
computer.

A straightforward programming task.

Software in a central computer to assist the
optimum movement of empty vehicles.

The method we have programmed is
described in Reference 9.

Software in a central computer to gather,
interpret, and display performance data.

A straightforward programming task.

Software to enable voice communication
between vehicles and a wayside control room.

This has not yet been programmed.

26

V. The System Software Elements

Some of this information has been given in a different form.

5.1. Control of a Vehicle

• Inputs from wayside Zone Controller:

 Speed every Time Multiplexing Interval.
 Maneuver command at Command Points.
 Switch commands before every diverge and merge.

• Input from on-board Encoder:
 Distance-pulse stream

• At fixed intervals along the guideway, update vehicle position and correct speed.

• As a vehicle leaves a station, calibrate the position signal.

• Calculate:
Command Acceleration(t)

 Command Speed(t)
 Command Position(t)
 Measured distance, from encoder
 Measured speed, from distance and time encoder increments
 Command Thrust using calculated gains
 Switch Position

• Outputs:
 Voltage
 Frequency
 Switch command

5.2. Control of a Station Zone (SZC)

• The domain of the SZC is from the closest upstream branch point (BP), which may be a
line-to-line BP or the nearest upstream guideway diverge point to the cognizant station
output diverge point.

• Every Time Multiplexing Interval (TMI) the SZC sends the line speed to all vehicles in
its domain, and receives from each vehicle in its domain its speed and position measured
from the nearest downstream line-to-line BP.

• The SZC calculates the expected speed and position of each vehicle in its domain and

removes the speed signal if the values from a vehicle are outside an agreed range.

• Every TMI the SZC is informed of a vehicle in the upstream zone that will arrive in its
domain in the next TMI and so informs the downstream zone of the same.

27

• When a vehicle reaches the station’s switch command point (SCP), the SZC determines if

it is to switch into the station and if so, assigns it the forward-most empty berth.

• When a vehicle commanded to switch into the station reaches the station’s deceleration
command point (DCP) the SZC reassigns it to the forward-most empty berth, which may
have changed, and commands it to stop in the distance to that berth.

• When a vehicle is either decelerating into the station or stopped and a berth further

forward becomes empty, the SZC commands the vehicle to stop at the new forward-most
available berth. The vehicle’s door must be closed in order for it to accept the command
to move forward.

• When a vehicle is assigned to the first berth, whether in it or moving to it, the SZC, with

knowledge of the positions of all vehicles on the main line guideway, determines when to
command the vehicle to line speed. See Section VIII.

5.3 Control of Merging (MZC)

• The domain of the MZC is from the downstream guideway junction (the merge point)
upstream on each leg to the nearest BP.

• Every TMI the MZC sends the line speed to all vehicles in its domain, and receives from
each vehicle in its domain its speed and position measured from the merge point ahead.

• The MZC calculates the expected speed and position of each vehicle and removes the
speed signal if these values are outside an agreed range.

• Every TMI the MZC is informed of the position, speed, and acceleration of a vehicle in

the upstream zone on either leg that will arrive in its domain in the next TMI and so
informs the downstream zone of the same.

• When a vehicle just passes the merge command point (MCP), the MZC determines if the
vehicle upstream of and closest to MCP on the other leg is close enough to violate the
minimum-headway criterion. If so, this vehicle is commanded to slip back enough to
maintain the set minimum headway, and simultaneously any vehicle upstream of it that
would violate set minimum headway is commanded to slip. This process continues until
no further slipping is needed. The program is designed to slip vehicles upstream of the
upstream station and line BPs if necessary.

28

5.4. Control of Diverging (DZC)

• The domain of the DZC is from the downstream guideway junction (the diverge point)
upstream to the nearest station or line BP,

• Every TMI the DZC sends the line speed to all vehicles in its domain and receives from
each vehicle in its domain its speed and position measured from the diverge point ahead.

• The DZC calculates the expected speed and position of each vehicle and removes the
speed signal if these values do not agree within a set range of the values transmitted from
the vehicle.

• Every TMI the DZC is informed of the kinematic properties of a vehicle in the upstream

zone that will arrive in its domain in the next TMI and so informs the downstream zones
of the same.

• The DZC maintains a switch table, which is a table of switch commands to each station

in the system. This table may be revised by commands from the central controller.

• When a vehicle reaches the diverge command point (DCP) the DZC requests its
destination, looks up the corresponding switch command (left or right), and sends the
switch command to the vehicle.

5.5. Central Control (CC)

• The CC communicates only with the zone controllers. Each ZC communicates with both
the CC and the VC in its domain.

• The CC receives and processes data received from each ZC. This includes trip length,
energy use, wait time, ride time, and expected ride time.

• The CC updates a calculation of system dependability6 each TMI.
• The CC obtains data from the ZCs each TMI on the positions and speeds of all of the

vehicles and determines, based on traffic, when to change certain commands in the
switch tables of certain SZCs.

5.6 Empty-Vehicle Movement

• When a station has a surplus empty vehicle in or approaching its first berth, based on a
criterion given elsewhere, the cognizant SZC gives it the destination of the nearest

6 "Dependability as a Measure of On-Time Performance of Personal Rapid Transit Systems," JAT, 26:3(1992):101-212.

29

storage station and simultaneously enters the number of this empty vehicle into a register
corresponding to the station.

• As the empty vehicle moves from zone to zone, its number is transferred to a register
corresponding to the zone it is in.

• When a station needs an extra empty vehicle, based on a given criterion, its SZC looks
upstream from ZC to ZC in order of proximity on all branches for the nearest available
empty vehicle, i.e., one in an empty-vehicle register. When one is found, its destination
is changed to that of the station in need.

• The order of priority of the search for empties is important. The order is that of the
station with the longest wait time, the second longest, and so on until stations with no
empty vehicles are reached. For them the order is random, with the random order
changed every computational interval.

• The criterion for needing an empty is when the number of vehicles in a station is below
n m+ where n is the number of station berths (where unloading and loading can take
place), and m is a number (a call criterion) that can be changed by the operator or by the
CC based on the observed wait times at each station, in order to decrease the difference
between average wait times at all stations.

• The system average wait time can be decreased by adding more vehicles.

VI. The Command Points and Actions

Equations need to be incorporated into the program for the following command points.

6.1. Switch Command Point (SCP)

The SCP is located far enough upstream of the diverge point into the station so that if the vehicle
failed to detect that the switch is in one of the two locked positions, the vehicle would be able to
stop before hitting the diverge junction. This distance is at least

𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑉𝑉𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 +
𝑉𝑉𝐿𝐿2

2𝑎𝑎𝑒𝑒

in which VL is the line speed, tswx is the time required for the switch to throw and be detected, and
ae is the emergency deceleration.

6.2. Deceleration Command Point

As shown in the paper “Guideway Geometry”, we have found that to reduce the length of the
offline guideway we can and should initiate deceleration into a station before the vehicle
completely clears the main line. In so doing, the bypass line length can be reduced a large amount
while sacrificing as little as 0.1 second on-line headway. The position of the DCP can be
approximated as follows: The length of the transition curve from the main line to the parallel by-
pass line is very close to

30

1/3

4
2 2

L sta
t

c

V V HL
J

 + =   
  

in which

line speed
limit speed through station
centerline separation between mainline and bypass line
comfort value of lateral jerk, 0.25g/s

L

sta

c

V
V
H
J

=
=
=
=

The stopping distance of a vehicle is

2

cL L
stop

c c

AV VD
A J

 
= + 

 

Thus, we can approximately set the DCP upstream of the diverge junction into the station by the
amount

 .DCP stop tD D L= −

At low line speeds this quantity may be negative.

The quantity 𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆 must be greater than 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑉𝑉𝐿𝐿 × 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠.

6.3. Diverge Command Point

Set the DCP upstream of each line-to-line diverge junction by the amount

2

2
L

DCP L swx flare tolerance
e

VD V t D D
a

= + + +

Where Dflare is the distance from the diverge junction to the end of the switch rail.

6.4. Merge Command Point

The merge command point must be place upstream of each line-to-line merge junction point by
the amount

 MCP slip clearance toleranceD D D D= + +

in which slipD is the distance traveled by a vehicle slipping two headway7 distances ,L hV t in which

ht is the line headway. clearanceD is the distance from the merge junction point upstream to the point

7 Further simulation work may increase this value.

31

where a pair of vehicles on opposite branches approaching at equal distances from the junction
point would just touch, and toleranceD is a suitable safety distance.

6.4.1 Slip Distance

If mV is the minimum speed reached in a slip maneuver, the slip S from line speed LV to mV and
back to line speed is

()

2

2 Maneuver Time

m
L m

L m r
m

r c

TS V V

V V AT
A J

= −

 −
= + = 

 

in which rA is the reduced maximum acceleration. The distance travelled while slipping S is

 () .
2
m

slip L m
TD V V= +

The lower we set Vm the less Dslip will be for a given S.

6.4.2 Clearance Distance

There are two values of the clearance distance, depending on whether or not a curved path
intersects a straight path, or if both incoming paths are curved. In either case, a pair of vehicles
will touch if the lateral distance between paths is the vehicle width vw . In the former case this

condition occurs when the lateral distance y between the curved path and the x-axis is vw . In the
latter case the condition occurs when the lateral distance y between the curved path and the x-axis

is / 2.vw This topic is treated in the paper “Guideway Geometry”.

6.5 Station-Exit Command Point

At this command point, the vehicle is removed from the array of vehicles in the station domain,
and is added to the array of the next station if there is one on the same link, or to the array for the
next diverge or merge while setting the next station to zero.

6.6. Procedure for Exercising Command Points

When the distance recorded aboard a vehicle and transmitted to wayside goes to zero or to a small
positive value the vehicle is just passing a line-to-line branch point where wayside control of the
vehicle is handed over from the upstream ZC to the downstream ZC, and the distance recorded by
the vehicle controller is set to the next line-to-line BP. If there is a station ahead, this new ZC is a
SZC and it has recorded in its memory as two of its properties the distances from its SCP and DCP
to the next downstream branch point. When the vehicle enters the domain of a new ZC it is entered
into a register of vehicles passing through that ZC.

32

When a vehicle reaches a SCP the SZC evokes a subroutine that determines if it is to switch into
the station based on the destination of the vehicle and the occupancy of the farthest upstream
waiting berth. If it is to switch into the station, the SZC commands the vehicle’s switch to be
thrown, assigns it to the forward-most empty berth, and records that the SCP function for that
vehicle has been evoked. (The berth assignment is recorded both in the SZC and in the vehicle
computer.) Completion of the SCP function can be indicated by dividing the SZC’s register of
vehicles into two sub-registers: one for those that are upstream of the SCP or downstream of it and
committed to bypass the station, and a second for those that are downstream of the SCP and are
committed to enter the station.

When a vehicle reaches a deceleration command point (DCP) and the vehicle is to enter the station,
the SZC evokes a subroutine that updates the forward-most berth assignment and commands the
vehicle to stop at that forward-most berth.

When a vehicle reaches the downstream merge point of the mainline and bypass line out of a
station, it is passed off to either the SZC for the next station on the same link, or to either a DZC
or a MZC for the same link. In either case the vehicle is removed from the register of the upstream
ZC and simultaneously entered into the register of the downstream ZC.

If the downstream line-to-line branch point is a diverge, when the vehicle reaches its DCP it is
interrogated for its destination, the DZC finds the appropriate switch command from its stored
switch table and sends it to the vehicle controller, whereupon the VC commands its switch to be
thrown if it is in the wrong direction.

If the downstream line-to-line branch point is a merge, when the vehicle reaches its MCP the
cognizant MZC determines if it will be in conflict with a vehicle on the other branch of the merge
and if so causes vehicles to slip back as described in the paper “Transitions.”

VII. Test for a Headway Violation upon Decelerating into a Station

7.1 Kinematics of two successive vehicles moving into a station.

Consider a vehicle #1 decelerating into a station to station speed staV and then to rest followed by

a vehicle #2 a time hT behind undergoing exactly the same maneuver. Let the position of vehicle
#1 at time zero be (0) 0.x = The times, accelerations, speeds, and positions of vehicle #1 at the
points 1, 2, 3, 4, 5, 6, and 7 in Figure 7.1, following the methodology of the paper “Transitions,”
are as follows:

33

Figure 7.1. The velocity profiles of a pair of vehicles entering a station.

()2
1 1

1 1 1
01 1 01 01 01 01

1 1 1
23 2 23 23 23 2 23

1 2
12 12 12 1 12

34 34

45

if / then else

, ,
2 6

, ,
2 3

,
2

/

L sta c c c c L sta

L L
c

sta
c

c

c

sta

c

V V A J A A A J V V

A A Adt V V dt dx dt V dt
J
A A Adt V V dt dx dt V dt
J

AV Vdt dx dt V dt
A

dt dx V
Adt

− ≥ = = −

 = = − = − 
 

 = = + = − 
 

−  = = − 
 

=

= 5 45 45 45 45

67 6 67 67 67 6 67

5 6
56 56 56 5 56

, ,
2 6

, ,
2 3

,
2

c c
sta sta

c

c c c

c

c

c

A AV V dt dx dt V dt
J
A A Adt V dt dx dt V dt
J
V V Adt dx dt V dt

A

 = − = − 
 

 = = = − 
 

−  = = − 
 

 (7-1)

 𝑡𝑡1 = 𝑑𝑑𝑡𝑡01, 𝑡𝑡2 = 𝑡𝑡1 + 𝑑𝑑𝑡𝑡12, 𝑡𝑡3 = 𝑡𝑡2 + 𝑑𝑑𝑡𝑡23, 𝑡𝑡4 = 𝑡𝑡3 + 𝑑𝑑𝑡𝑡34 (7.2)
 𝑡𝑡5 = 𝑡𝑡4 + 𝑑𝑑𝑡𝑡45, 𝑡𝑡6 = 𝑡𝑡5 + 𝑑𝑑𝑡𝑡56, 𝑡𝑡7 = 𝑡𝑡6 + 𝑑𝑑𝑡𝑡67 (7.3)

𝑥𝑥1 = 𝑑𝑑𝑥𝑥01, 𝑥𝑥2 = 𝑥𝑥1 + 𝑑𝑑𝑥𝑥12, 𝑥𝑥3 = 𝑥𝑥2 + 𝑑𝑑𝑥𝑥23, 𝑥𝑥4 = 𝑥𝑥3 + 𝑑𝑑𝑥𝑥34 (7.4)
𝑥𝑥5 = 𝑥𝑥4 + 𝑑𝑑𝑥𝑥45, 𝑥𝑥6 = 𝑥𝑥5 + 𝑑𝑑𝑥𝑥56, 𝑥𝑥7 = 𝑥𝑥6 + 𝑑𝑑𝑥𝑥67 (7.5)

Using the above canonical formulation, the acceleration, speed, and position of vehicle 1 at any
value of t are as follows:

34

()

1

1 2 1 1 1 1

1
2 3 2 1 2 2 2

3 4 3 3

4

0 : , , ,
2 6

: , , ,
2

: , , ,
2 3

: , 0, ,

c L L

c

c

sta sta

A At t t t A J t V V t x t V t

At t t t t t A A V V tA x x t V t

A A At t t t t t A A J t V V t x x t V t

t t t t t t A V V x x V t

t

 ≤ ≤ ∆ = = − ∆ = + ∆ = ∆ + ∆ 
 

 ≤ ≤ ∆ = − = − = + ∆ = + ∆ + ∆ 
 

− +  ≤ ≤ ∆ = − = − + ∆ = + ∆ = + ∆ + ∆ 
 

≤ ≤ ∆ = − = = = + ∆

≤

()

5 4

5 6 5 5 5 5

6 7 6 6 6 6

: , , ,
2 6

: , , ,
2

: , , ,
2 3

c sta sta

c

c
c c

A At t t t t A J t V V t x t V t

At t t t t t A A V V tA x x t V t

A A At t t t t t A A J t V V t x x t V t

 ≤ ∆ = − = − ∆ = + ∆ = ∆ + ∆ 
 
 ≤ ≤ ∆ = − = − = + ∆ = + ∆ + ∆ 
 

− +  ≤ ≤ ∆ = − = − + ∆ = + ∆ = + ∆ + ∆ 
 

(7-

6)

For vehicle #2 up to time ht T= the speed stays constant at LV and the distance traveled is

Lx V t= . For ht T> we can obtain the acceleration, speed, and position as functions of time by

substituting ' forht t T t= − in equations (7-6).

7.2 Results

Some results of a program to calculate the kinematics of Section 7.1 are given in Figures 7.2 and
7.3. Note from Figure 7.3 that in the case shown the small headway violation increases from
zero back to zero in about one second. If based on criteria used, it is judged that the minimum
headway between these two vehicles will be too small, vehicle #2 will have to be slipped back an
amount that can be readily determined.

35

Figure 7.2. Kinematics of a pair of vehicles decelerating to station speed.

Figure 7.3. Separation and minimum allowable separation between two vehicles entering a station.

0 1 2 3 4

TIME, seconds

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Ac
tua

l a
nd

 m
ini

mu
m

se
pa

ra
tio

ns
, m

ete
rs

Separation between veh 1 and 2
Minimum allowable separation

0 1 2 3 4

TIME, seconds

-10

0

10

20

30

40

Ac
ce

ler
ati

on
, s

pe
ed

, a
nd

 di
sta

nc
e t

ra
ve

lle
d i

n M
KS

 un
its Acceleration of veh 1

Speed of veh 1
Distance veh 1 has traveled
Acceleration of veh 2
Speed of veh 2
Distance veh2 has traveled

36

VIII. Boundaries of the Forbidden Zone

When the Subroutine CommandLineSpeed determines that the vehicle in the first birth (here called
Veh) has been given a destination and loading of passengers is complete, it runs the Subroutine
setSpeedChangeManeuver. This routine calculates the maneuver time and distance, Tm and Dm,
respectively. At this point, it is necessary to determine if any vehicles on the line bypassing the
station would conflict if Veh would be dispatched at this instant. Veh may be at any speed less
than the station speed and any acceleration within comfort limits. It follows a curved path such as
the heavy line in Figure 8.1, which begins at zero time and zero distance. When the maneuver is
finished, it is at the time Tm and distance Dm. A vehicle bypassing the station at line speed VL that
would also arrive at the time Tm and distance Dm would at time zero be at distance 𝑉𝑉𝐿𝐿𝑇𝑇𝑚𝑚 − 𝐷𝐷𝑚𝑚
upstream of the position of Veh. If the minimum time headway is Th then any vehicle bypassing
the station within a distance of 𝑉𝑉𝐿𝐿𝑇𝑇ℎ of the distance 𝑉𝑉𝐿𝐿𝑇𝑇𝑚𝑚 − 𝐷𝐷𝑚𝑚 at time 0 will be in the
FORBIDDEN ZONE as shown by the red line in Figure 8.1. If the position of Veh behind the
branch point ahead is P, then the boundaries of the FORBIDDEN ZONE are

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃 − (𝑉𝑉𝐿𝐿𝑇𝑇𝑚𝑚 − 𝐷𝐷𝑚𝑚) + 𝑉𝑉𝐿𝐿(𝑇𝑇ℎ + 𝑐𝑐_𝑑𝑑𝑑𝑑)
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃 − (𝑉𝑉𝐿𝐿𝑇𝑇𝑚𝑚 − 𝐷𝐷𝑚𝑚) − 𝑉𝑉𝐿𝐿(𝑇𝑇ℎ + 𝑐𝑐_𝑑𝑑𝑑𝑑)

in which 𝑐𝑐_𝑑𝑑𝑑𝑑 is the computation interval.

37

Figure 8.1. Boundaries of the Forbidden Zone.

38

Controlling many Vehicles in ITNS
The control system consists of computers, sensors, and a communications medium.

Computers

All computers in the system are dual redundant, which means that each “computer” is really two pairs of
computers. The output of the computers in each pair is compared 20 times a second, and likewise the
common output of the two pairs is compared 20 times a second. Any error detected causes the vehicle to
be directed to a maintenance shop directly upon completing its trip. With this arrangement the mean
time between serious events is extremely long, longer than would be believed without checking the
calculations. See the internal paper “Failure Modes and Effects.”

There are three types of computers: vehicle computers, wayside computers, and a central computer. Each
section of guideway is managed by a wayside computer called a zone controller. There will be station
zones, merge zones, diverge zones, and line zones. The zone controllers command specific maneuvers to
specific vehicles and the vehicle computers respond to these commands. We have worked out the algebra
needed to command every maneuver required, which consist of maneuvering from a station to line speed,
slipping a certain distance ahead of merge points, and stopping in a given distance. With today’s high-
gain controllers we control the position of a vehicle almost as closely as we can measure it.

Each zone controller provides the line-speed signal in its domain. If anything goes wrong, it removes the
speed signal, which causes the vehicles to slow to creep speed. When a vehicle reaches a maneuver-
command point, the zone controller transmits the appropriate command maneuver to that vehicle, and the
vehicle controller causes the vehicle to follow the required time sequence of positions and speeds. The
zone controller calculates the same maneuver sequentially for each vehicle in its domain and compares it
with the vehicle’s position and speed. If it detects an anomaly it removes the speed signal from its portion
of the guideway, which causes the vehicles to slow to creep speed. Adjacent zone controllers
communicate with each other.

The central computer balances traffic in certain conditions and accumulates data on the performance of
the system.

The data rates, computer speeds, and memory needed are well within the capability of today’s computers.

On-Board Position and Speed Sensing

The position and speed of each vehicle is measured on board each vehicle by means of digital encoders
placed in the main bearing of each of the four wheels. Averaging the left and right output gives the
correct measurement in curves. Having encoders in both the fore and aft wheels provides redundancy.
These encoders register at least 4096 pulses per revolution, or with the 13.25” OD tires we plan to use,
about 0.010” per pulse. With this accuracy, experimental evidence has shown that we can differentiate to
obtain accurate speed measurements. If the assumed the OD was in error by say 1%, the distance
measurement would be in error by 1%. Thus, we will calibrate each vehicle as it leaves a station by
means of fixed magnetic markers. In this way we will know the position of each vehicle to an accuracy
of less than one inch.

Wayside Position and Speed Sensing

The position and speed of each vehicle is measured by suitably placed pairs of wayside markers. When a
vehicle reaches the first marker, a pulse sent to the cognizant wayside computer, which detects its position

39

at that time. When the vehicle reaches the second of the pair a known and short distance ahead,
measuring the time interval between markers determines speed.

Communication

Each vehicle will be equipped with a transmitter and a receiver capable of sending information to and
receiving information from a leaky cable placed on the inside of the guideway. The zone controllers
similarly talk to and from the cable. Such cables are commercially available. This type of
communication is completely secure and cannot be interfered with by hackers.

Background and Conclusions

Many engineers have been working on controlling PRT vehicles since the 1960s. We have followed this
work closely and during our PRT Design Study for the Chicago RTA (1991-94) my team worked with
experienced engineers from Raytheon and Hughes on the details. We have continued to refine the control
system and the simulation of PRT systems so that today we are extremely confident that the system will
work as we predict. Computer memory has doubled every 18 months since the 1960s so the computers
needed today to handle the requirements are very small and extremely fast. With the use of dual
redundancy failures that may occur in the system will not be due to the computers.

40

Maneuvers

Table of Contents

 Page
 Introduction 1

1 Basic Equations 1
2 Going from rest to line speed 3
3 An Arbitrary State to Line Speed with Power-Limited Acceleration 4
4 Station Entry to Rest at a Specific Station Berth 8
5 Slip 18
6 Speed-Change 31
7 Headway Needed to Delay Speed Reduction 40
8 Emergency Stop 42
9 Distance to Reach Station Speed 42

10 The Distance to Slip a Given Amount 43
Figure

1 Power-Limited Acceleration to Line Speed 5
2 Deceleration to rest 9
3 Slip 19
4 Numerical Solution for 4.V 22

5 Slip between
3 4 min and .bnd bndS S S= 26

6 The Kinematics of Speed Reduction 41

Table
1 Distance traveled during slip 44

Introduction

The calculation of speed changes is fundamental to the design of the ITNS PRT control system.
Once a PRT network is set up with vehicles introduced, the function of the control system is to
command and then monitor speed changes. This paper provides the complete catalog of speed
changes. The code to calculate them will reside in both the vehicle controllers and in the zone
controllers. The wayside zone controller commands speed changes for an arbitrary initial speed
and acceleration by giving the class (1, 2, 3, or 4) and a parameter: For Class 1 the parameter is
the distance to stop, for Class 2 the magnitude of slip relative to the vehicle ahead, for Class 3 the
final speed, and for Class 4 the minimum distance to stop. The classes are defined as follows:

1. Deceleration to rest in a given distance.
2. Slip to move back a given distance behind the vehicle ahead.
3. Speed change to a set final speed, including moving from the station to line speed.
4. Emergency stop.

41

All these speed changes start from given speed and acceleration. Since a very high-gain controller
is use on board based on position and speed,8 the initial speed and acceleration used on board the
vehicle to command speed changes are the command values. The actual speed and position will
differ by only a small amount. The complete set of speed changes derived here are all performed
in minimum time consistent with given ride comfort values of acceleration and jerk.

In Section 1, the equations for going from rest to line speed are derived. In Section 2 these
equations are applied, as an example, to the simplest transition from rest to line speed. In Section
3, the power-limited transition from arbitrary initial speed and acceleration to line speed is derived.
This transition is included in the set derived in Section 6. Section 4 derives Class 1. Section 5
derives Class 2, Section 6 derives Class 3, and next is the derivation of Class 4.

1. Basic Transition Equations

The transitions are driven by constant jerk, at the comfort level or below. With this assumption
consider the motion of a vehicle. J is the constant jerk, A is acceleration, V is speed, and x is the
distance traveled. Then

2 2 3

0 0 0 0 0 0, , ,
2 2 6
t t tx J x A Jt x V A t J x x V t A J= = + = + + = + + +&&& && & (1-1)

Consider a transition from point 0 to point 1. Call the time interval from 0 to 1 01dt . Then

() ()

()

()

1 0
01

01 01 0 1
1 0 0 0 0 1 0 0 01

1 0
01

0 1

01 0 1
01 01 0 0 01 01 0 01

2 2
2 2 2

/ 2

23
6 6

A Adt
J
dt dt A AV V A Jdt V A A A V dt

V Vdt
A A

dt A Adx dt V A Jdt dt V dt

−
=

+ = + + = + + − = +  
 

−
=

+

 +    = + + = +        

 (1-2)

So, in words, the time interval is the increase in acceleration divided by positive jerk, or the
decrease in acceleration divided by negative jerk, or the increase in speed divided by the average
acceleration. The new speed is the old speed plus the average acceleration multiplied by the time
interval, and the increase in distance is the time interval multiplied by a quantity consisting of the
old speed plus the time interval times one sixth the quantity twice the old acceleration plus the new
acceleration. These simple rules are all that are needed to derive any transition.9

8 J. E. Anderson, "Longitudinal Control of a Vehicle," JAT, 31:3(1997):237-247.
9 These rules were, to my knowledge, first derived by Raytheon control engineer Richard Radnor.

42

2. Basic Transition from rest to line speed

We start the transition by applying the comfort level of jerk, cJ until the acceleration reaches the

comfort level cA . We then increase speed at this constant acceleration until we approach the

desired speed LV . If we were to continue to line speed and then suddenly reduce acceleration to
zero, the passengers would experience infinite jerk, so to stay within comfort jerk, we must at a
certain point gradually reduce the acceleration to zero at the rate .cJ− Thus, like all Gaul, the

transition is divided into three parts: part 0 to 1 at constant cJ until ,cA A= part 1 to 2 at constant

cA , and part 2 to 3 at constant cJ− , which ends when 0A = and .LV V= So we can write

()
() ()

2
01 1 01 01 01

23 2 23 23 23 2 23

12 2 1 12 12 1 12

/ , / 2, / 6
/ / , / 2, / 3

/ , / 2

c c c c

c c c c L c c

c c

dt A J V dt A dx dt A
dt A J A J V V dt A dx dt V dt A

dt V V A dx dt V dt A

= = =

= − − = = + = +

= − = +

 (2-1)

Note that the second row must be calculated before the third row because the speed 2V is not
known until the second row is calculated. From the first and middle of the second set of equations

2

2 2
c

L
c

AV V
J

= −

Then, using all three sets of equations (2-1) the time from rest to line speed is

2 2

03 01 12 23
12

2 2
c c c cL

L
c c c c c c

A A A AVdt dt dt dt V
J A J J A J

 
= + + = + − − = + 

 
 (2-2)

The distance from rest to line speed is

() ()

()

3 2 2
2 1

03 01 12 23 1 2 12

2 22 2 2 2 2
2 1 2

23

2
6 2 2 3

1 1
2 2 2 2 2

if .
2

c c c c
L

c c c c c

c c c c c
L L L L

c c c c c c c c

c cL L L
L

c c c c

V VA A A Adx dx dx dx V V V V
J A J J J

V V A A A A AV V V V
A J A J J A J J

A AV V V V
A J J J

−  
= + + = + + − + − + 

 
 −    
 = + = − + − +   
     

 
= + = < 

 

 (2-3)

So the distance from rest to line speed is simply half the line speed multiplied by the time to line
speed, which if graphed shows the symmetry of the transition.

43

Note that if the speed LV in the above equations were to be a very small value say V it may be that

the acceleration cannot reach the comfort value cA before negative jerk must be applied to arrive

smoothly atV . In such a case 2 1,V V= or from equations (2-1),

2

.m
L m c

c

AV V or A J V
J

= = = (2-4)

In equations (2-4), mA is a value of acceleration smaller that .cA In this case, the reader can show

that if mA is substituted for cA the final results in equations (2-2) and (2-3) still hold.

3. Transition from Arbitrary Acceleration and Speed in a Station to Line Speed with

 Power-Limited Acceleration

Next consider a more complex transition, but the one we need to command acceleration of a
vehicle moving through a station to line speed. This transition is needed for the following two
reasons:

1) A vehicle in a station behind the first berth may be ready to accelerate out of the station as
soon, with an acceptable delay, as a vehicle ahead has left; and as soon, therefore, as there is
an opening in the main line. When berths ahead if it open up, it is commanded to the forward-
most empty berth, and while it is moving forward the station zone-control computer must,
every computation interval, check to see of there is an opening for it to enter the main line
from that particular state. If so, at any speed and acceleration it is commanded to the main
line.

2) Power-Limited Acceleration. The acceleration power per unit of mass is VA . Thus, as speed
increases at constant acceleration the power required increases in direct proportion, and then
suddenly as the acceleration drops as the vehicle approaches line speed, the power required
drops markedly, thus creating a sharp peak in the power required. This power peak is
alleviated by causing the acceleration to decrease, as shown in Figure 1, from a point, usually
at about half line speed, until the acceleration is say half the maximum value at which point
maximum negative jerk is applied to bring the vehicle to the final speed.

44

Figure 1. Power limited acceleration to line speed.

So, start the transition with 0 0,A V different from zero. Apply positive jerk until maximum
acceleration is reached at point 1. Then continue at maximum acceleration to a point 2 where
negative jerk is applied until a point 3 is reached, where maximum negative jerk is applied until
the acceleration is zero at a final speed at point 4. With this transition we have the following
equations:

0 0 0
01 1 0 01 01 01 0 01

2 1
2 1 12 12 12 1 12 2

3 3 3
23 3 2 23 23 23 2 23 3

2, ,
2 6

, , ,
2

2, , ,
2 6

c c c

c

c
c L

c

c c c
c

n

A A A A A Adt V V dt dx dt V dt
J

V V AA A A dt dx dt V dt V V
A

A A A A A Adt V V dt dx dt V dt A A
J

dt

α

β

− + +    = = + = +        
−  = = = = + =  

− + +  = = + = + =  −   

3 3 3 3
34 4 3 34 34 34 3 34

0 0 2 0, ,
2 6L

c c

A A A AV V V dt dx dt V dt
J J
− + +  = = = = + = +   −   

(3-1)

01 12 23 34 01 12 23 34,m mT dt dt dt dt D dx dx dx dx= + + + = + + +

Now with 3A and 2V known, from the fourth row of equations (3-1) we can solve for 3.V Thus

3
3 34 .

2L
AV V dt= − (3-2)

From the second and then the first equation in the third row, we have

()3 2 3
23

3 23

2
, c

n
c

V V A Adt J
A A dt

− −
= =

+
 (3-3)

0 1 2 3 4 5 6 7 8 9 10

TIME, sec

-5

0

5

10

15

20

Un
its

 a
re

 m
et

er
s

&
se

co
nd

s

Jerk
Acceleration
Speed
Distance traveled
Acceleration Power/Mass

Power-Limited Acceleration to Line Speed

45

Case when 1 .LV Vα> When 1 LV Vα≤ point 1 is defined as the point where 1 .cA A= But the

power-limited condition is determined by reducing 1A above 2 .LV Vα= Indeed, when

3 3, .cV V A A Aβ= = = Thus we must reduce 1A when 1 LV Vα> linearly from cA when 1 LV Vα=

to 3 cA Aβ= when 1 3V V= . Thus, when 1 2 LV V Vα> = let

 ()1 1c LA A m V Vα= − − (3-4)

where

3

(1) .c

L

Am
V V

β
α
−

=
−

 (3-5)

From the first of equations (3-1) we have a second equation relating 1 1and ,A V namely

2 2

1 0
1 0 .

2 c

A AV V
J
−

= + (3-6)

If we substitute 1V from equation (3-6) into equation (3-4), the result can be reduced to the

following quadratic equation for 1.A

 2
1 12 0A bA c+ − = (3-7)

where

22

2 3
0 0

1, 2 ,
/ 1 1 1 2

L c
c L L

c c c

V V AVb c A J V V V V V
A J J

α α βα
β β β

−  −
 = = + − + = = − ×   − − − 

 (3-8)

Equation (3-7) has one positive root:

 2
1A b c b= + − (3-9)

It can be shown that in practical cases both b and c are always positive. After 1A is calculated

from equation (3-9), it must be substituted into equation (3-6) to calculate 1.V To use the standard

transition equations, we must then set 2 1.V V=

With these quantities known, the rest of the calculations are straightforward and the reauired
routine could be written. From it Figure 1 was calculated.

46

3.1 Lag remaining behind Vehicle at Line Speed

If a station precedes a line-to-line merge, it will occasionally be necessary to slip vehicles upstream
of the station output merge junction. In so doing, vehicles accelerating out of the station may be
required to slip, and to determine if slipping is necessary, it is necessary to know the lag in the
position of the accelerating vehicle compared with its position if it were at line speed. In
comparison with the Slip-Remaining term calculated in Section 5.1, let’s call this distance “Lag
Remaining.”

The acceleration transition ends at a point 4. At point 3, maximum negative jerk is applied, and
as calculated in Section 5.1 the Lag Remaining (LR) at point 3 is

()3 4 3 3() / 3LLR t t V V= − −

At point 2, where the negative jerk nJ begins, the Lag Remaining is

() ()()2 3 3 2 2 3 2 2 32 / 6LLR LR t t V V t t A A= + − − − − +  

At point 1, where acceleration has just reached the maximum value 1 cA A= the Lag Remaining is

() ()1 2 2 1 1 2 / 2LLR LR t t V V V= + − − +  

Define a point a at which the acceleration is zero. If 0 0A > point a occurs for 0.at t< The Lag
Remaining at point a is

() ()
()[]

1 1 1

1 1 1 1

/ 3

2() / 3
a a L a a

a L a

LR LR t t V V V V

LR t t V V V V

= + − − − −  
= + − − + −

in which

 ()1 1 1 1 1/ , / 2.a c a at t A J V V t t A− = − = −
Thus

2
1 1

1 1 3a L
c c

A ALR LR V V
J J

 
= + − + 

 

Using these values of Lag Remaining, the lag remaining at any time during the acceleration
transition can be computed from the following code, in which it is assumed that 0t = at the start
of the transition.

47

()()

() ()()

() ()

() ()

3

4

2

3 3 3 3

1

2 2 2

1 1
2

1 1

2
1 1

1 1

if then
/ 3

elseif then

2 / 6

elseif then

/ 2

else
/

/ 2

/ 3
3

end if

L

L

L

a c

a c

L a L a a
c c

t t
LR t t V V

t t

LR LR t t V V t t A A

t t

LR LR t t V V V

t t A J
V V A J

A ALR LR V V t t V V V V
J J

≥

= − −

≥

= + − − − − +  
≥

= + − − +  

= −

= −

 
= + − + − − − − −    

 

4. Transition from Station Entry to Rest at a Specific Station Berth

The problem addressed in this section is the transition deceleration-to-rest-in-a-given-distance, i.e.,
the calculation of the acceleration, speed, and position as functions of time for all transitions
resulting in a vehicle stopping in a station at a specific berth. The vehicle may be initially at any
acceleration within the comfort range and any speed from zero up to line speed. With a time step
of 20 millisecond and transitions lasting from 3.1 to 8.2 seconds, the program timer shows a time
for each calculation of acceleration, speed and distance averaged over 1000 runs of between 2.88
and 3.59 microseconds, corresponding to over 5000 of such calculations during each 20 msec
interval. The processor speed of the computer on which these calculations were made was 1500
mega Hz.

The transitions are described in Figures 2a and 2b. The upper figure, 2a, is for transitions for
which 2

0 0 / 2 c sV A J V+ ≥ , where 0V is the initial speed, 0A is the initial acceleration, cJ is the

maximum comfort value of jerk, and sV is the maximum speed permitted in each station. The

lower figure, 2b, is for transitions for 2
0 0 / 2 .c sV A J V+ <

48

Figures 2a and 2b. The Deceleration Transitions

Consider Figure 2a.

Five curves are illustrated: A, B, C, D, and E. Curve A is for the smallest stopping distance for any
curve defined by 2

0 0 / 2 c sV A J V+ ≥ . Curve B corresponds to the minimum stopping distance minD

for an arbitrary value of 2
0 0 / 2 c sV A J V+ ≥ . Curve E is the speed profile for the case where the

vehicle cruses some distance at station speed during the time period between points 4 and 5. Curve
D is for the case for which the distance cruised at station speed is zero. It is denoted as the upper

49

boundary curve 1.bndD Curve C is for a case for which the stopping distance min 1.stop bndD D D≤ <
For Curve C we calculate a slightly reduced deceleration so that the vehicle stops in the specified
distance .stopD The upper figure is drawn assuming that 0 0A > at the left-hand boundary. The

case 0 0A < can be treated as if the ordinate is moved to the dashed position with 0 at 0'.t =

Consider Figure 2b.

Figure 2b is drawn for the case 0 0A < and also illustrates five curves. Note that if stopD is large,
to minimize time to stop, speed is first increased up to station speed, the vehicle may cruise some
distance at station speed, and then it decelerates to rest. So, curve E is for such a case. Curve D
is for the case for which the vehicle reaches ,sV but the distance cruised there is zero. It is also

called the upper boundary curve 1bndD and is calculated below exactly as is the curve D in the

upper figure. When 1stop bndD D< point 4 moves below station speed, as illustrated by curve C. If

stopD is further reduced, a point corresponding to curve C is reached at which the acceleration at

point 2 just reaches cA but the time interval 23 0.dt = This curve is designated as 2bndD because

above it an exact solution for 4V is easily found, but below it a numerical solution is used.

The curve B is reached when there can be no region of positive jerk, i.e., when points 2,3,4,5 all
merge with point 1. This is the boundary curve 3,bndD so labeled because if 3stop bndD D< it must

be calculated differently and the acceleration at point 1 is less than zero. As stopD reduces further

the minimum stopping distance minD is soon reached. It is represented as curve A. The case

0 0A > is treated, as above, by moving the ordinate to the right, as illustrated by the vertical dashed
line.

Consider Figure 2a for the case 0 0.A ≥

Using the method of Section 1, we have for the interval from 0 to 1:

0 0 0
01 1 0 01 01 01 0 01

2 2
0 0 0

1 0 01 0

, ,
2 3

or ,
2 3

c

c c c

A A Adt V V dt dx dt V dt
J

A A AV V dx V
J J J

 = = + = + 
 

 
= + = + 

 

 (4-1)

In the interval 1 to 4, if 2
1 / ,s c cV V A J− ≥ where cA is the maximum comfort acceleration, then

2 3 .cA A A= = − For a smaller speed difference set 2
1 2 / ,s cV V A J− = from which

50

 2 1()c sA J V V= − − (4-2)

Like equation (2-3), the distance traveled in the interval 1 to 4 is

 () ()1 1 2
14

22
s s

c

V V V V Adx
A J

+ − −
= + − 

 (4-3)

If 2
1 /s c cV V A J− < , equation (4-3) reduces to

 () 1
14 1

s
s

c

V Vdx V V
J
−

= + (4-3a)

Because in this case we will always have 2 /s c cV A J> we always have

 58 2
s s c

c c

V V Adx
A J

 
= + 

 
 (4-4)

Using equations (4-1), (4-3, 3a), (4-4)

 1 01 14 58.bndD dx dx dx= + + (4-5)

To calculate the transitions we need the times, speeds and distances at each point between 0 and
8. So for this case, 2

0 0 0/ 2 0, 0cV A J A+ ≥ ≥ we have

2 2 2
12 2 1 12 12 12 1 12, ,

2 6c

A A Adt V V dt dx dt V dt
J

 = = + = + −  

2 2 2
34 3 34 34 34 3 34, ,

2 3s
c

A A Adt V V dt dx dt V dt
J
−  = = − = + 

 

3 2 2
23 23 23 2 23

2

,
2

V V Adt dx dt V dt
A
−  = = + 

 

Note that

2
2 3 12 2

1 1
2 2

1 01 2 1 12 3 2 23 4 3 34

1 0 01 2 1 12 3 2 23 4 3 34

1 0 when .

, , ,
, , ,

s
s s

c c c

V V V VA AV V V V
A A J J J

t dt t t dt t t dt t t dt
x x dx x x dx x x dx x x dx

 − −
= − − → + → → − −  

= = + = + = +
= + = + = + = +

 (4-6)

51

1 45 1 45 45 45 45

5 4 45 5 4 45

If then , / else 0
,

stop bnd stop bnd sD D dx D D dt dx V dx dt
x x dx t t dt

> = − = = =

= + = +
 (4-7)

56 6 56 56 56 56

78 7 78 78 78 7 78

6 7
67 67 67 6 67

6 5 56 7 6 67 8 7 78

6 5 56 7 6 67 8 7 78

, ,
2 6

, ,
2 3

,
2

, ,
, ,

c c c
s s

c

c c c

c

c

c

A A Adt V V dt dx dt V dt
J
A A Adt V dt dx dt V dt
J
V V Adt dx dt V dt

A
t t dt t t dt t t dt
x x dx x x dx x x dx

 = = − = − 
 

 = = = − 
 

−  = = − 
 

= + = + = +

= + = + = +

 (4-8)

Consider Figure 2a for the case 0 0.A <

In this case 0t = occurs after the virtual point 1, at which speed is a maximum and acceleration
is zero. Point 0 is shown by the vertical dashed line. Then proceeding using equations (1-2) now
with the point 1 earlier than point 0, we get

0 0 0 0
10 0 1 10 10 10 1 10 10 0 10

2 2
0 0 0

1 0 10 0

, ,
2 6 3

,
2 3

c

c c c

A A A Adt V V dt dx dt V dt dt V dt
J

A A AV V dx V
J J J

   = = + = + = −   −    

 
= + = − + 

 

 (4-9)

But in this case, we must subtract the time and distance increment to get the correct values of the
intermediate and final times and distances. By comparing with equations (4-1) we see that this is
accomplished simply by using equations (4-1) for all values of 0.A With this interpretation,

equations (4-1) through (4-8) apply to all values of 0.A

Consider the curve C of Figure 2a.

When min 1stop bndD D D≤ < let’s adjust the deceleration 2A so that the stopping distance is given by

 1 1 2
01

22stop
c

V V AD dx
A J

 −
= + + − 

 (4-10)

Then ()2
2 01 2 1

1

2 () 0c
stop c

JA D dx A J V
V

− − − + =

from which () ()
2

2 01 01 1
1 1

c c
stop stop c

J JA D dx D dx J V
V V

 
= − − + − − 

 

52

With this value of 2A we have

2 2 2
12 2 1 12 12 10 1 12

2 2 2
34 3 34 34 34 3 34

3 2 2
23 23 23 2 23

2

45 56 67 78

45 56 67 78

, ,
2 6

, ,
2 3

,
2

0
0

c

c

A A Adt V V dt dx dt V dt
J
A A Adt V dt dx dt V dt

J
V V Adt dx dt V dt

A
dt dt dt dt
dx dx dx dx

 = = + = + −  
−  = = − = + 

 
−  = = + 

 
= = = =
= = = =

 (4-11)

Consider Figure 2b for the case 0 0.A ≤

When 3 1 0stop bndD D A≥ = so we have the equations

0 0 0
01 1 0 01 01 01 0 01

2 2
0 0 0

1 0 01 0

2 2 2
12 2 1 12 12 12 1 12

2 2 2
34 3 4 34 34 34 3 34

, ,
2 3

,
2 3

, ,
2 6

, ,
2 3

c

c c c

c

c

A A Adt V V dt dx dt V dt
J

A A AV V dx V
J J J

A A Adt V V dt dx dt V dt
J

A A Adt V V dt dx dt V dt
J

−  = = + = + 
 

 
= − = − − 

 
 = = + = + 
 

−  = = − = + −  

 3 2 2
23 23 23 2 23

2

,
2

V V Adt dx dt V dt
A
−  = = + 

 
 (4-12)

()

()

() ()

2
2

2 3 23 23 4 1 2 4 1

2

4 1 2 2 4 1

2
4 1 4 1 4 1

4 1 14 14 4 1

If then 0 and ,

So, if then A else

If then else
2

c
c

c
c c

c

c c

c c c c

AV V dt dx V V A J V V
J

AV V A A J V V
J

V VA AV V V VV V dx dx V V
J A J J

= = = − = = −

− ≥ = = −

+  − −
− ≥ = + = + 

 

 (4-13)

Now we can write

41 01 14 58 from eq. (6.4-4)sbnd V V

D dx dx dx
=

= + + (4-14)

53

When 1 4 1 4. If .stop bnd s stop bnd sD D V V D D V V≥ = < < Thus, in equation (4-14) 4 sV V< must be

substituted for ,sV and we must take into account that

2
4 4

58 4

2
4

4 4

if
2

if

c c

c c c

c

c c

A AV Vdx V
A J J

AVV V
J J

 
= + ≥ 

 

= <
 (4-15)

For 3 1bnd stop bndD D D≤ < we find the curve properties by setting

 01 14 58stopD dx dx dx= + + (4-16)

If
2

4 1
c

c

AV V
J

− ≥ we can substitute from equations (4-11) and (4-15) to get

()4 1 4 1 4 4
01

2
2 1 1

4 1 01

22 2
1 1

4 01

2 2

or 2 0
2 2

or
2 2 2

c

c

c c
stop

c c c c

c c
c stop

c c

c c c
c stop

c c c

V V A AV V V VD dx
A J A J

A AV VV V A D dx
J A J

A A AV VV A D dx
J J A J

+    −
= + + + +   

   
   

+ − − + − =          

   
= − + + − + −          

 (4-17)

which is the one solution for which 4 0.V > If
2

4 1
c

c

AV V
J

− < then substitution into equation (4-16)

results in a quartic in 4 ,V which is most easily solved by iteration. Before considering iteration we

derive formulae for 2 3and .bnd bndD D

The Boundary 2.bndD

The boundary 2bndD is found from the equation 2 01 14 58 ,bndD dx dx dx= + + in which we substitute
2

4 1 / .c cV V A J= + Thus

2 2
1

2 01 1 1

3
1 1

01 2

12 2
2

7 2
2

c c c c
bnd

c c c c c

c c

c c c

A A A AVD dx V V
J J J A J

A AV Vdx
A J J

    
= + + + + +    

    
 

= + + + 
 

 (4-18)

54

The Boundary 3.bndD

This boundary is defined by the conditions that points 2, 3, 4, and 5 are collapsed into point 1, in
which case 12 23 34 45 0,dt dt dt dt= = = = which means that 4 1.V V= Thus

2
1 1

3 01 1

2
1

01 1 1

if
2

if

c c
bnd

c c c

c

c c

A AV VD dx V
A J J

AVdx V V
J J

 
= + + ≥ 

 

= + <
 (4-19)

Solution for 3 2.bnd stop bndD D D< <

Consider the function ()4D V , which between these boundaries is a quartic, and for which the

solution is known at both ends, i.e., () 2
1 3 1 2and (/)bnd c c bndD V D D V A J D= + = , where in this case

2
1 / .c c sV A J V+ < So start the solution by drawing a line between the upper and lower points and

calculate the first approximation as the value of 1
4 4V V= on that line, which intersects .stopD Draw

a line between the point ()1
4D V and either the upper or lower end point (whichever is closest). Let

the second approximation 2
4V be the value on this line that intersects .stopD This process

continued converges very rapidly. The details are in the program that follows.

Solution for 3.stop bndD D<

When min 3stop bndD D D≤ < 1A can no longer reach zero, i.e., 1 0.A < In this case there is no point
in applying first positive jerk then negative jerk in the path to zero speed. Thus consider a virtual
point ‘a’ left of point 0, let

2
0

0 2a
c

AV V
J

= + (4-20)

Hence 1A is defined by the equation

2

0 01
0 0 0

1

, where
2 3
a a

stop a a
c c c

V V A AAD dx dx V
A J J J

   −
= + + = +   −   

 (4-21)

Let 1 0and 'm stop aA A D D dx= − = − . Then equation (4-21) can be written in form

 2 '2 0c
m m c a

a

D JA A J V
V

− + = (4-22)

55

which has the relevant solution

2

' 'c c
m c a

a a

D J D JA J V
V V

 
= − − 

 
 (4-23)

in which aV is given in equation (4-20). The sign in front of the radical is determined from the

condition that increasing mA must decrease .stopD Now for this case we have

0 0 0 0
0 0 0 0 0 0 0 0 0

1 0 1 0 0 1
01 1 0 01 01 01 0 01

1 1 1
23 2 23 23 23 2 23

1 2
12 12

1

, ,
2 6 3

2, ,
2 6

, ,
2 3

,

a a a a a a a a a
c

c

c

A A A Adt V V dt dx dt V dt dt V dt
J

A A A A A Adt V V dt dx dt V dt
J

A A Adt V dt dx dt V dt
J

V Vdt dx dt
A

   = = − = + = −   −    
− + + = = + = + −  

−  = = − = + 
 

−
= =

−
1

12 1 12

34 45 56 67 78

2
0

AV dt

dt dt dt dt dt

 + 
 

= = = = =

 (4-24)

Consider Figure 2b for the case 0 0.A >

In this case the lower boundary 3bndD does not appear. As in the case of Figure 2a this case is most
easily solved by assuming a virtual point 1 to the left of point 0, which lies at a time denoted by
the vertical dashed line. Thus, for the interval 1 0→

0 0 0 0
10 0 1 10 10 10 1 10 10 0 10

2 2
0 0 0

1 0 10 0

, ,
2 6 3

,
2 3

c

c c c

A A A Adt V V dt dx dt V dt dt V dt
J

A A AV V dx V
J J J

   = = + = + = −   
   

 
= − = − 

 

 (4-25)

Comparing with the first of equations (4-12), and considering that the time and distance intervals
0-1 must be subtracted in this case when 0 0,A > we see that we get the correct results in both
cases if we use the equations

2 2

0 0 0 0
01 1 0 10 0, ,

2 3c c c c

A A A Adt V V dx V
J J J J

 
= − = − = − − 

 
 (4-26)

to describe the cases of Figure 2b for all values of 0.A

The cases of Figure 2a apply when

56

2
0

0 0 0
2 s

c

AdV V V
J

= + − > (4-27)

and the cases of Figure 2b apply when 0 0.dV < The case 0 0dV = is an important special case

because it applies to a commanded change of stopD while a vehicle is either cruising at sV or in the

constant cJ− region of deceleration from sV to rest. So let the quantities of the interval 0-1 be

computed for all conditions except 0 0dV = from the equations

() () ()
2 2

0 0 0 0
01 0 1 0 0 01 0 0sgn , sgn , sgn

2 3c c c c

A A A Adt dV V V dV dx dV V
J J J J

 
= = + = + 

 
 (4-28)

in which, to avoid round-off errors we will assume that if 0 00.0001 then 0.dV dV< =

The Case 0 0.dV =

In this case we may have 0A either positive, negative, or zero. Using the previous method the
solution is

()
2

0 0 0
01 1 0 0 01 01 0 01

12 23 34 45 1 45 45

4 5 5 6

56 6

, sgn ,
2 3

0, , /
, 0,

/ , . . .

c c

stop bnd s

s c

c

A A Adt V V A dx dt V dt
J J

dt dt dt dx D D dt dx V
V V V A A A
dt A J

 = = + = + 
 

= = = = − =

= = = = −
= −

in which the remaining terms are the same as given by equations (4-8).

5. Slip Transitions

5.1 Introduction

A slip transition is used to cause a vehicle to reduce and then increase speed in order to increase
the headway between it and the vehicle ahead. The final speed that ends the transition is always
the line speed .LV The transition may be initiated at any acceleration 0A within the comfort range

and any speed 0V between LV and a set minimum speed for slip transitions min .V The slip
transitions are illustrated in Figure 3 and are defined by jerk in the following table.

Interval 0 1→ 1 2→ 2 3→ 3 4→ 4 5→ 5 6→ 6 7→ 7 8→

Jerk
cJ− cJ− 0

cJ 0
cJ 0

cJ−

57

The purpose of this section is to derive the equations needed to calculate the time history of the
motion throughout a slip transition. To do so, we must understand all aspects of the time history
for any value of slip.

5.2 The Boundaries

In the upper diagram of Figure 3, we indicate four boundaries. 1bndS is the value of slip for which

the speed 4 min 45and 0,V V dt= = in which 45dt is the time interval between points 4 and 5. If

slip 1bndS S> then

 1
45

min

.bnd

L

S Sdt
V V
−

=
−

 (5-1)

Since slip transitions occur near line speed, we assume the maximum magnitude of acceleration is
.r cA A<

2bndS is the value of slip for which 2
23 2 4 10, while , / .r r cdt A A V V A J= = − = −

58

Figure 3. Slip Transitions

When
30 0, bndA S≥ is the value of slip for which 1 4.V V= When 0 0A < point 1 is located left of

t = 0 at the point where, extrapolating the time-distance curve at the same negative jerk as between
points 0 and 2, acceleration reaches zero. When 0 0A < this boundary starts at point 0 and is the

minimum possible slip, min ,S thus when
30 min0 .bndA S S< = In both cases 1 0.A =

When 0 0A ≥ we have

2
0 0 0 0 0

01 1 0 01 01 01 0 01 0, ,
2 3 3c c c

A A A A Adt V V dt dx dt V dt V
J J J

  = = + = + = +  
   

59

When 0 0A < we have

2
0 0 0 0 0

10 1 0 10 10 10 1 10 0, ,
2 6 3c c c

A A A A Adt V V dt dx dt V dt V
J J J

  = − = − = + = − +  
   

The slip either during the interval 0-1 or 1-0 is

2
0 0

01 01 01 0 .
3L L

c c

A AS V dt dx V V
J J
 

= − = − − 
 

 (5-2)

By using equation (5-2) in calculating slip for all values of 0A we see that S01 is added if 0 0A >

and subtracted if 0 0,A < which is exactly what is needed.

5.3 Formulae for Slip

The formula for Slip in all but the case in which
30 0 and bndA Slip S> < can now be expressed as

() ()01 14 14 58 58 01 1 4 14 4 58
1 1
2 2L L L L LSlip S V dt dx V dt dx S V V V dt V V V dt   = + − + − = + − + + − +      

(5-3)

in which

2
1 4 1 4

1 4 14 14

2
4 4

4 58 58

if then else 2

if then else 2

r r

c r c c

r L r L
L

c r c c

A V V A V VV V dt dt
J A J J

A V V A V VV V dt dt
J A J J

− −
− ≥ = + =

− −
− ≥ = + =

To calculate
1 4 min substitute bndS V V= in equation (5-3).

To calculate
2

2

4 1 substitute r
bnd

c

AS V V
J

= − in equation (5-3).

To calculate
3 4 1 substitute bndS V V= in equation (5-3).

4bndS will be calculated in a later paragraph.

If 1bndS S≥

 () () ()1
01 1 min 14 min 58 in 452 2 .L L L mS S V V V dt V V dt V V dt= + − − + − + −   (5-4)

60

2 1
If bnd bndS Slip S< <

() ()1 4 4
01 1 4 4

1 12
2 2

r L r
L L

r c r c

V V A V V ASlip S V V V V V
A J A J

   − −
= + − − + + − +   

   

() () () () ()

() () () ()

() ()

() () ()

01 1 4 1 4 4 4

2
4 1 1 4 1 1

2
01 4 4 4

1 1

4

1 12
2 2

1 12 2 2
2 2

2
1 1, 2
2 2

Note that ' 2 2 . So when

r L r L L r

L r L r L r L L r

r

L r L r L L r

A Slip S V V V V V dV V V V V dV

V V V V dV V dV V V V V dV V V dV

A Slip S f V V bV c

b V dV c V V V dV V V dV

f V b f

− = − − − + + − − +

= − − + + + + + − + + +  

− = = − +

= + = − + + +  

= − 4 4' 0 . But .L LV b V V V= = > <

()2
4 01Therefore rV b b c A Slip S= − − + − (5-5)

3 2
If thenbnd bndS Slip S< <

 () ()1 4
01 1 4 4 58

1 12
2 2L L L

c

V VSlip S V V V V V V dt
J
−   − = − + + − +      

 (5-6)

in which

4 4
4 58 58if then else 2L r L

L r
r c c

V V A V VV V dV dt dt
A J J
− −

− ≥ = + = .

Equation (5-6) is a quartic equation if 4LV V− is large, and 6th order if small. The former can be
solved exactly but not the second so it must be solved numerically.

5.4 A Numerical Solution

Since we know that

2 34 1 4 1when and whenbnd r bndS S V V dV S S V V= = − = =

the solution for 4V is simplified.

61

Figure 4. Numerical Solution for 4.V

Consider Figure 4, which is a graphical representation of the solution process. The two curves
represent possible solution, which can have either positive or negative curvature. As a first guess,
draw a straight line between the points

3 21 1, and , .bnd bnd rS V S V dV− Then, let the first guess for 4V
be

3

1

2 3

4 1
bnd

r
bnd bnd

Slip S
V V dV

S S
 −

= −   − 

Then, from equation (5-7), calculate the corresponding slip 1.S If 1S Slip> draw line from point

1 31 4 1, to point , .bndS V S V
24V is the value of 4V that intersects the horizontal line at Slip. Thus

() 3

2 1

3

4 1 1 4
1

bnd

bnd

Slip S
V V V V

S S
 −

= − −   − 

Simarly

() 3

3 2

3

4 1 1 4
2

bnd

bnd

Slip S
V V V V

S S
 −

= − −   − 

62

If 1S S< draw line from point
1 2 21 4 1 4, to point , .bnd rS V S V dV V+ is the value of 4V that intersects

the horizontal line at Slip. Thus

() 2

2 1

2

4 1 4 1
1

bnd
r r

bnd

S Slip
V V dV V V dV

S S
 −

= − + − +   − 

etc. Double differentiation of equation (5-6) shows that the curvature at a specific point may be
either positive or negative, thus it is necessary to consider the two cases. This iternative process
can be repeated in a do-loop until a value of 4V is found such that the corresponding Slip is
sufficiently close to the given value of ,Slip say within 0.001 m.

If the sequence of estimated values of Si alternate from above and below the line from point

2 31 1, to point ,bnd r bndS V dV S V− then the formula for calculating V4 must be changed. In the space

4,V Slip a straight line between points
14 1 4, and ,

ii i iS V S V
++ is represented by

()1

1

1
4 4

4 4i i

i i
i

S SSlip S V V
V V

+

+
 −

= − −  − 

Solving for V4 we get

() () ()()

() ()

1 1

1 1

1 1

4 1 4 4
4 4 4 4

1 1

4 1 4

1

i i

i i

i

i i ii

i i i i

i i

i i

V S S V V S SlipS SlipV V V V
S S S S

S Slip V Slip S V
S S

+

+

+

+

+ +

+

+

− + − − −
= + − = − − 

− + −
=

−

 (5-7)

So if say 1 and i iS Slip S Slip+> < equation (5-7) gives the best new estimate for V4. This method
converges quickly.

5.5 The Special Case 0 0, 0.LV V A= =

In this case 58 14dt dt= . If 1bndSlip S>= then

()

()

1

1

1

min
min

min 45 45
min

,

L r
bnd L

r c

bnd
bnd L

L

V V AS V V
A J

S S
Slip S V V dt dt

V V

 −
= − + 

 
−

= + − =
−

 (5-8)

If
2

3

122 r
bnd bnd

c

AS Slip S
J

= < < then

63

 () 4
4

L r
L

r c

V V ASlip V V
A J

 −
= − + 

 
 (5-9)

which is a quadratic equation for 4.V Its standard form and solution are

()

()

2
4 4

2

4

2

12 0
2

1 1
2 2

1 1
2 4

L r L L r r

L r L r r L L r

L r r r

V V dV V V V dV A Slip

V V dV V dV A Slip V V dV

V dV dV A Slip

 − + + + − = 
 

 = + − + + − + 
 

= + − +

 (5-10)

The minus sign is correct because V4 must decrease when Slip increases. V4 is positive when

()
2

21 1 or when .
2 4L r r r L L r rV dV dV A Slip V V dV A Slip + > + + > 

 

In this case Slip is minimum when
2

3

22 r
bnd

c

AS
J

= . Thus, the condition of positive V4 is

() 22L L r rV V dV dV+ >

This inequality is satisfied if ()22 0.25 0.75
0.141 1.38 / ,

0.25
r

L r
c

gAV dV g m s
J g

> = = = = which will

always be true.

If
2bndS S<

() ()3/2 1 1/24
4 4 2

1/32

4

2 or

4

L
L L c

c

c
L

V VSlip V V V V SlipJ
J

J SlipV V

−
= − − =

 
= −  

 

 (5-11)

5.6 Details of solution if
3
.bndSlip S≥

With 0 0andV A given we have been able to calculate time, speed and distance up to point 1, and

note that in all cases for which
3 1that 0.bndSlip S A≥ = With 4V known we have been able to

64

calculate 01 01 1, , and .dt dx V and 6A . For
3bndSlip S≥ we can now calculate the values of time,

speed, and distance at each of the points 1 through 8 as follows:

()
()

() ()
() ()

()

12 2 2 1 12 2 12 12 1 12 2

34 12 3 4 34 2 34 34 3 34 2

23 3 2 2 23 23 2 23 2

45 1 min

56 6 6 4 56 6 56 56 4 56 6

78 5

/ , / 2, / 6

, / 2, / 3

/ , / 2

/

/ , / 2, / 6

c

bnd L

c

dt A J V V dt A dx dt V dt A

dt dt V V dt A dx dt V dt A

dt V V A dx dt V dt A

dt S S V V

dt A J V V dt A dx dt V dt A

dt dt

= − = + = +

= = − = +

= − = +

= − −

= = + = +

= ()
() ()

6 7 78 6 78 78 7 78 6

67 7 6 6 67 67 6 67 6

, / 2, / 3

/ , / 2
LV V dt A dx dt V dt A

dt V V A dx dt V dt A

= − = +

= − = +

 (5-12)

1 0 01 2 1 12 3 2 23 4 3 34

5 4 45 6 5 56 7 6 67 8 7 78

1 0 01 2 1 12 3 2 23 4 3 34

5 4 45 6 5 56 7 6 67 8 7 78

, , ,
, , ,

, , ,
, , ,

t t dt t t dt t t dt t t dt
t t dt t t dt t t dt t t dt
x x dx x x dx x x dx x x dx
x x dx x x dx x x dx x x dx

= + = + = + = +
= + = + = + = +
= + = + = + = +
= + = + = + = +

5.7 The case
4min 3.bnd bndS S S S= ≤ <

In Figure 5, we show a close-up of the region between
3 4min and bnd bndS S S= and show a slip-

curve at an intermediate location intersecting the
3bndS curve at a point labeled “1” at which the

acceleration is 1 0A > where 1A takes any value between zero and 0.A The point where

acceleration is zero in the
3bndS curve is also labeled “1” indicating that point “1” moves from

1 0A = to 1 0.A A= If 0 0A > there will be cases in which Slip will lie between these boundaries.
The curve of speed vs. time in these cases can be divided into four parts, which in terms of the
general notation for slip transitions we separate by points 1, 6, 7, and 8. Points 1, 2, 3, 4, 5
coincide, therefore

 12 23 34 45 0.dt dt dt dt= = = =

65

Figure 5. Slip between
3 4 min and .bnd bndS S S=

In the interval from point 0 to point 1, jerk is negative for all cases. From point 1 to point 6 jerk
is positive, from point 6 to point 7 jerk is zero, and from point 7 to point 8 at line speed jerk is
negative. Thus, for any value of Slip between the two boundaries

 1 0 1 0 0 1
01 1 0 01 01 01 0 01

2, ,
2 6c

A A A A A Adt V V dt dx dt V dt
J
− + +    = = + = +    −     

 (5-13)

minS occurs when
31 0 and occursbndA A S= 1when 0.A = From Figure 5

() ()min 1 18 10 10
1 S
2 L LV V T V dt dx− − − −= − − −

in which

2
0 0 0 0

1 10 1 0 10 0 10 10 1 100, , ,
2 2 6c c

A A A AA dt V V dt V dx dt V dt
J J− − − − − − − −

 = = = − = − = + 
 

Thus

2 2
0 0 0

min 0 18 0
1
2 2 3L L

c c c

A A AS V V T V V
J J J−

   
= − + − − +   

   
 (5-14)

in which with
2
0

0 2L
c

AV V V
J

∆ = − +

66

18 18if then else 2 .r
r

r c c

V A VV dV T T
A J J− −
∆ ∆

∆ ≥ = + =

From Figure 5 with 1 0A =

()
3 1 18 01 01

1
2bnd L LS V V T V dt dx= − + −

For the interval from 0 to 1with 1 0A = we have

2
0 0 0 0

01 1 0 01 0 01 01 0 01, ,
2 2 3c c

A A A Adt V V dt V dx dt V dt
J J

−  = = + = + = + −  

Thus

3

2 2
0 0 0

0 18 0
1
2 2 3bnd L L

c c c

A A AS V V T V V
J J J

   
= − − + − −   

   
 (5-15)

in which with
2
0

0 2L
c

AV V V
J

∆ = − −

18 18if then else 2 .r
r

r c c

V A VV dV T T
A J J
∆ ∆

∆ ≥ = + =

If min 3bndS Slip S< <

() () ()1 8 0 0 1 1
1
2 L a a L a a a aSlip A V V T V dt dx dx dx+ −= − + − + −

in which

0 01 1
2 2

1 0 0 1 0 1
01 1 0 01 0

2 2 2
1 1 1 0 1

1 1 1 1 0

,
2 2

,
2 2 2

a a

c c

a a a
c c c c

dt dt dt
A A A A A Adt V V dt V

J J
A A A A Adt V V dt V V
J J J J

= −

− + − = = + = + −  

= = − = − = + −

67

0 1 1 0 1
0

2 2 2 2 2 2
1 1 1 0 1 1 1 0 1

1 0 0

2
0 0

0 0 0 0 0 0 1 0 0 0

0 1
0

2

5
6 2 6 2 6

2 , 2 ,
6 2

2

a
c c c

a a
c c c c c c c c c

a a
a a a a a c a a c

a

A A A A Adt
J J J

A A A A A A A A Adx V V V
J J J J J J J J J

A A dtdx dt V dt A A dt J A V V A dt J

A Adx

+

−
− −

− −
= − =

     
= + = + − + = + −     

     
  +

= + = − = = + −  
  

−
=

2 2
0 1 0 1 0 1 0 1 0 1

0 0

2
1 1 0 1 1 1

1 1 1 0 0 0

1 0 1
0 0 0

2 2 2
3 3

2 4
6 2 6

2 2 2
2

c c c c

a a
a a a a a c

c c

c c

A A A A A A A A A AV V
J J J J

A A A dt A A Adx dt V dt V A dt J
J J

A A AV A A A
J J

−
− −

       − + − − − + = +        
        

    + + = + = + − +           

 −
= + − + 

 
()

2
1

1

2 2 2 2 2 2
1 0 1 0 1 1 1 1

1 1 0 0

5
6

5 4 5
2 6 2 6 3

c

a a
c c c c c c c

A
J

A A A A A A A Adx dx V V
J J J J J J J

+ −

 
+ 

 
    −

− = + − − − − =    
    

Therefore

() ()

() ()

()

4

2 2 3
0 1 0 1 0 1 1

1 8 0 2

2 2
0 1

0

2 3
0 0 0

0 min 8 0 2

2
0 0

8 0

1 2 2 (6.5-16)
2 3 3

in which .
2

1 2
2 3 3

1
2 3

i

L a a L
c c c

a
c c

bnd L a a L
c c c

L a a L
c c

A A A A A A ASlip A V V T V V
J J J

A AV V
J J

A A ASlip A S S V V T V V
J J J

A AV V T V V
J J

  − − −
= − + − − +  

  

= + −

 
= = = − − − + + 

 
 

= − − − + 
 

2
0

0n which .
2a

c

AV V
J

= −

() ()
3

2
0 0

8 0

2
0

0

10
2 3

in which .
2

bnd L a a L
c c

a
c

A ASlip S V V T V V
J J

AV V
J

 
= = − + − − 

 

= +

In the equation for ()1Slip A with L aV V V∆ = −

8 8if then else 2 .r
r a a

r c c

V A VV dV T T
A J J
∆ ∆

∆ ≥ = + =

68

()1Slip A , Equation (5-16), is either a quartic in A1 6th order. It will be solved numerically in a

manner like that used with Figure 4. We need to find the value of 1A that corresponds to a given

value of slip. We know that 1 0A = gives the boundary
3bndS and the value 1 0A A= gives the

boundary
4
.bndS Let the first guess to the correct value of 1A be

3

1

3 4

1 0 1
bnd

bnd bnd

S Slip
A A Slip

S S
 −

= →  − 

Using this value of 1A calculate Slip1 from equation (5-16). If Slip1 is less than the required slip

Slip, draw a line from the point
1 31 1, to 0, bndA Slip S and calculate a new guess from the equation:

3

2 1

3

1 1 2
1

bnd

bnd

S Slip
A A Slip

S Slip
 −

= →  − 

and repeat in a Do-Loop until the error is sufficiently small. If Slip1 is greater than the required
slip S draw a line from the point

1 41 1 0, to , bndA Slip A S and calculate a new guess from the equation

() 4

2 1

4

1 0 0 1 2
1

bnd

bnd

Slip S
A A A A Slip

Slip S
 −

= − − →  − 

Again, in a Do-Loop, convergence is rapid. In only a few cycles the error is reduced to less than
one millimeter.

5.8 Slip Remaining

In merge control, to command vehicles to slip the least amount needed to avoid violating the
headway criterion, it is necessary to take into account that vehicles reaching the merge command
point may be slipping. To command further slip without reducing throughput any more than
necessary we must know the amount of slip each vehicle has remaining. To calculate slip
remaining (SR), consider Figure 3. The slip remaining at 7t t= is the same as the distance traveled

in moving at constant jerk J from rest to a time 8 7 78 .t t dt− ≡ Consider then that at constant jerk
we have

2 3

, ,
2 6 3
t t VtA Jt V J X J= = = =

Thus, from the geometry of Figure 3 we have

69

()
()

()
()

()
()

()
()

7 7 78

6 7 6 7 67

5 6 5 6 5 56

4 5 4 45

3 4 4 3 4 34

2 3 2 3 23

1 2 1 1 2 12

0 1 1 1 0 02

/ 3

/ 2

/ 3

/ 3

/ 2

/ 3

/ 3

L

L

L

L

L

L

L

L

SR V V dt

SR SR V V V dt

SR SR V V V V dt

SR SR V V dt

SR SR V V V V dt

SR SR V V V dt

SR SR V V V V dt

SR SR V V V V dt

= −

= + − +  
= + − − −  
= + −

= + − − −  
= + − +  
= + − + −  
= + − + −  

If
3 5 0 and bndSlip S SR SR< must be modified because A1 > 0. In this case

12 23 34 45 0dt dt dt dt= = = =

With A1 > 0 and both 1 6 and A A already calculated we have

1 0 1 0 0 1
01 1 0 01 01 01 0 01

0 1 01 01

6 1 1 6
16 16 16 1 16

5 6 16 16

2, ,
2 6

2,
6

c

L

c

L

A A A A A Adt V V dt dx dt V dt
J

SR SR V dt dx

A A A Adt dx dt V dt
J

SR SR V dt dx

− + +    = = + = +    −     
= + −

− +  = = +     
= + −

Then the following code will calculate the slip remaining at any time 0t t t∆ = − , in which the

, 1,...,8it i = are measured from 0 ,t the start of the slip transition.

70

() ()

() ()

() ()

() ()

[]()

1

1 1 1 1

2

1 1 1 1

3

3 3 3

4

4 4 4 4

5

5 5 5

if then

/ 3

elseif then

/ 3

elseif then

/ 2

elseif then

/ 3

elseif then

els

L

L

L

L

L

t t

SR SR V V V V t t

t t

SR SR V V V V t t

t t

SR SR V V V t t

t t

SR SR V V V V t t

t t
SR SR V V t t

∆ <

= + − + − − ∆  
∆ <

= − − + − ∆ −  
∆ <

= + − + − ∆  
∆ <

= + − − − − ∆  
∆ <

= + − − ∆

() ()

() ()

() ()

6

5 5 5 5

7

7 7 7

8

8

eif then

/ 3

elseif then

/ 2

elseif then
/ 3

end if

L

L

L

t t

SR SR V V V V t t

t t

SR SR V V V t t

t t
SR V V t t

∆ <

= − − − − ∆ −  
∆ <

= + − + − ∆  
∆ <

= − − ∆

6. Speed-Change Transitions

The speed-change transitions start at a speed 0V and acceleration 0A and end at a speed f LV V≤

and acceleration 0.fA = They take into account, as derived in Section 3, that above a speed LVα

the maximum acceleration is reduced from the value cA at LVα to cAβ at ,L bV V− where
2() / 2 .b c cV A Jβ=

The Relationship between V and A above LVα .

We can assume this relationship is linear. Thus let

 (1)L
c c

L b L

V VA A A
V V V

α β
α

 −
= − − − − 

which meets the stipulated end conditions. A means the absolute value of A , which means that
the above equation applies for decreasing as well as increasing speed. Solving for ,V we have

71

 ()1
1 .

1
L b

L
c

AV V
V V

A
α

α
β

 − − 
= + −  −   

 (6-1)

The Cases

We need to consider six cases, which are defined in the following table. To follow these cases in
detail, the reader must draw diagrams of each one.

Case
0fV V>

1 2
0 0 / 2 ,c L f LV A J V V Vα α− ≤ >

2 2
0 0 / 2 ,c L f LV A J V V Vα α− > >

3 2
0 0 / 2 ,c L f LV A J V V Vα α− ≤ ≤

0fV V<

4 2
0 0 / 2 ,c L f LV A J V V Vα α+ > ≤

5 2
0 0 / 2 ,c L f LV A J V V Vα α+ > >

6 2
0 0 / 2 ,c L f LV A J V V Vα α+ ≤ ≤

First, however, note that if 2 2
0 0 / 2 /f c c cdV V V A J A J≡ − + ≤ we can bypass these cases and

compute 1 1,A V as follows:

2 2
0 1

1 0 1 0 0() , ()
2f c f

c

A AA SGN V V J dV V V SGN V V
J
−

= − = − −

Case 1

In this case, positive jerk cJ is applied during interval 0-1 until either the acceleration reaches cA

or the speed reaches .LVα If the former case, constant acceleration cA is applied during interval

1-2 until the speed reaches .LVα In the later case there is no interval 1-2 and acceleration

1 2 cA A A= < . At point 2 negative jerk nJ is applied (interval 2-3) until point 3 is reached, at which

time maximum negative jerk cJ is applied (interval 3-4) until the speed and acceleration

72

simultaneously reach fV and zero, respectively. However, if f LV Vα− is too small, speed 2V must

be reduced from LVα as shown below.

Unlike the derivation of equations (3-1) at this point we don’t know either 3A or 3V . It is best first
to list the generic equations for Case 1. They are

1 0 1 0 0 1
01 1 0 01 01 01 0 01

2 1
2 1 12 12 12 1 12 2 1

2, ,
2 6

, , , ; ?
2

c

c
L

c

A A A A A Adt V V dt dx dt V dt
J

AV VA A dt dx dt V dt V V A
A

α

− +  +    = = + = +        
−  = = = + ≤ =  

 (6-2)

3 3 3
34 3 34 34 34 3 34 3 3

2 2
3 2 2 3 2 3 2 3

23 23 23 2 231
2 3 3 22

, , ; , ?
2 3

2, ,
() 2() 6

f
c

n
n

A A Adt V V dt dx dt V dt A V
J

V V A A A A A Adt J dx dt V dt
A A J V V

 = = − = + = 
 

− − −  +  = = = = +   + −   

If 2 2
0 0 / 2 / 2c c c LV A J A J Vα− + ≤ then, using the first two of the first line of equations (6-2),

1 2

2 2
0

1 0 2,
2 2

c

c
L

c c

A A A
A AV V V V
J J

α

= =

= − + =
 (6-3)

If 2 2
0 0 / 2 / 2c c c LV A J A J Vα− + > then

 ()

1 2
2 2

21 0
0 1 2 0 0, 2

2

L

L c L
c

V V V
A AV V A A J V V A

J

α

α α

= =

−
= + = = − +

 (6-4)

Now consider 3.A If
2
2

2f L
c

AV V
J

α− ≥ then, using equation (1),

()

()

2 22
3 3

3

2
3 3

1 11 ,
2 1 1 1 2

2 0, , 2

L b c
f L L

c c c

c
f f c L f

c

V VA A AV V V Q Q V
J A J

JA bA c b Q c J V Q V
A

α α βα
β β β

α

− −   −
= − = + − = = −   − − −  

− + = = = + −

 (6-5)

73

min

2
2 3 3

3 3
3

2

3
3

, ,
2

10
1 1 2

f
f f L

c c c c

f c c c
L

c c

VA AQ QA b b c V A V Q
J A A J A

V J J AA Q V
A A A

α

α β
β β

∂
= ± − = − + + = −

∂

∂  −
= → = = − ∂ − − 

 (6-6)

The quantity fV can, as shown in equations (6-6), be expressed as a parabolic function of 3A ,

which has a single minimum point at the value of
min3A given in equations (6-6). If we assume, as

we do in the system that 1/ 2 and 0.25 , 0.25 /c cA g J g sα β= = = = then

min3

1
16LA V g= −

The maximum value of
min3A is 0.25g.

min3A reaches this value if 5 3.07 m/s,
16LV g= = which is

substantially lower than any practical line speed. Thus, of the two solutions for 3,A only the
lower one has physical meaning. Thus

 2
3 fA b b c= − − (6-7)

Can the quantity 2
fb c− ever be negative? We see from equation (6-5) that

 ()2 2 2c
f c c f L

c c

J Qb c J Q J V V
A A

α
 

− = − + − 
 

The smallest value fV can have in Case 1 is .LVα Assuming this value, we see that the radical is
certainly positive if

2 221 2 .

1 1 2
c c

L
c c

A AQ V
J J

α β
β β

 −
= − ≥ − − 

Using the values given after equation (6-6), we see that the radical is always positive if

 9 5.52 m/s.
16LV g> =

Since this value of line speed is less than practical values, the radical in equation (6-7) is always
positive.

Now, if
2
2

2f L
c

AV V
J

α− < there are two cases:

74

If
2 2
0

0 2
c

f
c c

A AV V
J J

− + ≥

2

2 3 2 3,
2

c
c f

c

AA A A V V V
J

= = = = − (6-8)

If
2 2
0

0 2
c

f
c c

A AV V
J J

− + <

2 22
0 02

0 2 3 1 0

2
0

1 2 3 0

,
2 2

1
2 2

f c f
c c c

f
c

A AAV V A A A J V V
J J J

AV V V V V
J

 
− + = = = = − + 

 

 
= = = + − 

 

 (6-9)

Case 2

From point 0 to point 1 positive jerk cJ is applied up to an acceleration 1A that will be calculated
using equation (6-1). Points 1 and 2 are at the same location. From point 2 to point 3 negative
jerk nJ is applied until at point 3 maximum negative jerk cJ must be applied until at point 4 the

speed reaches fV just as the acceleration vanishes. The acceleration and speed at point 3 are
calculated from equations (6-7) and (6-5) respectively. The equation set is as follows.

1 0 1 0 0 1
01 1 0 01 01 01 0 01

12 1 2

3 3 3
34 3 34 34 34 3 34 3 3

2 2
3 2 2 3 2 3 2 3

23 23 23 2 231
2 3 3 22

2, ,
2 6

0,

, , , , ?
2 3

2, ,
() 2() 6

c

f
c

n
n

A A A A A Adt V V dt dx dt V dt
J

dt A A
A A Adt V V dt dx dt V dt A V
J

V V A A A A A Adt J dx dt V dt
A A J V V

− + + = = + = + 
 

= =

 = = − = + = 
 

− − − += = = = +
+ − 


 



(6-10)

To find the values of 1 1andA V note from the first row of equation set (6-10) that

2 2

1 0
1 0 .

2 c

A AV V
J
−

= + (6-11)

By substituting equation (6-11) into equation (6-1) and letting 1A A= we get

2 2
0 1 1

0 1
2 2 L

c c c

A A AV V Q
J J A

α
 

− + = + − 
 

 (6-12)

75

which can be written in the form

 2
1 1 02 0pA bA c+ − = (6-13)

where b is given in the equation set (6-5) and ()2
0 0 02 / 2p c L cc J V Q V A Jα= + − + . Equation (6-

10) has one positive solution:

 2
1 0 pA b b c= − + + (6-14)

If
2 2
0

0 2
c

f
c c

A AV V
J J

− + ≥ then

 1 2A A= from (6-14), 1 2V V= from (6-11); 3A from (6-7), 3V from (6-5).

If
2 2
0

0 2
c

f
c c

A AV V
J J

− + < then

2 2
0

0

2 2
0 0

1 2 3 0 1 2 3 0

2

1,
2 2 2

c
f

c c

c f f
c c

A AV V
J J

A AA A A J V V V V V V V
J J

− + <

   
= = = − + = = = + −   

   

Case 3

From point 0 to point 1 positive jerk cJ is applied to 1.A if 1 cA A= acceleration is constant from

point 1 to point 2, which is the same as point 3. Finally maximum negative jerk cJ− is applied

until the speed reaches fV while acceleration vanishes. The equation set is as follows:

1 0 1 0 0 1
01 1 0 01 01 01 0 01

3 3 3
34 3 34 34 34 3 34 2 3 3 2 1

23

2, ,
2 6

, , , ,
2 3

0

c

f
c

A A A A A Adt V V dt dx dt V dt
J

A A Adt V V dt dx dt V dt V V A A A
J

dt

− + + = = + = + 
 

 = = − = + = = = 
 

=

 (6-15)

2 1 1
12 12 12 1 12

1

,
2

V V Adt dx dt V dt
A
−  = = + 

 

If
2 2
0

0 2
c

f
c c

A AV V
J J

− + ≥ then

76

1 2 3

2 2 2
0

1 0 2 3,
2 2 2

c

c c
f

c c c

A A A A
A A AV V V V V
J J J

= = =

= − + = = −

If
2 2
0

0 2
c

f
c c

A AV V
J J

− + < then

2
0

1 2 3 0

2
0

1 2 3 1 0

2

1
2 2

c f
c

c

AA A A J V V
J

AV V V V V
J

 
= = = − + 

 

 
= = = + − 

 

Case 4

From point 0 to point 1 negative jerk cJ is applied until the negative acceleration at point 1 satisfies

equation (6-1). Then a small negative jerk nJ is applied between points 1 and 2 until the

acceleration reaches cA− at point 2, where the speed is .LVα Negative acceleration cA− is

continued from point 2 to point 3 and then positive jerk cJ is applied from point 3 to point 4, at

which speed reaches fV just as acceleration vanishes. The equation set is as follows:

1 0 1 0 0 1

01 1 0 01 01 01 0 01 1 1

2 2
2 1 2 1 2 1 1 2

12 12 12 1 12 21
1 2 1 22

3 3 3
34 3 34 34 34 3 34

2, , , , ?
2 6

2, , ,
() 2() 6

, ,
2 3

c

n L
n

f
c

A A A A A Adt V V dt dx dt V dt A V
J

V V A A A A A Adt J dx dt V dt V V
A A J V V

A A Adt V V dt dx dt V dt
J

α

− + + = = + = + = −  
− − − + = = = = + = + − −  

−  = = − = +


3 2

3 2 2
23 23 23 2 23

2

,

,
2

A A

V V Adt dx dt V dt
A

=


−  = = + 
 

 (6-16)

We need first to consider the portion of the curve below .LVα Then

If
2

2
c

L f
c

AV V
J

α − ≥

3

2

3 2

c

c
f

c

A A
AV V
J

=

= +
 (6-17)

77

If
2

2
c

L f
c

AV V
J

α − <

 ()3

3

2 c L f

L

A J V V

V V

α

α

= −

=

(6-18)

In both of these cases 2 2 3and .LV V A Aα= =

To compute 1 1andA V we need to consider two cases.

Case 1:
2 2
0

0 .
2 2

c
L

c c

A AV V
J J

α+ − >

In this case, set 1V from the first row of equation set (6-16) equal to V in equation (6-1). Thus

2 2

10 1
1 0 1

2 L
c c

AA AV V V Q
J A

α
 −

= + = + − 
 

 (6-19)

which gives the following quadratic equation for 1.A

 2
1 1 02 0mA b A c− + = (6-20)

in which b is found from equation set (6-5) and

2
0

0 02
2m c L

c

Ac J V Q V
J

α
 

= + − − 
 

. (6-211)

Thus

2
1 0

2 2
0 1

1 0 2 2

m

c c

A b b c

A AV V
J J

= − + −

= + −
 (6-21)

which takes into account that 1 0.A <

Case 2:
2 2
0

0 .
2 2

c
L

c c

A AV V
J J

α+ − ≤

Now there are two subcases:

78

Case 2.1:
2 2
0

0 2
c

f
c c

A AV V
J J

+ − ≥

1 2 3

2 2
0

1 2 0 2 2

c

c

c c

A A A A
A AV V V
J J

= = =

= = + −
 (6-23)

Case 2.2:
2 2
0

0 2
c

f
c c

A AV V
J J

+ − <

2
0

1 2 3 0

2
0

1 2 3 0

2

1
2 2

c f
c

f
c

AA A A J V V
J

AV V V V V
J

 
= = = − + − 

 

 
= = = + + 

 

 (6-24)

Case 5

Negative jerk is applied from point 0 to point 1, at which point 1 1andA V are determined exactly as

in Case 4. Negative jerk nJ is then applied from point 1 to point 2 (points 2 and 3 are coincident)

until at point 3 maximum positive jerk cJ is applied until the speed reaches fV just as acceleration
vanishes. The determining equation set is as follows:

1 0 1 0 0 1
01 1 0 01 01 01 0 01 1 1

2 2
2 1 2 1 2 1 1 2

12 12 12 1 121
2 1 1 22

23 2 3

3 3
34 3 34

2, , ; , ?
2 6

2, ,
() 2() 6

0,

, ,
2

c

n
n

f
c

A A A A A Adt V V dt dx dt V dt A V
J

V V A A A A A Adt J dx dt V dt
A A J V V

dt A A
A Adt V V dt

J

− +  +    = = + = + =    −     
− − −  +  = = = = +   + − −   

= =

−
= = − 3

34 34 3 34 3 3; , ?
3
Adx dt V dt A V = + = 

 

 (6-25)

To determine 3 3,A V note that

()

2
3 23

3 3 3

2 2
3 3 3

1 2 2 0
2 /

2 0

f L c L f
c c c c

f f

AA QV V V Q A A J V Q V
J A A J

A b A c A b b c

α α
 

= + = + − → + − + − = 
 

+ − = → = − +

 (6-26)

79

Case 6

Maximum negative jerk cJ is applied from point 0 to point 1, where 1 cA A= − . Points 1 and 2 are

coincident. Maximum negative acceleration cA− is applied from point 2 to point 3 and at point 3

maximum positive jerk cJ is applied until the speed reaches fV just as acceleration vanishes. The
governing equation set is as follows:

1 0 1 0 0 1
01 1 0 01 01 01 0 01

12 1 2 3 2 1

3 3 3
34 3 34 34 34 3 34

2 3 2
23 23 23 2 23

2

2, ,
2 6

0, ,

, ,
2 3

,
2

c

f
c

A A A A A Adt V V dt dx dt V dt
J

dt A A A V V
A A Adt V V dt dx dt V dt

J
V V Adt dx dt V dt

A

− +  +    = = + = +    −     
= = = =

−  = = − = + 
 

−  = = + −  

 (6-27)

7. Headway Needed to Delay Speed Reduction

Consider a vehicle 0 that is commanded to reduce speed from a line speed
1LV to a speed

2LV at

time 0.t = The slow-down transition takes an amount of time mT and occurs over a distance

.mD Assume vehicle 1 is a distance 1dP behind vehicle 0 and traveling at speed
1LV is close

enough that it must be commanded to slow down to speed
2LV as close to immediately as possible.

Taking into account a computational interval t∆ vehicle 1 may not start slowing down until a
time t∆ later. Thus, once it has reached speed

2LV its distance-time curve is given by the equation

 ()
1 21 1 L m L mx dP V t D V t t T= − + ∆ + + −∆ − (7.1)

We need to know how far behind vehicle 0 vehicle 2 must be so that it can delay slowing down
until it reaches the speed-change command point, i.e., the point along the guideway at which
vehicle 0 started to slow down. Assume this is the case. Then vehicle 2 doesn’t reach speed

2LV
until it reaches the position ahead of the position vehicle 0 began to slow down by an amount

1
.L mV t D∆ + Once vehicle 2 has reached speed

2LV its distance-time curve is given by the
equation

80

Figure 6. The Kinematics of a Speed Reduction.

1 2

1

2
2 L m L m

L

dPx V t D V t t T
V

 
= ∆ + + − −∆ −  

 
 (7.2)

Substituting the time
1

2
m

L

dPt t T
V

= + ∆ + into equation (1.1) we see that the separation between

vehicle 1 and vehicle 2 at this time is

()

1 2 1

1

2

2

1

2
1 2 1

1 2

L m L L m
L

L
L h

L

dPx x dP V t D V V t D
V

V
dP dP V T t

V

 
− = − + ∆ + + − ∆ −  

 

= − + ≥ + ∆

 (7.3)

Thus, the desired result is

 (7.4)

() 1

1

2

2 1
L

L h
L

V
dP V T t dP

V
≥ + ∆ +

81

8. Emergency Stop

An emergency stop starts with arbitrary initial acceleration 0A and initial speed 0V . The vehicle

is subjected to a maximum negative jerk maxJ up to a point 1 at which the deceleration is the

emergency value eA− and then decelerates at that maximum rate until a point 2, where positive

jerk maxJ is applied until the vehicle stops at a point 3. Using the basic transition equations (1-2),
the emergency-stop transition is set up with the following equations:

()
()

() ()

01 0 max 1 0 01 0 01 01 0 01 0

23 max 2 23 23 23 2 23

12 1 2 12 12 1 12

1 01 2 1 12 3 2 23

1 01 2 1 12 3 2

() / , () / 2, 2 / 6

/ , / 2, / 3

/ , / 2
, ,
, ,

e e e

e e e

e e

dt A A J V V dt A A dx dt V dt A A

dt A J V dt A dx dt V dt A

dt V V A dx dt V dt A
t dt t t dt t t dt
x dx x x dx x x d

= + = − − = + −  
= = = −

= − = −

= = + = +
= = + = + 23x

The transition is then run using the following code:

0

1

max

0 0 0

2

1 1 1

3

max

2 2 2

Jerk
State (t, Jerk, A , V , x , A, V, x)

0
State (t, Jerk, A , V , x , A, V, x)

State (t, Jerk, A , V , x , A, V, x)

0

t t t
if t t then

J

elseif t t then
Jerk

elseif t t then
Jerk J

else
Jerk

end if

∆ = −
<

= −
∆
<
=
∆
<
= +
∆

=

9. Distance to Reach Station Speed

When a vehicle is ready to leave a station it may be advancing in the station at any speed 0V below

station speed sV and at any acceleration 0A within the comfort range. It must not be permitted to

accelerate to line speed if at that moment it would exceed sV its nose would not have reached the

downstream end of the station. The criterion to leave is thus that the distance to reach sV is greater
than the distance to the downstream end of the station. Using the notation of Section 3, let the

82

distance from initiation of the acceleration transition to the speed sV be 0 .sdx Then, following the
notation of Section 3, we must consider two cases:

2sV V≤

()0 01 1 / .s s cdx dx V V A= + −

2sV V>

()0 01 12 2 2 2 2 / 6s s s c sdx dx dx dt V dt A A= + + + +  

in which

()

()

2

2 2
2 2 2 2 2 2

2
2 2

0 01 12 2 2 2 2

or 0
2 2

1or 2

3 / 6

s c n s

n n
s c s s s c s s

s c c n s
n

s s s c n s

A A J dt
J JV V A dt dt dt A dt V V

dt A A J V V
J

dx dx dx dt V dt A J dt

= −

= + − − + − =

 = − − − 

= + + + −  

in which the minus sign before the square root is taken because we know that when

2 2, 0.s sV V dt→ →

10. The Distance to Slip a Given Amount

Assume a series of slip transitions which begin and end at line speed. Assume that the minimum
speed in the transition, mV is low enough so that the cruising time at mV is zero. Then if LV is the

line speed, if 2
1 1/ then else .m c c c L cV A J A J V A A< = = The transition time is

 1

1

2 L m
m

c

V V A
T

A J
 −

= + 
 

.

The slip S is

 () / 2L m mS V V T= −

and the distance traveled to slip S is

 Distance = .L mV T S−

These quantities are calculated and plotted in the following table for 16LV = m/s.

83

Table 1

Distance Traveled During Slip Transition

g = 9.807 m/s^2

Ac = 2.452 m/s^2

Jc = 2.452 m/s^3

VL = 16 m/s

Vmin A1 Tm Slip Dist

m/s m/s^2 sec m m

16.0 0.00 0.00 0.00 0.00

15.8 0.70 1.14 0.11 18.17

15.6 0.99 1.62 0.32 25.53

15.4 1.21 1.98 0.59 31.07

15.2 1.40 2.28 0.91 35.65

15.0 1.57 2.55 1.28 39.60

14.8 1.72 2.80 1.68 43.10

14.6 1.85 3.02 2.12 425

14.4 1.98 3.23 2.59 49.12

14.2 2.10 3.43 3.08 51.75

14.0 2.21 3.61 3.61 54.19

13.8 2.32 3.79 4.17 546

13.6 2.43 3.96 4.75 58.57

13.4 2.45 4.12 5.36 60.58

13.2 2.45 4.28 6.00 62.55

13.0 2.45 4.45 67 64.49

12.8 2.45 4.61 7.38 639

12.6 2.45 4.77 8.12 68.26

12.4 2.45 4.94 8.89 70.10

12.2 2.45 5.10 9.69 71.91

84

12.0 2.45 5.26 10.53 73.68

11.8 2.45 5.43 11.40 75.42

11.6 2.45 5.59 12.30 77.13

11.4 2.45 5.75 13.23 78.81

11.2 2.45 5.92 14.20 80.45

11.0 2.45 6.08 15.20 82.06

10.8 2.45 24 123 83.64

10.6 2.45 41 17.29 85.19

10.4 2.45 57 18.39 86.70

10.2 2.45 6.73 19.52 88.18

10.0 2.45 6.89 20.68 89.63

85

Potential Headway Violation upon Decelerating into a Station

Figure 1. The velocity profiles of a pair of vehicles entering a station.

Consider a vehicle #1 decelerating into a station to station speed staV , followed by a vehicle #2 a
time Line Headway behind undergoing the same maneuver. Let the position of vehicle #1 at
time zero be (0) 0.x = The times, accelerations, speeds, and positions of vehicle #1 at the points
1, 2, 3 in Figure 110 are as follows:

01 1 01 01 01 01

23 2 23 23 23 2 23

1 2
12 12 12 1 12

1 01 2 1 12 3 2 23

1 01 2 1 12 3 2 23

, ,
2 6

, ,
2 3

,
2

, ,
, ,

c c c
L L

c

c c c
sta

c

c

c

A A Adt V V dt dx dt V dt
J
A A Adt V V dt dx dt V dt
J

AV Vdt dx dt V dt
A

t dt t t dt t t dt
x dx x x dx x x dx

 = = − = − 
 

 = = + = − 
 

−  = = − 
 

= = + = +
= = + = +

 (1)

From equations (1) we find

2 2

03 01 23 12
12

2 2
c c c L sta c

L sta
c c c c c c

A A A V V Adt dt dt dt V V
J A J J A J

  −
= + + = + − − − = + 

 
 (2)

10 For the methodology, see the internal paper “Speed and Position vs. Time”

2

V

t

0 1 3

Line Headway

VL

1

2

Vstation

86

Thus, the maneuver time from line speed to station speed is

L sta c
m

c c

V V AT
A J
−

= + (3)

From equations (1) we also find

()

() ()() () ()

() ()

2 2 2
1 2

03 01 23 12 1 2

2

1 2 1 2

03

2 6 3 2

1 1
2 2

2 2

c c c c
L sta

c c c c c

c c c
L sta L sta L sta L sta

c c c c c

L sta L staL sta c

c c

A A A A V Vdx dx dx dx V V V V
J J J J A

A A AV V V V V V V V V V V V
J A J A J

V V V VV V A dt
A J

   −
= + + = + + − − + +   

   
 

= + + − + = + + − − + 
 

+ + −
= + = 

 

(4)

Thus, the distance traveled from line speed to station speed is

()
2

L sta
m m

V V
D T

+
= (5)

Using the above canonical formulation, the acceleration, speed, and position of vehicle 1 at any
value of t are as follows:

()

1

1 2 1 1 1 1

2 3 2 2 2 2

0 : , , ,
2 6

: , , ,
2

: , , ,
2 3

c L L

c

c
c c

A At t t t A J t V V t x t V t

At t t t t t A A V V tA x x t V t

A A At t t t t t A A J t V V t x x t V t

 ≤ ≤ ∆ = = − ∆ = + ∆ = ∆ + ∆ 
 

 ≤ ≤ ∆ = − = − = + ∆ = + ∆ + ∆ 
 

− +  ≤ ≤ ∆ = − = − + ∆ = + ∆ = + ∆ + ∆ 
 

(6)

For vehicle #2 up to time t LineHeadway= the speed stays constant at LV and the distance
traveled is

Lx V t= . For t LineHeadway> we can obtain the acceleration, speed, and position as functions
of time by making the following substitutions in equations (5): t t LineHeadway→ −

87

()

1

1 2 1 1 1 1

0 : 0, ,

: , , ,
2 6

: , , ,
2

h

h L L h

h h h c L L

h h c

T LineHeadway
t T A V V x V t T

A AT t t T t t T A J t V V t x t V t

AT t t T t t t t A A V V tA x x t V t

=

≤ ≤ = = = −

 ≤ ≤ + ∆ = − = − ∆ = + ∆ = ∆ + ∆ 
 

 + ≤ ≤ + ∆ = − = − = + ∆ = + ∆ + ∆ 
 

()
2 3 2 2 2 2: , , ,

2 3
c

h h c c

A A AT t t T t t t t A A J t V V t x x t V t
− +  + ≤ ≤ + ∆ = − = − + ∆ = + ∆ = + ∆ + ∆ 

 

(7)

The Minimum Headway

Figure 2. A pair of vehicles moving to the right.

Assume vehicle #1 stops due to a failure at deceleration fA and jerk .fJ From equation (5), the
stopping distance of vehicle #1 is

1 1
1 2

f

f f

AV VD
A J

 
= +  

 
 (8)

After a control time delay ,ct vehicle #2 stops at the emergency deceleration rate eA and

emergency jerk .eJ Its stopping distance is therefore

2 2
2 2 2

e
c

e e

AV VD V t
A J

 
= + + 

 
 (9)

Assuming the length of each of the two vehicles is L , the minimum allowable separation
between them is

min 2 1H L D D= + − (10)

#1 #2

D1

L D2

Hmin

V1 V2

88

The minimum permissible time headway is therefore

min

2

HMinHeadway
V

=

 (11)

A program to calculate the acceleration, speed, positions profiles and the minimum headway is
given in the Appendix. Some results are given in Figures 3 and 4.

Figure 3. Kinematics of motion of a pair of vehicles decelerating to station speed.

Figure 4. Separation and minimum allowable separation between two vehicles entering a station.

0 1 2 3 4

TIME, seconds

-10

0

10

20

30

40

Ac
ce

ler
ati

on
, s

pe
ed

, a
nd

 di
sta

nc
e t

ra
ve

lle
d i

n M
KS

 un
its Acceleration of veh 1

Speed of veh 1
Distance veh 1 has traveled
Acceleration of veh 2
Speed of veh 2
Distance veh2 has traveled

0 1 2 3 4

TIME, seconds

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Ac
tua

l a
nd

 m
ini

mu
m

se
pa

ra
tio

ns
, m

ete
rs

Separation between veh 1 and 2
Minimum allowable separation

89

The parameters used in Figures 3 and 4 are those given at the beginning of the program shown in
the Appendix. Many runs can be made for different accelerations and jerks. For the set shown
in the program, runs were made with different line headways and control time constants to obtain
the maximum negative separations as shown in Table 1 and as calculated by the program.

Table 1. Maximum headway violations for the cases shown.

\ct LineHeadway → 0.5 1.0 1.3 1.5

0.05 -3.25 -1.03 0 0
0.10 -3.80 -1.59 -0.03 0
0.15 -4.36 -2.15 -0.60 0
0.20 -4.92 -2.71 -1.17 -0.01

It is seen that if the line headway between two vehicles sequentially entering a station is to be as
low as one second, the control time constant must be quite small, but not particularly small using
contemporary technology. Note from Figure 4 that in the case shown the small headway
violation increases from zero back to zero in about one second.

In this work, we considered only the portion of the maneuver from line speed to station speed.
Further development of the program included in the Appendix shows that, since the second of
the pair of vehicles will be stopping at least one berth behind the first, there is no headway
violation in the maneuvers from station speed to rest.

Appendix

'This program MINHEAD.BAS calculates the minimum headway permissible
'between a pair of vehicles decelerating into a station
'Units are MKS

DEFDBL A-Z
DIM Counter AS INTEGER
DIM A(1 TO 2) AS DOUBLE 'acceleration of vehicles 1 & 2
DIM V(1 TO 2) AS DOUBLE 'speed of vehicles 1 & 2
DIM X(1 TO 2) AS DOUBLE 'position of vehicles 1 & 2
DIM t4(1 TO 2) AS DOUBLE 'time at end of station-speed section
DIM t5(1 TO 2) AS DOUBLE 'time at command to constant deceleration
DIM t6(1 TO 2) AS DOUBLE 'time at command to constant jerk
DIM t7(1 TO 2) AS DOUBLE 'time at maneuver end, total maneuver time

DIM X1(1 TO 2) AS DOUBLE 'position of command to constant deceleration
DIM X2(1 TO 2) AS DOUBLE 'position of command to constant jerk
DIM X3(1 TO 2) AS DOUBLE 'position at beginning of station-speed section
DIM X4(1 TO 2) AS DOUBLE 'position at end of station-speed section
DIM X5(1 TO 2) AS DOUBLE 'position of command to constant deceleration
DIM X6(1 TO 2) AS DOUBLE 'position of command to constant jerk
DIM X7(1 TO 2) AS DOUBLE 'position at maneuver end,total maneuver distance

DIM D(1 TO 2) AS DOUBLE 'stopping distances of vehicles 1 & 2

90

g = 9.80665 'acceleration of gravity
Ac = .25 * g 'comfort deceleration
Jc = .25 * g 'comfort jerk
tJ = Ac / Jc 'jerk time constant
Af = .4 * g 'maximum failure deceleration
Jf = .4 * g 'maximum failure jerk
Ae = .4 * g 'emergency deceleration
Je = .8 * g 'emergency jerk
VL = 12 'line speed
Vsta = 8 'station speed
tc = .15 'time constant
Lveh = 2.743 'vehicle length
B = 3.048 'berth length
LineHeadway = .5 'time headway between vehicles while at line speed
t = 0 'start time
dt = .01 'computational time interval

'Calculation of the maneuver increments and transition speeds
dt01 = tJ
V1 = VL - dt01 * Ac / 2
dx01 = dt01 * (VL - Ac * dt01 / 6)
dt23 = tJ
V2 = Vsta + dt23 * Ac / 2
dx23 = dt23 * (V2 - dt23 * Ac / 3)
dt12 = (V1 - V2) / Ac
dx12 = dt12 * (V1 - dt12 * Ac / 2)
dx34 = 10 'distance vehicle 1 travels at station speed
dt34 = dx34 / Vsta 'time of veh 1 at station speed
dt45 = tJ
V5 = Vsta - dt45 * Ac / 2
dx45 = dt45 * (Vsta - dt45 * Ac / 6)
dt67 = tJ
V6 = dt67 * Ac / 2
dx67 = dt67 * (V6 - dt67 * Ac / 3)
dt56 = (V5 - V6) / Ac
dx56 = dt56 * (V5 - dt56 * Ac / 2)

'Times and position increments at the transition points
t1 = dt01
t2 = t1 + dt12
t3 = t2 + dt23
t4(1) = t3 + dt34 'this and following times for veh 1
t5(1) = t4(1) + dt45
t6(1) = t5(1) + dt56
t7(1) = t6(1) + dt67 'maneuver time
t4(2) = t3 + dt34 - B / Vsta 'this and following times for veh 2
t5(2) = t4(2) + dt45
t6(2) = t5(2) + dt56
t7(2) = t6(2) + dt67 'maneuver time

X1(1) = dx01
X2(1) = X1(1) + dx12
X3(1) = X2(1) + dx23
X4(1) = X3(1) + dx34
X5(1) = X4(1) + dx45
X6(1) = X5(1) + dx56

91

X7(1) = X6(1) + dx67

X1(2) = dx01
X2(2) = X1(2) + dx12
X3(2) = X2(2) + dx23
X4(2) = X3(2) + dx34 - B 'veh 2 stops one berth short of veh 1
X5(2) = X4(2) + dx45
X6(2) = X5(2) + dx56
X7(1) = X6(1) + dx67 'total maneuver distance

CLS
SCREEN 9
COLOR 7, 8
scaleT = 600 / t7(2)
scaleA = 10
scaleV = 10
scaleX = 4
scaleS = 40
T0 = 10
Y0 = 280
LINE (T0, Y0)-(640, Y0)
LINE (T0, Y0)-(T0, 0)

OPEN "KINEMAT.ASC" FOR OUTPUT AS #1
OPEN "SEPRATN.ASC" FOR OUTPUT AS #2

DO
 'Motion of first vehicle
 IF t <= t1 THEN
 DelT = t
 A(1) = -Jc * DelT
 V(1) = VL + DelT * A(1) / 2
 X(1) = DelT * (VL + DelT * A(1) / 6)
 ELSEIF t <= t2 THEN
 DelT = t - t1
 A(1) = -Ac
 V(1) = V1 + DelT * A(1)
 X(1) = X1(1) + DelT * (V1 + DelT * A(1) / 2)
 ELSEIF t <= t3 THEN
 DelT = t - t2
 A(1) = -Ac + Jc * DelT
 V(1) = V2 + DelT * (-Ac + A(1)) / 2
 X(1) = X2(1) + DelT * (V2 + DelT * (-2 * Ac + A(1)) / 6)
 ELSEIF t <= t4(1) THEN
 DelT = t - t3
 A(1) = 0
 V(1) = Vsta
 X(1) = X3(1) + Vsta * DelT
 ELSEIF t <= t5(1) THEN
 DelT = t - t4(1)
 A(1) = -Jc * DelT
 V(1) = Vsta + DelT * A(1) / 2
 X(1) = X4(1) + DelT * (Vsta + DelT * A(1) / 6)
 ELSEIF t <= t6(1) THEN
 DelT = t - t5(1)
 A(1) = -Ac
 V(1) = V5 + DelT * A(1)

92

 X(1) = X5(1) + DelT * (V5 + DelT * A(1) / 2)
 ELSEIF t < t7(1) THEN
 DelT = t - t6(1)
 A(1) = -Ac + Jc * DelT
 V(1) = V6 + DelT * (-Ac + A(1)) / 2
 X(1) = X6(1) + DelT * (V6 + DelT * (-2 * Ac + A(1)) / 6)
 ELSE
 A(1) = 0
 V(1) = 0
 X(1) = X7(1)
 END IF

 'Motion of second vehicle
 tsec = t - LineHeadway
 IF tsec <= 0 THEN
 DelT = tsec
 A(2) = 0
 V(2) = VL
 X(2) = DelT * VL
 ELSEIF tsec <= t1 THEN
 DelT = tsec
 A(2) = -Jc * DelT
 V(2) = VL + DelT * A(2) / 2
 X(2) = DelT * (VL + DelT * A(2) / 6)
 ELSEIF tsec <= t2 THEN
 DelT = tsec - t1
 A(2) = -Ac
 V(2) = V1 + DelT * A(2)
 X(2) = X1(2) + DelT * (V1 + DelT * A(2) / 2)
 ELSEIF tsec <= t3 THEN
 DelT = tsec - t2
 A(2) = -Ac + DelT * Jc
 V(2) = V2 + DelT * (-Ac + A(2)) / 2
 X(2) = X2(2) + DelT * (V2 + DelT * (-2 * Ac + A(2)) / 6)
 ELSEIF tsec <= t4(2) THEN
 DelT = tsec - t3
 A(2) = 0
 V(2) = Vsta
 X(2) = X3(2) + Vsta * DelT
 ELSEIF tsec <= t5(2) THEN
 DelT = tsec - t4(2)
 A(2) = -Jc * DelT
 V(2) = Vsta + DelT * A(2) / 2
 X(2) = X4(2) + DelT * (Vsta + DelT * A(2) / 6)
 ELSEIF tsec <= t6(2) THEN
 DelT = tsec - t5(2)
 A(2) = -Ac
 V(2) = V5 + DelT * A(2)
 X(2) = X5(2) + DelT * (V5 + DelT * A(2) / 2)
 ELSEIF tsec < t7(2) THEN
 DelT = tsec - t6(2)
 A(2) = -Ac + Jc * DelT
 V(2) = V6 + DelT * (-Ac + A(1)) / 2
 X(2) = X6(2) + DelT * (V6 + DelT * (-2 * Ac + A(1)) / 6)
 ELSE
 A(2) = 0
 V(2) = 0

93

 X(2) = X7(2)
 END IF

 D(1) = .5 * V(1) * (V(1) / Af + Af / Jf) 'stopping distance of veh #1
 D(2) = .5 * V(2) * (V(2) / Ae + Ae / Je) 'stopping distance of veh #2

 Separation = X(1) - X(2)
 IF Separation < Lveh + V(2) * tc THEN SLEEP
 IF V(2) > 0 THEN Headway = Separation / V(2)
 MinSeparation = Lveh + V(2) * tc + D(2) - D(1)
 IF V(2) > 0 THEN MinHeadway = MinSeparation / V(2)
 dSep = Separation - MinSeparation
 IF dSep < MaxNegSep THEN MaxNegSep = dSep

 PSET (T0 + scaleT * t, Y0 - scaleA * A(1)), 14
 PSET (T0 + scaleT * t, Y0 - scaleV * V(1)), 13
 PSET (T0 + scaleT * t, Y0 - scaleX * X(1)), 12
 PSET (T0 + scaleT * t, Y0 - scaleA * A(2)), 11
 PSET (T0 + scaleT * t, Y0 - scaleV * V(2)), 10
 PSET (T0 + scaleT * t, Y0 - scaleX * X(2)), 9

 PSET (T0 + scaleT * t, Y0 - scaleS * Separation), 5
 PSET (T0 + scaleT * t, Y0 - scaleS * MinSeparation), 6

 'PRINT USING "#####.##"; t; A(1); V(1); X(1) ; A(2); V(2); X(2);
Separation; MinSeparation
 'PRINT USING "#####.##"; t; V(2); Separation; Separation - Lveh - V(2) *
tc; MinSeparation; dSep; Headway; MinHeadway
 IF Counter = 20 THEN
 Counter = 0
 'SLEEP
 END IF
 Counter = Counter + 1
 'WRITE #1, t, A(1), V(1), X(1), A(2), V(2), X(2)
 'WRITE #2, t, Separation, MinSeparation
 t = t + dt
LOOP UNTIL t > t7(2) + 1
PRINT " MaxNegSep = ";
PRINT USING "###.##"; MaxNegSep
CLOSE #1
CLOSE #2

94

Headway Needed to Delay Speed Reduction

Figure 1. The Kinematics of a Speed Reduction.

Consider a vehicle 0 that is commanded to reduce speed from a line speed
1LV to a speed

2LV at

time 0.t = The slow-down maneuver takes an amount of time mT and occurs over a distance

.mD Assume vehicle 1 is a distance 1dP behind vehicle 0 and traveling at speed
1LV . Assume

that it is close enough to vehicle 0 that it must be commanded to slow down to speed
2LV as close

to immediately as possible. Taking into account a computational interval t∆ vehicle 1 may not
start slowing down until a time t∆ later. Thus, once it has reached speed

2LV its distance-time
curve is given by the equation

95

 ()
1 21 1 L m L mx dP V t D V t t T= − + ∆ + + −∆ − (1)

We need to know how far behind vehicle 0 vehicle 2 must be so that it can delay slowing down
until it reaches the speed-change command point, i.e., the point along the guideway at which
vehicle 0 started to slow down. Assume this is the case. Then vehicle 2 doesn’t reach speed

2LV
until it reaches the position ahead of the position vehicle 0 began to slow down by an amount

1
.L mV t D∆ + Once vehicle 2 has reached speed

2LV its distance-time curve is given by the
equation

1 2

1

2
2 L m L m

L

dPx V t D V t t T
V

 
= ∆ + + − −∆ −  

 
 (2)

Substituting the time
1

2
m

L

dPt t T
V

= + ∆ + into equation (1) we see that the separation between

vehicle 1 and vehicle 2 at this time is

()

1 2 1

1

2

2

1

2
1 2 1

1 2

L m L L m
L

L
L h

L

dPx x dP V t D V V t D
V

V
dP dP V T t

V

 
− = − + ∆ + + − ∆ −  

 

= − + ≥ + ∆

 (3)

in which Th is the minimum permissible time headway. Thus, the desired result is

() 1

1

2

2 1
L

L h
L

V
dP V T t dP

V
≥ + ∆ +

96

On-Line Deceleration

Figure 1. Speed profile of vehicle decelerating.

1. Introduction

To reduce the required length of off-line guideway in a PRT system, it is possible to initiate
deceleration before a vehicle is clear of mainline traffic. The question that this memo answers is
this: What is the relationship between the distance traveled by a decelerating vehicle while still
on-line and the reduction in on-line headway? This memo shows that by sacrificing a small
amount of on-line headway, the length of the by-pass guideway can be reduced substantially.

2. Deceleration at constant negative jerk.

Figure 1 is a plot of speed V vs. time t and illustrates the speed profile of a vehicle
decelerating from a line speed LV into a station. At first negative jerk cJ is applied until at a

point 1, the deceleration reaches the comfort value .cA The vehicle then decelerates at the

comfort value until it either stops or assumes the station speed. For the time interval 10 t t≤ ≤
the equations of motion are

2 3

, ,
2 6c L c L c
t tx J t x V J x V t J= − = − = −&& & (1)

At time 1t 1 1
c

c c
c

Ax A J t t
J

= − = − ∴ =&& (2)

Then

97

2 2

1

2

01

1
2 2

6

c c
L c L

c c

c c
L

c c

A AV V J V
J J

A Ax V
J J

 
= − = − 

 
 

= − 
 

 (3)

The distance the vehicle moves backwards relative to or closes up to a vehicle behind it traveling
at constant speed LV is called the slip distance, which if the vehicle slows down a time t1 is

3

01 1 01 26
c

L
c

AS V t x
J

= − = (4)

3. Headway sacrificed during constant-jerk motion

Headway ht is defined as the time interval between the passage of the nose of one vehicle and the
passage of the next relative to a stationary point. The distance traveled by a vehicle moving at
speed VL during this time interval is L hV t . Thus, the headway lost to point 1 if a vehicle begins
to decelerate while still on the main line is

3

01
2 .

6
c

h
L c L

S At
V J V

∆ = = (5)

For times less than 1t substitute cJ t for cA from equations (1). Then we have

1/3

3 6,
6

c L h
L h

c

J V tt V t t
J

 ∆
= ∆ =  

 
 (6)

Substituting t into the third of equations (1), we see that for 1t t< the distance traveled while

losing a headway of ht∆ is

1/3

6 L h
L h

c

V tx V t
J

  ∆
 = − ∆ 
   

 (7)

For longitudinal motion the comfort values are 0.25 , 0.25 /c cA g J g s= = . Therefore,

assuming g = 9.80665 m/s2 we have from equation (5) 0.4086 /h Lt V∆ = . Assuming a minimum

speed of say 10 m/s, we find that up to point 1 0.041ht∆ = sec.

98

4. Headway sacrificed during constant-deceleration phase

Assuming that we can permit a greater loss of headway as a result of on-line deceleration, let the
vehicle proceed to a point 2 at constant deceleration cA− where 2 12 2 1, and .t t t t t= ∆ = − The

constant deceleration region pertains until 2
2 / 2 .c cV A J≤ The speed and distance traveled during

this interval in which 2
1 2 / 2c cV V A J> > are

2 1 12

22
12

12 1 12 12 122 2 2

c

c c
c L

c

V V A t

A Atx V t A t V t
J

= − ∆

 ∆
= ∆ − = ∆ − − ∆ 

 

 (8)

The slip distance in traveling from point 1 to point 2 is

 12 12 12 12 122
c c

L
c

A AS V t x t t
J

 
= ∆ − = + ∆ ∆ 

 
 (9)

Thus the total slip distance up to point 2 is

02

2

02 01 12 12 1222 3
c c c

L h
c c

A A AS S S t t V t
J J

  
= + = + + ∆ ∆ = ∆  

  
 (10)

where
02ht∆ is the headway lost in slowing down to point 2. Equation (10) can be rearranged into

the form

 02

2
2
12 12 2

2
2 0

2 3
L hc c

c c c

V tA At t
J A J

∆  
∆ + ∆ − − =  

   
 (11)

the positive root of which is

 02 02

2 22

12 2

2 8 1 1
2 2 3 2 3

L h L hc c c c c

c c c c c c c

V t V tA A A A Jt
J J A J J A A

 ∆ ∆    ∆ = − + + − = − −        
 (12)

5. Total headway sacrificed

The distance traveled in the time period 02t∆ is

2 2

02 01 12 12 126 2 2
c c c c

L L
c c c

A A A Ax x x V t V t
J J J
   

= + = − + ∆ − − ∆   
   

 (13)

Substitute for 2
12t∆ from equation (11). Then equation (13) becomes

99

02

02

2 2
2

02 12 12

2 2 2

12 12 2

12

6 2 2

2
6 2 2 3

c c c c
L L

c c c

c c c c c cL
L L h

c c c c c c

c
L h

c

A A A Ax V t V t
J J J

A A A A A AVV t V t t
J J J J A J

AV t t
J

   
= − + ∆ − − ∆   

   
     

= − + ∆ − + ∆ − ∆ +     
     
 

= + ∆ −∆ 
 

 (14)

Substituting for 12t∆ from equation (12) we get

02 02 02

2 3

02 3 2
8 11 if

2 3 6
c L c c

L h h h
c c c L

A V J Ax V t t t
J A J V

   = + ∆ − − ∆ ∆ ≥  
    

 (15)

If
02

3

26
c

h
c L

At
J V

∆ < the distance traveled while losing a headway of
02h ht t∆ = ∆ is given by equation

(7). The reader can verify that at
02

3

26
c

h
c L

At
J V

∆ = both equations (7) and (15) give the same result.

6. Range of Validity of equation (15)

As mentioned in Section 4, equation (15) is valid if 2
2 / 2 .c cV A J> From equations (3) and (8)

this condition becomes

2 2

2 12 12or t
2 2

c c cL
L c

c c c c

A A AVV V A t
J J A J

= − − ∆ > ∆ < − (16)

Substituting for 12t∆ from equation (12) and reducing, we get

02

02

02

02

2

2

2 2 2

2 2

2

2

8 1
2 3 2

8 1 2 1
3

8 1 4 4 1
3

1
2 3

L hc c L c

c c c c c

L h c L c

c c c c

L h c L c L c

c c c c c c

L c c c
h

c c c L

V tA J V A
J A A A J

V t J V J
A A A A

V t J V J V J
A A A A A A

V A A At
A J J V

 ∆   − < −    

∆  
− < − 

 

∆  
− < − + 

 
 

∆ < − + 
 

 (17)

100

Using the above values we find for 10LV =
02

1.6 sec, and for 20h Lt V∆ = = meters per second

02
3.6 sec.ht∆ = These values are much longer than would be of interest for this problem,

therefore equation (12) gives correct values for 12.t∆

7. The maximum on-line distance traveled.

We can now plot a curve of distance traveled while losing a headway of ht∆ . Note, from

equation (7) that at 0ht∆ = the rate of change of x with ht∆ is infinite. The form of equation

(15) shows that as a function of ht∆ x increases to a maximum and then at a certain point falls to
zero and below. The maximum value of distance traveled can be found by setting to zero the
derivate of 02x with respect to ht∆ . The result is

02

2

2

2 2

2
2

22

h

82 1
3

8 2 1or
3

1 1 1or t
2 3 2

L hL c c

c c c

L h c L c

c c c

c
L

c c L

V tV J J
A A A

V t J V J
A A A

AV
A J V

∆  
= − 

 

   ∆
= +   

   
  

∆ = +  
   

 (18)

To obtain the maximum on-line deceleration distance, substitute equation (18) into equation (15).
This is not done here because ht∆ at the maximum distance is much too large to be of interest in
short-headway PRT systems.

8. Solving equation (15) for
02ht∆

In the numerical solution for the transition, we calculate 02x and need to calculate the

corresponding value of
02

.ht∆ To do so, rewrite equation (15) in the form

101

02

02 02

02 02

2
02

23

2 2 2
202 02

22 3

2
2 02 02 02

2

8 1
2 2 3

8 12
2 2 4 3

2 0
2 3

The rad

c c L c
h h

L c c c

c c c L c
h h h

L c L c c c

L c c c
h h

c c L L L c c

x A A V Jt t
V J J A

x A x A A V Jt t t
V J V J J A

V A x x x A At t
A J V V V J J

 
− + ∆ = ∆ − 

  

     
− + − ∆ + ∆ = ∆ −     

     
   

∆ − + − ∆ + − + =   
   

2 2
02 02 02

2

2 2 2
02 02

2 2

ical is

2 3

2 2
2 3 12

L c c c

c c L L L c c

L c L c L L c c

c c c L c c c c L c

V A x x x A A
A J V V V J J

V A V x A V V A x A
A J A V J A A J V J

   
+ − − − − =   

   

     
+ − − = + − −     

     

 (19)

Therefore

02

2
02 02

2

2

02 02 2

3

02 02 2

2
2 12

1 2
2 2 12

1 22
2 24

c c cL L L
h

c c L c c c L c

c c c cL L L
L

L c c c c c c c

c c
stop L stop

L c c c

A x A x AV V Vt
A J V A A J V J

A A A AV V VV x x
V A J J A A J J

A AD x V D x
V J A J

 
∆ = + − − + − − 

 

      
= + − − − + − −      

      

   
= − − − − −   

   

 (20)

in which stopD is the stopping distance from speed .LV Since stopD must be substantially longer

than 02 ,x the term under the square-root sign is always positive in practical cases. The minus

sign before the radical is the correct one because equation (20) then reduces to equation (5) if 01x

is substituted for 02x from equation (3). Equation (20) is used in the program developed for the
numerical solution for the transition to an off-line station.

9. Speed at End of on-line deceleration.

From equations (8), (3), and (12) the speed at the end of the period of on-line deceleration is

02

2 2

2 12 3
8 1

2 2 3
c c L c

L c L h
c c c

A A V JV V A t V t
J J A

= − − ∆ = − ∆ − (21)

in which

102

02

3

2 .
6

c
h

L c

At
V J

∆ ≥

Equation (21) is calculated in the following Excel spreadsheet.

 Speed at End of On-Line Deceleration, m/s

g = 9.80665 m/s^2

Jc = 2.45166 m/s^3

Ac = 2.45166

Ac^2/2Jc = 1.22583 m/s

8Jc^2/Ac^3 = 3.26309 1/sec

VL, m/s

Headway Lost,

sec 10 11 12 13 14 15 16

0.02 9.31 10.24 11.18 12.12 13.07 14.02 14.97

0.03 9.02 9.94 10.88 11.81 12.75 13.69 14.64

0.04 8.79 9.71 10.64 11.57 12.50 13.44 14.38

0.05 8.60 9.52 10.44 11.36 12.29 13.22 14.15

0.06 8.44 9.35 10.26 11.18 12.10 13.02 13.95

0.07 8.29 9.19 10.10 11.01 11.93 12.84 13.77

0.08 8.15 9.05 9.95 10.86 11.77 12.68 13.60

0.09 8.02 8.91 9.81 10.71 11.62 12.53 13.44

0.1 7.90 8.79 9.68 10.58 11.48 12.38 13.29

0.11 7.79 8.67 9.56 10.45 11.34 12.25 13.15

0.12 7.68 8.56 9.44 10.33 11.22 12.11 13.01

10. On-Line Deceleration distance as a function of end speed.

We need to know the distance during on-line deceleration as a function of the speed V2 at the
clearance point following which the vehicle is offline. This distance is given by equation (13), in
which, from equations (8) and (3)

103

2

2
12 2

1
2 2

c L c
L

c c c c c

A V V At V V
A J A A J
 

∆ = − − = − − 
 

Substituting this value into equation (13), we get

2 2

02 01 12 12 12

3 2
22 2
122

22 3
2 2 2

2 2

6 2 2

6 2 2 2 2

2 12 2

c c c c
L L

c c c

c c L c c L c c
L L

c c c c c c c c c

L L c c c L c L

c c c c c c c c c

A A A Ax x x V t V t
J J J

A A V V A A V V A AV V t
J J A A J J A A J

V V V A A A V V A V VV
A A J J A A J A A

   
= + = − + ∆ − − ∆   

   
   

= − + − − − − − − ∆   
   

  
= − + + − − − − 

 

2

24
c

c

A
J

 
+  

   

3 2
2

02 22 24 2
L L c c

c c c c

V V A A Vx
A J J A

 
= + − − 

 
 (22)

Numerical values from Equation (22) are shown in the following Excel Spreadsheet.

On-Line Deceleration Length as function of End
Speed V2

g = 9.80665 m/s^2

Jc = 2.45166 m/s^3

Ac = 2.45166 m/s^2

Ac^3/24/Jc^2 = 0.10215 m

V2

VL 10 11 12 13 14 15 16

10 4.90

11 9.68 5.40

12 14.87 10.59 5.90

13 20.47 16.19 11.50 6.40

14 26.48 22.19 17.50 12.40 6.90

15 32.89 28.61 23.92 18.82 13.31 7.40

16 39.71 35.43 30.74 25.64 20.13 14.22 7.90

104

11. The declining speed as a function of distance along the transition into an off-line station.

Speed declines along the transition into an off-line station at content deceleration Ac. Thus,
along the transition

() ()

() ()

2
2

2

2 2

2

Thus or 2 2 0
2

Thus 2 .

2Thus 1 , or 2
2 2

o c

o c c o c c

c o o c

oc o
o o o

o c c

dsV V A t
dt

ts V t A A t V A t A s

A t V V A s

V VA s V VV V s V V V
V A A

= = −

= − − + =

= − −

− −
= − = − + =

12. Curves of on-line deceleration as a function of speed and headway sacrificed.

Equations (7) and (15) are plotted in Figure 2 for a useful range of line speeds. For a small
sacrifice of on-line headway of say 0.1 sec, the savings in off-line guideway that would have to
be provided if all of the deceleration were offline is seen to be substantial. Figure 3 shows the
on-line distance traveled as a function of line speed for 0.1ht∆ = sec.

Figure 2

0.00 0.05 0.10 0.15 0.20 0.25 0.30

ON-LINE HEADWAY SACRIFICED, seconds

0

5

10

15

20

25

30

35

40

45

50

ON
-L

IN
E

DI
ST

AN
CE

 T
RA

VE
LE

D,
 m

et
er

s 10
12
14
16
18
20

ON-LINE DISTANCE TRAVELED while DECELERATING into a STATION
if ON-LINE HEADWAY is SACRIFICED

Objective to shorten off-line guideway, Comfort Accel 0.25g, Comfort Jerk 0.25g/s

LINE SPEED, m/s

105

Figure 3

8 10 12 14 16 18 20 22 24 26 28 30

SPEED, meters/second

0

10

20

30

40

50

60

ON
-L

IN
E

DI
ST

AN
CE

, m
et

er
s

ON-LINE DISTANCE TRAVELED while DECELERATING into a STATION
if 0.1 sec of ON-LINE HEADWAY is SACRIFICED

106

Encoder Calibration

When using encoders on the wheels of our ITNS vehicles to measure distance and speed, the
distance traveled per pulse is

 Distance per Pulse
/ Re
wD

Pulses v
π

=

in which wD is the diameter of the wheel, which with compliant tires is dependent on the weight
on the wheel, and / RePulses v is the number of distance steps sensed by the digital encoder per
revolution of the wheel, currently 4096.

By measuring the gross weight of the vehicle, the correct wheel diameter can be recorded in the
on-board computer, but we must assume that there will be a residual error to be corrected. It can
be corrected by sensing a fixed distance as the vehicle leaves the station by means of wayside
Hall detectors.

A sudden step in the distance parameter also occurs at each line-to-line branch point. Distance in
a network is taken as a negative number that reaches zero at the branch point, and at that point is
set to the negative distance to the next line-to-line branch point.

The correction in these two cases is suddenly applied the control system by the code shown in
red in the following program, in which the procedure has been tested.

Public Class VehicleControl
 'This program VehicleControl simulates the operation of the ITNS vehicle
controller
 'Units are MKS
 'Steps in program:
 ' Start with given speed V0 and acceleration A0
 ' Command Ac(t) and Vc(t) for a maneuver from given A0 and V0
 ' Maneuver 0 => Maintain command speed
 ' Maneuver 1 => Decelerate to stop in x meters
 ' Maneuver 2 => Change speed to x meters/sec in minimum time
 ' Maneuver 3 => Slip x meters while going to line speed VL
 ' Obtain actual distance X(t) and speed V(t) via encoders and subtract
to give
 ' dX = Xc - Xe, dV = Vc - Ve
 ' Form thrust command Tc = Gp * dX + Gv * dV
 ' where Gp = mc * Omega.n^2 * (1 - Beta)
 ' Gv = mc * Omega.n * (.5 * Beta / Zeta + 2 * Zeta * (1 - Beta))
 ' mc = best estimate of vehicle mass
 ' Zeta = damping ratio
 ' Beta = dimensionless factor between 0 and 1
 ' Tau = motor time constant
 ' Omega.n = .5 * Beta / (Zeta * Tau) = radial frequency of
controller
 '
 ' Model motor as Tau * dTh/dt + Thrust = Tc
 ' Model vehicle as m * dV/dt = Thrust - Drag
 ' Model Drag = c.air * V^2 + m * g * (aRoad + bRoad * V)
 '------------------------

107

 'System constants

 Public g As Double = 9.80665 'acceleration of gravity, m/s^2
 Public Jcomfort As Double = 0.25 * g 'comfort jerk, m/s^2
 Public Acomfort As Double = 0.2 * g 'comfort acceleration, m/s^2
 Public Ar As Double = 0.75 * Acomfort 'reduced acceleration for slip
maneuvers, m/s^2
 Public dVr As Double = Ar ^ 2 / Jcomfort 'speed increment, m/s
 Public tJ As Double = Acomfort / Jcomfort 'jerk time constant, s
 Public VL As Single = 15 'line speed, m/s
 Public Vs As Double = 7 'station speed, m/s
 Public Vmin As Double = VL / 2 'minimum speed for slip
maneuvers, m/s
 Public dt As Double = 0.00001 'computation-time interval, s
 Public t As Double 'running time, s
 Public Tm, Dm As Double 'maneuver time, distance

 'Vehicle parameters
 Public m As Double = 700 'actual vehicle mass, kg
 Public aRoad As Double = 0.005 'road resistance per unit weight
 Public bRoad As Double = 0.0005 'road resistance per unit
weight/speed
 Public Rho As Double = 1.2 'air density, kg/m^3
 Public CdA As Double = 8 'effective frontal area, m^2
 Public cAir As Double = 0.5 * Rho * CdA 'air drag per unit speed^2

 'Controller parameters
 Public dtc As Double = 0.005 'time interval between control
updates, s
 Public dVe As Double = 0.0001 'for brake control
 Public Tau As Double = 0.1 'thruster lag time, s
 Public mc As Double = 900 'vehicle mass used in control
system, kg
 Public Zeta As Double = 0.6 'dimensionless damping constant
 Public Beta As Double = 0.65 'dimensionless constant between 0
and 1
 Public OmegaN As Double = Beta / (2 * Zeta * Tau) 'controller radial
frequency, rad/s
 Public Gp As Double = mc * OmegaN ^ 2 * (1 - Beta) 'position gain
 Public Gv As Double = mc * OmegaN * (0.5 * Beta / Zeta + 2 * Zeta * (1 -
Beta)) 'speed gain
 Public Dw As Double = 13.25 / 12 * 0.3048 'encoder wheel diameter, m
 Public PulsesPerRev As Integer = 4096 'pulses per revolution of the
wheel
 Public dXenc As Double = Math.PI * Dw / PulsesPerRev 'encoder step, m
 Public Bm As Double = 0.2 * m * g 'initial braking rate, N
 Public V0 As Double 'speed at t = 0
 Public A0 As Double 'acceleration at t = 0

 Public t1, t2, t3, t4, t5, t6, t7, t8 As Double
 Public A1, A2, A3, A4, A5, A6, dV0 As Double
 Public Jerk01, Jerk12, Jerk23, Jerk34 As Double
 Public V1, V2, V3, V4, V5, V6, V7 As Double
 Public x1, x2, x3, x4, X5, X6, X7, X8 As Double
 Public Ac, Vc, Xc As Double 'command acceleration, speed, distance

 Public Vfinal, Dstop, Slip As Double 'input parameter for maneuver 2,3,4

108

 Public ManeuverNo As Integer
 Public Ne As Long = 0 'encoder counter
 Public Xjump As Double = 0 'Occures at line-to-line branch point
in Maneuver 0

 'Screen parameters
 Public Y0 As Single = 720
 Public T0 As Single = 300
 Public tScale As Single = 80
 Public aScale As Single = 400
 Public vScale As Single = 30
 Public xScale As Single = 5
 Public Thscale As Single = 0.5
 Public pScale As Single = 20

 Dim objGraphics As System.Drawing.Graphics
 Dim objFont As Font

 Sub Control()
 Dim tStart, tCount As Double 'time
parameters
 Dim Thrust, Tc, dThdtOld, dThdt As Double 'thrust
parameters
 Dim dVdt, dVdtOld, Jerk As Double
'acceleration and jerk parameters
 Dim V, Ve, Vold, dV, VeOld As Double 'speed
parameters
 Dim Xstart, X, Xe, XeOld, dX As Double
'distance parameters
 Dim Xend As Double = 0
 Dim xGraph, yGraph As Single

 Select Case ManeuverNo
 Case 0
 Tm = 5
 Ac = 0
 Vc = V0
 Case 1
 setManeuver1() 'Stops vehicle in distance Dstop, meters.
 Case 2
 setManeuver2() 'Changes vehicle speed to Vfinal, m/s
 Case 3
 setManeuver3() 'Causes vehicle to slip Slip meters.
 End Select

 'Set values at starting point, t = tStart
 tStart = -2.5 'allow time for system to
settle
 t = tStart 'running time
 tCount = tStart 'tcount increases in
increments of dtc
 V = V0 + A0 * tStart 'actual speed
 Ve = V0
 dVdt = A0 'actual acceleration
 dVdtOld = A0
 Thrust = A0 * m + Drag(V) 'actual thrust
 dThdtOld = 0 'change in thrust

109

 Xstart = tStart * (V0 + 0.5 * A0 * tStart) 'distance, so X = 0 when
t = 0
 X = Xstart 'actual distance at start
 XeOld = Xstart - V0 * dtc 'previous measured
distance
 Jerk = 0

 objFont = New System.Drawing.Font("Arial", 40)

 objGraphics = Me.CreateGraphics
 objGraphics.DrawLine(Pens.White, T0, Y0, T0, 0)
 objGraphics.DrawLine(Pens.White, T0, Y0, 1500, Y0)
 objGraphics.DrawLine(Pens.Red, T0, Y0 - vScale * VL, 1500, Y0 -
vScale * VL)
 For i As Integer = 1 To 30
 objGraphics.DrawLine(Pens.White, T0 + tScale * i, Y0, T0 + tScale
* i, Y0 - 10)
 Next
 objGraphics.DrawString(" Command Acceleration ", Me.Font,
System.Drawing.Brushes.White, 500, 30)
 objGraphics.DrawString(" Command Speed ", Me.Font,
System.Drawing.Brushes.Pink, 500, 50)
 objGraphics.DrawString(" Command Distance ", Me.Font,
System.Drawing.Brushes.Fuchsia, 500, 70)
 objGraphics.DrawString(" Acceleration ", Me.Font,
System.Drawing.Brushes.Yellow, 500, 90)
 objGraphics.DrawString(" Speed ", Me.Font,
System.Drawing.Brushes.Red, 500, 110)
 objGraphics.DrawString(" Distance ", Me.Font,
System.Drawing.Brushes.Turquoise, 500, 130)
 objGraphics.DrawString(" Thrust ", Me.Font,
System.Drawing.Brushes.Gray, 500, 150)
 objGraphics.DrawString(" Acceleration Power ", Me.Font,
System.Drawing.Brushes.GreenYellow, 500, 170)
 objGraphics.DrawString(" Jerk ", Me.Font,
System.Drawing.Brushes.Goldenrod, 500, 190)

 Do
 xGraph = T0 + tScale * t
 yGraph = Y0 - aScale * Ac
 objGraphics.FillEllipse(Brushes.White, xGraph, yGraph, 2, 2)
 yGraph = Y0 - vScale * Vc
 objGraphics.FillEllipse(Brushes.Pink, xGraph, yGraph, 2, 2)
 yGraph = Y0 - xScale * Xc
 objGraphics.FillEllipse(Brushes.Fuchsia, xGraph, yGraph, 2, 2)
 yGraph = Y0 - aScale * dVdt
 objGraphics.FillEllipse(Brushes.Yellow, xGraph, yGraph, 2, 2)
 yGraph = Y0 - vScale * V
 objGraphics.FillEllipse(Brushes.Red, xGraph, yGraph, 2, 2)
 yGraph = Y0 - xScale * X
 objGraphics.FillEllipse(Brushes.Turquoise, xGraph, yGraph, 2, 2)
 yGraph = Y0 - Thscale * (Thrust - 500)
 objGraphics.FillEllipse(Brushes.Gray, xGraph, yGraph, 2, 2)
 yGraph = Y0 - pScale * dVdt * V 'acceleration power
 objGraphics.FillEllipse(Brushes.GreenYellow, xGraph, yGraph, 2,
2)
 yGraph = Y0 - 0.01 * aScale * Jerk

110

 'objGraphics.FillEllipse(Brushes.Goldenrod, xGraph, yGraph, 2, 2)

 'Simulate digital encoder
 Xe = Encoder(X, Xstart) 'measured position

 'Enter the on-board computer
 If t >= tCount Then
 tCount = tCount + dtc
 If t < 0 Then
 Ac = A0
 Vc = V0 + A0 * t
 Xc = t * (V0 + A0 * t / 2)
 End If
 Select Case ManeuverNo
 Case 0
 If t >= 0 Then
 Xjump = -500
 Xc = Xjump + V0 * t
 If t < dtc Then
 Xstart = Xstart + Xjump
 Xe = Xe + Xjump
 XeOld = XeOld + Xjump
 X = X + Xjump
 End If
 End If
 Case 1
 If t > 0 Then
 runManeuver1() 'output Ac, Vc, Xc
 End If
 Case 2
 If t > 0 Then
 runManeuver2() 'output Ac, Vc, Xc
 End If
 Case 3
 If t > 0 Then
 runManeuver3() 'output Ac, Vc, Xc
 End If
 End Select

 Ve = (Xe - XeOld) / dtc 'differentiate to measure speed
 VeOld = Ve
 XeOld = Xe

 dX = Xc - Xe 'command position - measured position
 dV = Vc - Ve 'command speed - measured speed
 Tc = Gp * dX + Gv * dV 'command thrust

 If Vfinal < 0.01 And Ve < dVe Then Tc = 0
 End If

 'Simulate thruster as first-order lag
 dThdt = (Tc - Thrust) / Tau 'time rate of change of
thrust
 Thrust = Thrust + 0.5 * dt * (3 * dThdt - dThdtOld) 'actual
thrust
 dThdtOld = dThdt
 'If ManeuverNo = 1 And (t >= Tm Or V < 0) Then Thrust = 0

111

 'Simulate vehicle dynamics
 dVdt = (Thrust - Drag(V)) / m 'acceleration
 Jerk = (dVdt - dVdtOld) / dt
 If Vfinal < 0.01 And Ve < dVe Then
 dVdt = dVdt - Brake(V) / m
 End If

 Vold = V
 V = V + 0.5 * dt * (3 * dVdt - dVdtOld) 'speed
 dVdtOld = dVdt
 X = X + 0.5 * dt * (V + Vold) 'position

 If t >= Tm And Xend = 0 Then
 Xend = X
 End If

 t = t + dt
 Application.DoEvents()
 Loop Until t > 1.1 * Tm

 objGraphics.DrawString(" The Maneuver Time is " &
FormatNumber(CSng(Tm), 2) & " sec", Me.Font, _
 System.Drawing.Brushes.White, 900, 200)
 If ManeuverNo = 1 Then 'Stop in given distance Dstop
 objGraphics.DrawString(" The commanded Maneuver Distance is " &
FormatNumber(CSng(Dstop), 2) & " meters", Me.Font, _
 System.Drawing.Brushes.White, 900, 220)
 objGraphics.DrawString(" The actual distance at maneuver end is "
& FormatNumber(CSng(Xend), 2) & " meters", Me.Font, _
 System.Drawing.Brushes.White, 900, 240)
 ElseIf ManeuverNo = 2 Then 'Change speed to Vfinal
 objGraphics.DrawString(" The commanded Final Speed is " &
FormatNumber(CSng(Vfinal), 2) & " m/s", Me.Font, _
 System.Drawing.Brushes.White, 900, 220)
 objGraphics.DrawString(" The actual Final Speed is " &
FormatNumber(CSng(V), 2) & " m/s", Me.Font, _
 System.Drawing.Brushes.White, 900, 240)
 ElseIf ManeuverNo = 3 Then
 objGraphics.DrawString(" The commanded Slip Distance is " &
FormatNumber(CSng(Slip), 2) & " meters", Me.Font, _
 System.Drawing.Brushes.White, 900, 220)
 objGraphics.DrawString(" The actual slip Distance is " &
FormatNumber(CSng(VL * Tm - Dm), 2) & " meters", Me.Font, _
 System.Drawing.Brushes.White, 900, 240)
 End If

 objGraphics.Dispose()
 objFont.Dispose()
 End Sub

 Function Brake(ByVal V As Double) As Double
 Dim dBm As Double
 dBm = 0.002 * m * g
 If ManeuverNo = 1 Then
 If t >= Tm Or V < 0 Then
 Bm = Bm - dBm

112

 If Bm < 0 Then Bm = 0
 If V > 0 Then
 Brake = Bm
 ElseIf V < 0 Then
 Brake = -Bm
 Else
 Brake = 0
 End If
 Else
 Brake = 0
 End If
 Else
 Brake = 0
 End If
 End Function

 Function Drag(ByVal V As Double) As Double
 Dim D As Double
 D = Math.Sign(V) * cAir * V ^ 2 + m * g * (bRoad * V + Math.Sign(V) *
aRoad)
 If ManeuverNo = 1 And V < 0.1 Then D = 0
 Drag = D
 End Function

 Function Encoder(ByVal X As Double, ByVal Xstart As Double) As Double
'STATIC
 If X >= Xstart + (Ne + 0.5) * dXenc Then Ne = Ne + 1
 Encoder = Ne * dXenc + Xstart
 End Function

 Sub runManeuver1()
 Dim Jerk As Double
 If t < t2 Then
 Jerk = -Math.Sign(dV0) * Jcomfort
 State(t, Jerk, A0, V0, 0) 'Ac = command acceleration
 ElseIf t < t3 Then 'Vc = command speed
 Jerk = 0 'Xc = command distance travelled
 State(t - t2, Jerk, A2, V2, x2)
 ElseIf t < t4 Then
 Jerk = Math.Sign(dV0) * Jcomfort
 State(t - t3, Jerk, A2, V3, x3)
 ElseIf t < t5 Then
 Jerk = 0
 State(t - t4, Jerk, 0, V4, x4)
 ElseIf t < t6 Then
 Jerk = -Jcomfort
 State(t - t5, Jerk, 0, V4, X5)
 ElseIf t < t7 Then
 Jerk = 0
 State(t - t6, Jerk, A6, V6, X6)
 ElseIf t < t8 Then
 Jerk = Jcomfort
 State(t - t7, Jerk, A6, V7, X7)
 ElseIf t >= t8 Then
 Jerk = 0
 State(t - t8, Jerk, 0, 0, X8)
 End If

113

 End Sub

 Sub runManeuver2()
 Dim AcOld As Double
 AcOld = Ac
 If t < t1 Then
 State(t, Jerk01, A0, V0, 0) 'Ac is command acceleration
 ElseIf t < t2 Then 'Vc is command speed
 State(t - t1, Jerk12, A1, V1, x1)
 ElseIf t < t3 Then
 State(t - t2, Jerk23, A2, V2, x2)
 ElseIf t < t4 Then
 State(t - t3, Jerk34, A3, V3, x3)
 Else
 State(t - t4, 0, 0, Vfinal, x4)
 End If
 End Sub

 Sub runManeuver3()
 Dim Jerk, A1a, V1a As Double
 If t < t1 Then
 Jerk = -Jcomfort
 State(t, Jerk, A0, V0, 0)
 ElseIf t < t2 Then
 Jerk = -Jcomfort
 If A0 >= 0 Then
 A1a = A1
 V1a = V1
 Else
 A1a = A0
 V1a = V0
 End If
 State(t - t1, Jerk, A1a, V1a, x1)
 ElseIf t < t3 Then 'Vc is command speed
 Jerk = 0 'Xc is command distance
 State(t - t2, Jerk, A2, V2, x2)
 ElseIf t < t4 Then
 Jerk = Jcomfort
 State(t - t3, Jerk, A2, V3, x3)
 ElseIf t < t5 Then
 Jerk = 0
 State(t - t4, Jerk, A4, V4, x4)
 ElseIf t < t6 Then
 Jerk = Jcomfort
 State(t - t5, Jerk, A5, V5, X5)
 ElseIf t < t7 Then
 Jerk = 0
 State(t - t6, Jerk, A6, V6, X6)
 ElseIf t < t8 Then
 Jerk = -Jcomfort
 State(t - t7, Jerk, A6, V7, X7)
 Else
 Jerk = 0
 State(t - t8, Jerk, 0, VL, X8)
 End If
 End Sub

114

 'This maneuver stops a vehicle in a given distance
 Sub setManeuver1()
 Dim Tmin, Dmin As Double
 Dim dt01, dt12, dt23, dt34, dt45, dt56, dt67, dt78 As Double
 Dim dx01, dx12, dx23, dx34, dx45, dx56, dx67, dx78, dx14, dx58 As
Double
 Dim Dbnd, b, dV, Dold, V5 As Double

 Vfinal = 0
 If Math.Abs(A0) > Acomfort Then A0 = Math.Sign(A0) * Acomfort 'can't
exceed Acomfort
 'Condition of negative V not operational on deceleration to stop
 If A0 < 0 And V0 < A0 ^ 2 / Jcomfort Then V0 = A0 ^ 2 / Jcomfort
 dV0 = V0 + A0 ^ 2 / 2 / Jcomfort - Vs 'indicator

 'Calculate minimum stopping time and distance
 V1 = V0 + A0 ^ 2 / 2 / Jcomfort
 If V1 >= A0 ^ 2 / Jcomfort Then
 Tmin = V1 / Acomfort + Acomfort / Jcomfort
 ElseIf V1 >= 0 Then
 Tmin = 2 * Math.Sqrt(V1 / Jcomfort)
 Else
 Tmin = 0
 End If
 Dmin = 0.5 * V1 * Tmin + (A0 / Jcomfort) * (V0 + A0 ^ 2 / 3 /
Jcomfort)

 dt01 = Math.Sign(dV0) * A0 / Jcomfort
 V1 = V0 + Math.Sign(dV0) * A0 ^ 2 / 2 / Jcomfort
 dx01 = (A0 / Jcomfort) * (Math.Sign(dV0) * V0 + A0 ^ 2 / 3 /
Jcomfort)

 If Dstop < Dmin Then
 objGraphics.DrawString(" The Minimum Maneuver Distance is " &
FormatNumber(Dmin, 2) & " meters", Me.Font, _
 System.Drawing.Brushes.White, 900, 220)
 End If

 V4 = Vs 'if V0 < Vs V4 may later be reduced below Vs

 If Math.Abs(V4 - V1) >= Acomfort * tJ Then
 A2 = -Math.Sign(dV0) * Acomfort
 ElseIf Math.Abs(V4 - V1) > 0 Then
 A2 = -Math.Sign(dV0) * Math.Sqrt(Jcomfort * Math.Abs(V4 - V1))
 Else
 A2 = 0
 End If

 If V4 >= Acomfort * tJ Then
 A6 = -Acomfort
 ElseIf V4 > 0 Then
 A6 = -Math.Sqrt(Jcomfort * V4) 'V4 > 0 if there is any
maneuver at all
 Else
 A6 = 0
 End If

115

 'Calculate boundry stopping distance if dx45 = 0 and V4 = Vs
 If A2 <> 0 Then
 dx14 = 0.5 * (V4 + V1) * ((V4 - V1) / A2 - Math.Sign(dV0) * A2 /
Jcomfort)
 Else
 dx14 = 0
 End If
 If A6 <> 0 Then dx58 = -0.5 * V4 * (V4 / A6 + A6 / Jcomfort) Else
dx58 = 0
 Dbnd = dx14 + dx58 + dx01

 A4 = 0 'true always
 A5 = A4 'true always
 If Dstop >= Dbnd Then
 dx45 = Dstop - Dbnd
 Else
 dx45 = 0
 If dV0 > 0 And Dstop < Dbnd Then 'in these cases don't slow down
near Vs
 b = (Jcomfort / V1) * (Dstop - (A0 / Jcomfort) * (V0 + A0 ^ 2
/ 3 / Jcomfort))
 A2 = -b + Math.Sqrt(b ^ 2 - V1 * Jcomfort) 'reduced
deceleration
 Else
 dV = 0.005 'increment in which V4 is reduced if need be
 Do
 Dold = Dbnd 'used in Newtonian intepolation after do-loop
 'distance from point 1 to 4:
 If A2 <> 0 Then
 dx14 = 0.5 * (V4 + V1) * ((V4 - V1) / A2 -
Math.Sign(dV0) * A2 / Jcomfort)
 Else
 dx14 = 0
 End If
 'distance from point 5 to 8:
 If A6 <> 0 Then
 dx58 = -0.5 * V4 * (V4 / A6 + A6 / Jcomfort)
 Else
 dx58 = 0
 End If
 'boundry distance above which dx45 > 0
 Dbnd = dx14 + dx58 + dx01

 If Dbnd < Dstop Then 'if true do-loop is finished
 Exit Do
 Else
 V4 = V4 - dV 'step V4 down until Dbnd = Dstop
 If V4 < dV Then 'this condition should never occur
 V4 = dV
 Exit Do
 End If
 End If

 If Math.Abs(V4 - V1) >= Acomfort * tJ Then 'recalculate
A2 with lower V4
 A2 = -Math.Sign(dV0) * Acomfort

116

 ElseIf Math.Abs(V4 - V1) > 0 Then
 A2 = -Math.Sign(dV0) * Math.Sqrt(Jcomfort *
Math.Abs(V4 - V1))
 Else
 A2 = 0
 End If

 If V4 > Acomfort * tJ Then
 A6 = -Acomfort
 ElseIf V4 > 0 Then
 A6 = -Math.Sqrt(Jcomfort * V4)
 Else
 A6 = 0
 End If
 Loop

 V4 = V4 + dV * (Dstop - Dbnd) / (Dold - Dbnd) 'Newtonian
interpolation
 If V4 < dV Then V4 = dV

 If Math.Abs(V4 - V1) >= Acomfort * tJ Then 'recalculation of
A2 with final V4
 A2 = Math.Sign(Vs - V0) * Acomfort
 ElseIf Math.Abs(V4 - V1) > 0 Then
 A2 = Math.Sign(Vs - V0) * Math.Sqrt(Jcomfort *
Math.Abs(V4 - V1))
 Else
 A2 = 0
 End If

 If V4 > Acomfort * tJ Then
 A6 = -Acomfort
 ElseIf V4 > 0 Then
 A6 = -Math.Sqrt(Jcomfort * V4)
 Else
 A6 = 0
 End If
 End If
 End If

 dt12 = Math.Abs(A2) / Jcomfort
 V2 = V1 + dt12 * A2 / 2
 dx12 = dt12 * (V1 + dt12 * A2 / 6)

 If dV0 >= 0 And Dstop < Dbnd Then 'special case of no slowdown at
Vs
 dt34 = -A2 / Jcomfort
 V3 = -dt34 * A2 / 2
 dx34 = dt34 * (V3 + dt34 * A2 / 3)
 If A2 <> 0 Then dt23 = (V3 - V2) / A2 Else dt23 = 0
 dx23 = dt23 * (V2 + dt23 * A2 / 2)

 dt45 = 0
 dx45 = 0
 dt56 = 0
 dx56 = 0
 dt67 = 0

117

 dx67 = 0
 dt78 = 0
 dx78 = 0
 Else 'all other cases
 dt34 = -Math.Sign(dV0) * A2 / Jcomfort
 V3 = V4 - dt34 * A2 / 2
 dx34 = dt34 * (V3 + dt34 * A2 / 3)

 If A2 <> 0 Then dt23 = (V3 - V2) / A2 Else dt23 = 0
 dx23 = dt23 * (V2 + dt23 * A2 / 2)

 dt45 = dx45 / Vs
 V5 = V4

 dt56 = -A6 / Jcomfort
 V6 = V5 + dt56 * A6 / 2
 dx56 = dt56 * (V5 + dt56 * A6 / 6)

 dt78 = -A6 / Jcomfort
 V7 = -dt78 * A6 / 2
 dx78 = dt78 * (V7 + dt78 * A6 / 3)

 If A6 <> 0 Then dt67 = (V7 - V6) / A6 Else dt67 = 0
 dx67 = dt67 * (V6 + dt67 * A6 / 2)
 End If

 t1 = dt01 'record all times where jerk change
 t2 = t1 + dt12
 t3 = t2 + dt23
 t4 = t3 + dt34
 t5 = t4 + dt45
 t6 = t5 + dt56
 t7 = t6 + dt67
 t8 = t7 + dt78
 Tm = t8 'maneuver time

 x1 = dx01 'record all distances where jerk changes
 x2 = x1 + dx12
 x3 = x2 + dx23
 x4 = x3 + dx34
 X5 = x4 + dx45
 X6 = X5 + dx56
 X7 = X6 + dx67
 X8 = X7 + dx78
 Dm = X8 'maneuver distance
 End Sub

 'This maneuver changes speed to speed Vfinal
 Sub setManeuver2()
 'This maneuver changes speed to Vfinal
 Dim Alpha, Beta, dVc, dVo As Double
 Dim Jc, Jn As Double
 Dim Vb, Va As Double
 Dim dt01, dt12, dt23, dt34, dx01, dx12, dx23, dx34, Dm As Double
 Dim Flag1, Flag2 As Integer

 Alpha = 0.5

118

 Beta = 0.5
 dVc = Acomfort ^ 2 / 2 / Jcomfort
 dVo = A0 ^ 2 / 2 / Jcomfort

 Jc = Jcomfort
 Vb = CSng(Beta ^ 2) * dVc
 Va = Alpha * VL 'boundary speed, above which A < Acomfort

 Jn = CSng((1 - Beta ^ 2) * Acomfort ^ 2 / 2 / (VL - Va - Beta ^ 2 *
dVc))

 'Treat small changes in speed separately:
 Flag1 = 0
 If Math.Abs(Vfinal - V0) + dVo <= 2 * dVc Then
 If V0 + Math.Sign(A0) * dVo >= Vfinal Then
 Jerk01 = -Jc
 Jerk34 = Jc
 A1 = -CSng(Math.Sqrt(Jc * (V0 + dVo - Vfinal)))
 V1 = (V0 + dVo + Vfinal) / 2
 Flag1 = 1
 Else
 Jerk01 = Jc
 Jerk34 = -Jc
 A1 = CSng(Math.Sqrt(Jc * (Vfinal - V0 + dVo)))
 V1 = (Vfinal + V0 - dVo) / 2
 Flag1 = 2
 End If
 A2 = A1
 A3 = A1
 V2 = V1
 V3 = V1
 End If

 Flag2 = 0
 If Flag1 = 0 Then
 If Vfinal > Va Then
 If V0 + Math.Sign(A0) * dVo > Vfinal Then
 Jerk01 = -Jc
 Jerk12 = 0 'dt12 = 0
 Jerk23 = -Jn
 Jerk34 = Jc
 V1 = (V0 + dVo - dVc - Va * Jn / Jc) / (1 - Jn / Jc)
 A1 = -CSng(Math.Sqrt(Acomfort ^ 2 - 2 * Jn * (V1 - Va)))
 A2 = A1
 V2 = V1
 V3 = (Vfinal + dVc + Va * Jn / Jc) / (1 + Jn / Jc)
 A3 = -CSng(Math.Sqrt(Acomfort ^ 2 - 2 * Jn * (V3 - Va)))
 If A0 < 0 And V1 > V0 Then
 A1 = A0
 V1 = V0
 A2 = A1
 V2 = V1
 Jerk23 = -CSng(A3 ^ 2 - A2 ^ 2) / 2 / (V2 - V3)
 End If
 Flag2 = 1
 Else 'V0 + Math.Sign(A0) * dVo <= Vfinal
 If V0 - dVo + dVc > Va Then

119

 Jerk01 = Jc
 Jerk12 = 0
 Jerk23 = -Jn
 Jerk34 = -Jc
 V1 = (V0 - dVo + dVc + Va * Jn / Jc) / (1 + Jn / Jc)
 A1 = CSng(Math.Sqrt(Acomfort ^ 2 - 2 * Jn * (V1 -
Va)))
 A2 = A1
 V2 = V1
 V3 = (Vfinal - dVc - Va * Jn / Jc) / (1 - Jn / Jc)
 A3 = CSng(Math.Sqrt(Acomfort ^ 2 - 2 * Jn * (V3 -
Va)))
 If A1 < A0 Then
 A1 = A0
 V1 = V0
 A2 = A1
 V2 = V1
 Jerk23 = -CSng(A2 ^ 2 - A3 ^ 2) / 2 / (V3 - V2)
 End If
 Flag2 = 2
 Else 'V0 - dVo + dVc <= Va
 Jerk01 = Jc
 Jerk12 = 0
 Jerk23 = -Jn
 Jerk34 = -Jc
 A1 = Acomfort
 A2 = Acomfort
 V1 = V0 - dVo + dVc
 V2 = Va
 V3 = (Vfinal - dVc - Va * Jn / Jc) / (1 - Jn / Jc)
 A3 = CSng(Math.Sqrt(Acomfort ^ 2 - 2 * Jn * (V3 -
Va)))
 If V3 < Va Then
 A3 = Acomfort
 V3 = Vfinal - CSng(A3 ^ 2) / 2 / Jc
 V2 = V3
 End If
 If V1 > V2 Then
 V2 = V1
 Jerk23 = -CSng(A2 ^ 2 - A3 ^ 2) / 2 / (V3 - V2)
 End If
 Flag2 = 3
 End If
 End If
 Else 'Vfinal <= Va)
 If V0 + Math.Sign(A0) * dVo > Vfinal Then
 If V0 + dVo - dVc > Va Then
 Jerk01 = -Jc
 Jerk12 = -Jn 'dt12 = 0
 Jerk23 = 0
 Jerk34 = Jc
 V1 = (V0 + dVo - dVc - Va * Jn / Jc) / (1 - Jn / Jc)
 A1 = -CSng(Math.Sqrt(Acomfort ^ 2 - 2 * Jn * (V1 -
Va)))
 A2 = -Acomfort
 A3 = -Acomfort
 V2 = Va

120

 If A1 > A0 Then
 A1 = A0
 V1 = V0
 Jerk12 = -CSng(A2 ^ 2 - A1 ^ 2) / 2 / (V1 - V2)
 End If
 V3 = Vfinal + dVc
 If V3 > V2 Then
 V2 = V3
 Jerk12 = -CSng(Acomfort ^ 2 - A1 ^ 2) / 2 / (V1 -
V2)
 End If
 Flag2 = 4
 Else 'V0 + dVo - dVc<= Va
 Jerk01 = -Jc
 Jerk12 = 0 'dt12 = 0
 Jerk23 = 0
 Jerk34 = Jc
 A1 = -Acomfort
 A2 = -Acomfort
 A3 = -Acomfort
 V1 = V0 + dVo - dVc
 V2 = V1
 V3 = Vfinal + dVc
 Flag2 = 5
 End If
 Else 'V0 + Math.Sign(A0) * dVo < Vfinal
 Jerk01 = Jc
 Jerk12 = 0
 Jerk23 = 0
 Jerk34 = -Jc
 A1 = Acomfort
 A2 = Acomfort
 A3 = Acomfort
 V1 = V0 - dVo + dVc
 V2 = V1
 V3 = Vfinal - dVc
 Flag2 = 6
 End If
 End If
 End If

 dt01 = (A1 - A0) / Jerk01
 If Math.Abs(Jerk12) > 0 Then
 dt12 = (A2 - A1) / Jerk12
 Else
 If Math.Abs(A2) > 0 Or Math.Abs(A1) > 0 Then
 dt12 = 2 * (V2 - V1) / (A2 + A1)
 Else
 dt12 = 0
 End If
 End If
 If Math.Abs(Jerk23) > 0 Then
 dt23 = (A3 - A2) / Jerk23
 Else
 If Math.Abs(A3) > 0 Or Math.Abs(A2) > 0 Then
 dt23 = 2 * (V3 - V2) / (A3 + A2)
 Else

121

 dt23 = 0
 End If
 End If
 dt34 = -A3 / Jerk34

 dx01 = dt01 * (V0 + dt01 * (2 * A0 + A1) / 6)
 dx12 = dt12 * (V1 + dt12 * (2 * A1 + A2) / 6)
 dx23 = dt23 * (V2 + dt23 * (2 * A2 + A3) / 6)
 dx34 = dt34 * (V3 + dt34 * A3 / 3)

 t1 = dt01
 t2 = t1 + dt12
 t3 = t2 + dt23
 t4 = t3 + dt34 'Maneuver time
 Tm = t4

 x1 = dx01
 x2 = x1 + dx12
 x3 = x2 + dx23
 x4 = x3 + dx34
 Dm = dx01 + dx12 + dx23 + dx34 'Maneuver distance
 End Sub

 'This maneuver causes vehicle to slip amount Slip before reaching VL
 Sub setManeuver3()
 Dim Smin, S01, DV, V1r As Double
 Dim dt01, dt12, dt23, dt34, dt45, dt56, dt67, dt78 As Double
 Dim dx01, dx12, dx23, dx34, dx45, dx56, dx67, dx78 As Double
 Dim Sbnd1, Sbnd2, Sbnd3, Sbnd4, b, c, slp, SlipError, Va, V4a As
Double
 Dim dV0, V4previous, Sprevious, V4p, Sp As Double
 Dim i, Flag As Integer

 'Calculate point 1 at which A1 = 0 for the purpose of calculating
boundaries
 dt01 = A0 / Jcomfort '< 0 if A0 < 0, which subtracts S01
 V1 = V0 + dt01 * A0 / 2
 dx01 = dt01 * (V0 + dt01 * A0 / 3)
 S01 = VL * dt01 - dx01 'slip during interval 0-1, > 0 if A0 > 0, < 0
if A0 < 0

 'Calculate V4 in all cases except between Sbnd3 and Sbnd4, where
calculate A1
 dx45 = 0 'cases when not zero will be calculated
 A1 = 0
 A5 = 0
 dV0 = A0 ^ 2 / Jcomfort
 If V0 = VL And A0 = 0 Then
 DV = VL - Vmin
 Sbnd1 = DV * (DV / Ar + Ar / Jcomfort) 'DV > dVr always
 Sbnd2 = 2 * dVr * Ar / Jcomfort
 Sbnd3 = 0
 If Slip >= Sbnd1 Then
 dx45 = (Slip - Sbnd1) * Vmin / (VL - Vmin)
 V4 = Vmin
 ElseIf Slip > 0 Then
 dx45 = 0

122

 If Slip >= Sbnd2 Then
 V4 = VL + 0.5F * dVr - Math.Sqrt(Ar * Slip + 0.25 * dVr ^
2)
 Else
 V4 = VL - (Jcomfort * Slip ^ 2 / 4) ^ (1 / 3)
 End If
 Else
 V4 = VL
 End If
 V5 = V4
 Else
 Sbnd1 = S01 + SlipV4(Vmin) 'boundary when V4=Vmin and
dx45=0
 If V1 - dVr > Vmin Then
 Sbnd2 = S01 + SlipV4(V1 - dVr) 'boundary when V4=V1-dVr
 Else
 Sbnd2 = Sbnd1
 End If

 If A0 >= 0 Then
 Sbnd3 = S01 + SlipV4(V1) 'boundary when V4 = V1
 Sbnd4 = SlipA1(A0, A6)
 Smin = Sbnd4
 Else
 Sbnd3 = S01 + SlipV4(V1 - dV0) 'boundary when V4 = V1
 Sbnd4 = Sbnd3
 Smin = Sbnd3
 End If
 If Slip < Smin Then Slip = Smin 'can't go lower than Smin

 'Calculate V4:
 If Slip >= Sbnd1 Then
 dx45 = (Slip - Sbnd1) * Vmin / (VL - Vmin)
 V4 = Vmin
 ElseIf Slip >= Sbnd2 Then 'increase V4 above Vmin
 b = VL + 0.5F * dVr
 c = (VL - 0.5 * V1) * (V1 + dVr) + 0.5 * VL * (VL + dVr)
 V4 = b - Math.Sqrt(b ^ 2 - c + Ar * (Slip - S01))
 ElseIf Slip >= Sbnd3 Then
 'Find V4 by iteration
 V1r = V1 - dVr
 If A0 >= 0 Then
 V4 = V1 - dVr * (Slip - Sbnd3) / (Sbnd2 - Sbnd3)
 slp = S01 + SlipV4(V4)
 i = 0
 Flag = 0
 Do
 V4previous = V4
 Sprevious = slp
 If slp >= Slip Then
 If Slip > Sbnd3 Then
 V4 = V1 + (V1 - V4) * (Slip - Sbnd3) / (slp -
Sbnd3)
 Else
 V4 = V1
 Exit Do
 End If

123

 Else
 V4 = V1r + (V4 - V1r) * (Sbnd2 - Slip) / (Sbnd2 -
slp)
 End If
 slp = S01 + SlipV4(V4)
 If Math.Sign(Slip - slp) + Math.Sign(Slip -
Sprevious) = 0 Then Exit Do
 i = i + 1
 If Math.Abs(slp - Slip) < 0.001 Then
 Flag = 1
 Exit Do
 End If
 Loop

 If Flag = 0 And Math.Sign(Slip - slp) + Math.Sign(Slip -
Sprevious) = 0 Then
 Do
 V4p = V4
 Sp = slp
 V4 = ((Slip - Sprevious) * V4 + (slp - Slip) *
V4previous) / (slp - Sprevious)
 slp = S01 + SlipV4(V4)
 V4previous = V4p
 Sprevious = Sp
 Loop Until Math.Abs(slp - Slip) < 0.001
 End If
 Else 'A0 < 0
 V4 = V1r + (dVr - dV0) * (Sbnd2 - Slip) / (Sbnd2 - Sbnd3)
 slp = S01 + SlipV4(V4)
 i = 0
 If Math.Abs(slp - Slip) > 0.001 Then
 Do
 If slp >= Slip Then
 V4 = V4 + (V1 - dV0 - V4) * (slp - Slip) /
(slp - Sbnd3)
 Else
 V4 = V1r + (V4 - V1 + dVr) * (Sbnd2 - Slip) /
(Sbnd2 - slp)
 End If
 slp = S01 + SlipV4(V4)
 i = i + 1
 Loop Until Math.Abs(slp - Slip) < 0.001
 End If
 End If
 ElseIf Slip >= Sbnd4 Then 'In these cases A0 > 0 and points
1,2,3,4,5 coincide
 'Calculate A1
 A1 = A0 * (Sbnd3 - Slip) / (Sbnd3 - Sbnd4) 'first guess for
A1
 slp = SlipA1(A1, A6)
 i = 0
 Do
 If slp >= Slip Then
 A1 = A0 - (A0 - A1) * (Slip - Sbnd4) / (slp - Sbnd4)
 Else
 A1 = A1 * (Sbnd3 - Slip) / (Sbnd3 - slp)
 End If

124

 slp = SlipA1(A1, A6)
 i = i + 1
 SlipError = Slip - slp
 Loop Until Math.Abs(SlipError) < 0.001
 End If
 End If

 'Having V4 we now can compute A2,V2,V3,A4,A5:
 If Slip >= Sbnd3 Then
 If V1 - V4 >= dVr Then
 A2 = -Ar
 ElseIf V1 - V4 > 0 Then
 A2 = -Math.Sqrt(Jcomfort * (V1 - V4))
 If A0 < 0 And Math.Abs(V1 - V4 - dV0) < 0.000001 Then
 A2 = A0
 End If
 Else
 A2 = 0
 End If

 If A0 >= 0 Then
 dt12 = -(A2 - A1) / Jcomfort
 V2 = V1 + dt12 * (A2 + A1) / 2
 dx12 = dt12 * (V1 + dt12 * (2 * A1 + A2) / 6)
 Else
 dt12 = -(A2 - A0) / Jcomfort
 V2 = V0 + dt12 * (A2 + A0) / 2
 dx12 = dt12 * (V0 + dt12 * (2 * A0 + A2) / 6)
 dt01 = 0
 dx01 = 0
 End If

 dt34 = -A2 / Jcomfort
 V3 = V4 - dt34 * A2 / 2
 dx34 = dt34 * (V3 + dt34 * A2 / 3)

 If A2 <> 0 Then
 dt23 = (V3 - V2) / A2
 Else
 dt23 = 0
 End If
 dx23 = dt23 * (V2 + dt23 * A2 / 2)

 A4 = 0
 A5 = 0
 V5 = V4
 ElseIf Slip >= Sbnd4 Then 'A0 > 0 in this case
 dt01 = -(A1 - A0) / Jcomfort 'here A1 <= A0, jerk is negative
 V1 = V0 + dt01 * (A0 + A1) / 2
 dx01 = dt01 * (V0 + dt01 * (2 * A0 + A1) / 6)

 'points 1, 2, 3, 4, 5 coincide

 Va = V0 + A0 ^ 2 / 2 / Jcomfort - A1 ^ 2 / Jcomfort

 dt12 = 0
 V2 = V1

125

 dx12 = 0

 dt34 = 0
 V3 = V1
 dx34 = 0

 dt23 = 0
 dx23 = 0

 A2 = A1
 A3 = A1
 A4 = A1
 A5 = A1
 V4 = V1
 V5 = V1
 End If

 If Slip >= Sbnd3 Then
 V4a = V4
 Else
 V4a = Va
 End If

 DV = VL - V4a
 If DV >= dVr Then
 A6 = Ar
 ElseIf DV > 0 Then
 A6 = Math.Sqrt(Jcomfort * DV)
 Else
 A6 = 0
 End If

 dt45 = dx45 / Vmin

 V5 = V4
 dt56 = (A6 - A5) / Jcomfort
 V6 = V5 + dt56 * (A5 + A6) / 2
 dx56 = dt56 * (V5 + dt56 * (2 * A5 + A6) / 6)

 dt78 = A6 / Jcomfort
 V7 = VL - dt78 * A6 / 2
 dx78 = dt78 * (V7 + dt78 * A6 / 3)

 If A6 > 0 Then
 dt67 = (V7 - V6) / A6
 Else
 dt67 = 0
 End If
 dx67 = dt67 * (V6 + dt67 * A6 / 2)

 'Now compute the times at the eight points
 t1 = dt01
 t2 = t1 + dt12
 t3 = t2 + dt23
 t4 = t3 + dt34
 t5 = t4 + dt45
 t6 = t5 + dt56

126

 t7 = t6 + dt67
 t8 = t7 + dt78 'Maneuver time
 Tm = t8

 'Now compute the travel distances at the eight points
 x1 = dx01
 x2 = x1 + dx12
 x3 = x2 + dx23
 x4 = x3 + dx34
 X5 = x4 + dx45
 X6 = X5 + dx56
 X7 = X6 + dx67
 X8 = X7 + dx78 'Maneuver distance
 Dm = X8
 End Sub

 Function SlipV4(ByVal V4a As Double) As Double
 'this routine calculats slip boundaries
 Dim dt14, dt58, DV As Double

 DV = V1 - V4a
 If DV >= dVr Then
 dt14 = DV / Ar + Ar / Jcomfort 'time from point 1 to point 4
 ElseIf DV > 0 Then
 dt14 = 2 * CSng(Math.Sqrt(DV / Jcomfort))
 Else
 dt14 = 0
 End If

 DV = VL - V4a
 If DV >= dVr Then
 dt58 = DV / Ar + Ar / Jcomfort 'time from point 5 to point 8
 ElseIf DV > 0 Then
 dt58 = 2 * CSng(Math.Sqrt(DV / Jcomfort))
 Else
 dt58 = 0
 End If

 SlipV4 = (VL - 0.5F * (V1 + V4a)) * dt14 + 0.5F * DV * dt58
 Return SlipV4
 End Function

 Function SlipA1(ByVal A1a As Double, ByRef A6r As Double) As Double
 'Calculates slip for maneuvers between Sbnd3 and Sbnd4
 'For these cases, points 1,2,3,4,5 coincide. In all other maneuvers
A1=0.
 Dim Va, dt0a, DV, dta8, Term As Double

 Va = V0 + A0 ^ 2 / 2 / Jcomfort - A1a ^ 2 / Jcomfort
 DV = VL - Va

 If DV >= dVr Then
 dta8 = DV / Ar + Ar / Jcomfort
 A6r = Ar
 Else
 dta8 = 2 * Math.Sqrt(DV / Jcomfort)
 A6r = Math.Sqrt(Jcomfort * DV)

127

 End If

 dt0a = (2 * A1a - A0) / Jcomfort
 Term = VL - V0 - (A0 ^ 2 - 2 * A0 * A1a - 2 * A1a ^ 2) / 3 / Jcomfort
 SlipA1 = 0.5 * DV * dta8 - dt0a * Term + A1a * (A1a / Jcomfort) ^ 2 /
3
 End Function

 Function SlipBoundary(ByVal V1 As Double, ByVal V4 As Double, ByVal S01
As Double) As Double
 Dim Ar, Vb, T14, T58, Term1, Term2 As Double

 Ar = 0.75 * Acomfort 'reduced maximum acceleration near line speed
 Vb = Ar ^ 2 / Jcomfort

 If V1 - V4 >= Vb Then
 T14 = (V1 - V4) / Ar + Ar / Jcomfort 'time from point 1 to
point 4
 ElseIf V1 - V4 > 0 Then
 T14 = 2 * Math.Sqrt((V1 - V4) / Jcomfort)
 Else
 T14 = 0
 End If
 If VL - V4 >= Vb Then
 T58 = (VL - V4) / Ar + Ar / Jcomfort 'time from point 5 to
point 8
 ElseIf VL - V4 > 0 Then
 T58 = 2 * Math.Sqrt((VL - V4) / Jcomfort)
 Else
 T58 = 0
 End If
 Term1 = 0.5 * (2 * VL - V1 - V4) * T14
 Term2 = 0.5 * (VL - V4) * T58
 SlipBoundary = S01 + Term1 + Term2
 End Function

 Sub State(ByVal Delt, ByVal J, ByVal Ao, ByVal Vo, ByVal Xo)
 Dim Delt2 As Double
 Delt2 = Delt * Delt / 2
 Ac = Ao + J * Delt
 Vc = Vo + Ao * Delt + J * Delt2
 Xc = Xo + Vo * Delt + Ao * Delt2 + J * Delt2 * Delt / 3
 End Sub

 Private Sub lblSpeed_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 V0 = CDbl(txtSpeed.Text)
 End Sub

 Private Sub lblAcceleration_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs)
 A0 = CDbl(txtAcceleration.Text)
 End Sub

 Private Sub lblManeuverNo_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 ManeuverNo = CInt(txtManeuver.Text)

128

 End Sub

 Private Sub lblCase_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 Select Case ManeuverNo
 Case 0
 Vfinal = V0
 Case 1
 Dstop = CDbl(txtCase.Text)
 Case 2
 Vfinal = CDbl(txtCase.Text)
 Case 3
 Slip = CDbl(txtCase.Text)
 End Select
 End Sub

 Private Sub btnRun_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnRun.Click
 Control()
 End Sub

 Private Sub btnQuit_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnQuit.Click
 Me.Close()
 End Sub

 Private Sub txtManeuver_TextChanged(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles txtManeuver.TextChanged

 End Sub

 Private Sub txtSpeed_TextChanged(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles txtSpeed.TextChanged

 End Sub

 Private Sub btnSpeed_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnSpeed.Click
 V0 = CDbl(txtSpeed.Text)
 End Sub

 Private Sub Acceleration_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnAcceleration.Click
 A0 = CDbl(txtAcceleration.Text)
 End Sub

 Private Sub Maneuver_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BtnMvrNo.Click
 ManeuverNo = CInt(txtManeuver.Text)
 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnManeuver.Click
 Select Case ManeuverNo
 Case 0
 Vfinal = V0
 Case 1

129

 Dstop = CDbl(txtCase.Text)
 Case 2
 Vfinal = CDbl(txtCase.Text)
 Case 3
 Slip = CDbl(txtCase.Text)
 End Select
 End Sub

 Private Sub txtCase_TextChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles txtCase.TextChanged

 End Sub

 Private Sub txtAcceleration_TextChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles txtAcceleration.TextChanged

 End Sub
End Class

The Event-Driven Simulation Summary

1. Define a computational time interval dt = say 0.1 sec.
2. The maneuvers.

a. Change speed
b. Slip
c. Stop in given distance
d. Emergency stop

3. Passenger movement.
a. Generation at random times with random loading times.

i. For each I (origin) and j (destination) generate random number 0 < R < 1.
ii. If Dijdt/3600 > R introduce a passenger.

iii. Passenger properties
1. Passenger ID
2. Destination j
3. Loading time = Mean + Variance * ln[R/(1-R)]
4. Set Mean, Variance, Min, Max times in advance.
5. Set Mean, Variance, Min, Max masses in advance.
6. With new R, Passenger mass = Mean + Variance * ln[R/(1-R)]
7. Status “Waiting”
8. Arrival time, now t
9. Wait time, now 0
10. Trip time, now 0
11. Increase number waiting by 1.

130

b. Loading on vehicles.
i. Create array for each station and each berth.

ii. Let a value be number of vehicle present or zero if none.
iii. Check each berth in each passenger station.
iv. If empty vehicle present and available, load passenger;
v. In vehicle array store

1. Passenger number
2. Passenger destination
3. Trip origin station
4. Vehicle gross mass
5. Loading time
6. Departure time
7. Passenger wait time
8. Passenger status now “Riding”
9. Time to go now is the loading time
10. . . .
11.

c. Disembarking.
i. Passenger status “Disembarked”

ii. Gather statistics on trip

4. Commands:
a. Station Zone

i. Switch at station switch point.
1. Determine of vehicle should switch in and if space is available.
2. If so switch and assign berth.

ii. Decelerate to a given berth.
1. Update berth assignment
2. Command deceleration to given berth

iii. Advance in station.
1. For vehicles at rest advance when possible.

iv. Command line speed.
1. Create for each station an array giving the number of the vehicles

bypassing the station in the order in which they entered station
zone.

2. For vehicle in or assigned to the first berth check vehicles
bypassing to determine if a space is available.

3. Check to see if the vehicle ahead is far enough ahead.
4. Command line speed and assign vehicle to position in bypass

array.

131

v. Reset on station exit.
1. Set parameters to new situation
2. Command vehicle to slip if it would violate headway requirement.

b. Merge Zone
i. Slip vehicles to space vehicles at minimum headway.

ii. When slipping a vehicle slip vehicles behind if necessary.
iii. To do this with minimum delay, take into account slip remaining for each

vehicle.
iv. Switch.
v. Reset to next link including assignment to a new station array.

c. Diverge Zone
i. Switch at command point

ii. Reset to next link including assignment to a new station array.
d. Change line speed at specific points.

i. If vehicle is to slow down, vehicles behind may have to slow down.
e. Reduce line speed due to high wind and later restore.
f. Call an empty vehicle.

i. Create an array for each station of vehicle commanded to storage.
ii. When there is an empty vehicle in the first birth and there is an occupied

vehicle in a waiting position, command that empty vehicle to the nearest
storage station and place in array i.

iii. Set a criterion for each station for when to call an empty vehicle.
g. Emergency stop.

5. Calculate each vehicle’s x-y coordinates for plotting.
6. Calculate power and energy.
7. Check for negative speeds.
8. Check for headway violations.
9. Up-date all times.
10. Terminate the run when all vehicles have stopped.

132

Simulation of an Intelligent Transportation Network System

Table of Contents
Chapter Page

I Overview of the Setup of a Network 2
1.1 Network setup 2
1.2 The Simulation Program 5
II Elements of the System to be Simulated 6
2.1 The Guideway 7
2.2 Switch Dynamics 8
2.3 Passengers 8
2.4 Power & Energy 10
III Locating and Moving Vehicles 11
3.1 The Required Number of Vehicles in a Network 11
3.2 Initial vehicle placement 12
3.3 Vehicle states 12
IV Classification of Network Properties 13
V Discussion of the Simulation Program 14
5.1 Introduction 14
5.2 Apex data 14
5.3 Station data 15
5.4 The Demand Matrix 16
5.5 Branch data 16
5.6 Compute azimuth 16
5.7 Compute direction change 16
5.8 Compute curve properties 17
5.9 Calculate straight section 17

5.10 Calculate start coordinates 17
5.11 Calculate station properties 17
5.12 Calculate guideway coordinates 17
5.13 Find jump points 18
5.14 Main-guideway arc length at the jump points 18
5.15 Find the apex at each branch point corresponding to the curve there 18
5.16 Calculate distances between branch points and branch command point 18
5.17 Calculate negative station distances to branch point ahead 19
5.18 Load vehicles 19
5.19 Distance To the next station 20
5.20 The number of the next upstream station. 20
VI Summary of the Setup Routines 21

Figure
1 Example test network 2

133

I. Overview of the Setup of a Network

The first step in a program intended to deploy ITNS is to simulate it as accurately as possible.
Only in this way can one determine where the lines should go, how big the stations should be, and
how many vehicles will be required.

1.1 Network Setup.

On a map of the network area, draw lines in the direction the guideway is to go. Figure 1 is an
example of a network big enough but not too big for practice for the first time the reader develops
a simulation.

Figure 1. Example test network.

The arrows indicate the direction of flow of vehicles, which could be as shown or the reverse. The
flow will be along the lines shown until a change in direction is approached. Then, given the
accepted ride comfort in terms of lateral acceleration and rate of change of lateral acceleration
(called jerk), there will be curves to make the transitions from one direction to the next. The
intersections of the tangents to the curves, called apexes, are the points of intersection of the
straight lines in the above figure.

The coordinates of the apexes are measured from the map on which the layout of guideways is
made and stored in a convenient set of orthogonal rectangular coordinates, say x, y, z, where
typically x could increase to the east, y to the north, and z upward. The location of each apex is
defined by these three coordinates. The origin of the coordinates is selected most conventionally
in the lower left-hand corner of the map. Number the apexes in any order, usually but not
necessarily starting at #0 in the lower left-hand corner and then increasing in the direction of flow,
which is not always possible because there will generally be branches such as the two diverging
branches shown in the above diagram. Where there are branches, select two apex numbers, one
for each guideway leaving or entering the branch. Note that in the above diagram the lower left
and upper right branch points are points where the traffic diverges in two directions. These are
called “diverge points,” whereas the branches in the upper left and the lower right are called
“merge points.” In addition to numbering the apexes, of which there are 12 in the above diagram,

134

number the merges and diverges, collectively called “branch points,” of which there are 4 in the
above diagram. It is convenient to number the diverges first. With this system of notation, the
network can be expanded in any direction to any extent.

For each apex number, tabulate the number of the next apex ahead, or if there are two apexes
ahead, tabulate both of these numbers one in each of two columns. Tabulate also the number of
the station ahead of each apex if there is one before the next branch point. Also tabulate the
desired speed through each curve at its apex and in the straight section that follows.

Define “link” as the piece of guideway between a pair of line-to-line branch points. In the above
diagram there are six links. Any new section of guideway can be added by adding one or more
links. For each branch point, tabulate the number of the next branch point ahead or in the case of
diverges the next two branch points ahead. Also, tabulate the number of the branch point behind,
or in the case of merges the two branch points behind. For each branch point, tabulate the number
of the first station on each link ahead and on each link behind. All of this information and more
will be needed to specify the exact location of any vehicle.

Next, the ten lines shown in the above diagram roughly parallel to the main guideway indicate the
location of off-line stations. At this point number them in any desired order and tabulate the
distance from the beginning of each off-line guideway upstream to the nearest apex. The longer
off-line guideways illustrated in Figure 1 could represent storage stations.

As mentioned, there must be a curve at each apex. The paper “Curved Guideways” derives the
equations for the curves. The differential equation for a curve is integrated to give position
coordinates to any accuracy desired. This reduces the subsequent curve calculations to algebraic
equations, which vastly simplifies the process of calculating a whole network. Each curve consists
of first a section of constant rate of change of lateral acceleration (jerk), then a section of constant
lateral acceleration, and finally a section of constant rate of change of acceleration of the opposite
sign back to zero lateral acceleration. In making these calculations, the distance from the starting
point of the curve to the apex, which is also the distance from the apex to the end point of the
curve, is calculated and stored for later use in finding the system coordinates of the starting point
of each curve. These equations are derived for a given speed and for comfort values of jerk and
acceleration in a set of local coordinates in which the local x-axis is in the direction of motion
starting at x = 0, y is transverse to the left for a person facing in the direction of motion and starts
at y = 0, and z is upward starting at z = 0. Each point of the curve is then transformed to a set of
system coordinates, i.e., x, y coordinates common to the whole system that form a plane parallel
to the earth’s surface. After the x, y coordinates in the horizontal projection of the curve are
calculated; the z-coordinate at each point is calculated using the same form of the curve equations.
Having understood how to calculate curves, we can calculate the guideway coordinates step by
step along the direction of the curve in steps of size ds, where s is the arc length along the curve.

135

The step size ds is taken small enough to give an accurate representation of the curve. Even a
decade or two ago one had to worry about exceeding the computer’s memory if the step size was
too small, but since memory has been doubling about every 18 months, or by about a factor of 100
per decade, memory is no longer a concern. Every point along the guideway is defined by a unique
value of s, which carries with it a set of x, y, z system coordinates. So the process starts at a point

0s = at the beginning of the first curve, say the one in the lower left-hand corner. Then the process
advances by calculating first a curve then the following straight segment. An entire network of
any configuration is made up of a series of these curve-straight segments, where the length of the
straight segment may be zero, and the curve may have zero length, meaning that there need not be
a change in direction. Apexes with zero change in direction are inserted at points where the speed
must change.

In the above example network, the calculation of the guideway coordinates could start in the lower
left-hand corner and proceed around the periphery all the way to the starting point, then jump to
the starting point of the left branch of the lower left hand diverge, continue up to the left-hand
branch of the upper left-hand merge point, then jump to the starting point of the upper right-hand
diverge, calculate its left branch and finish by calculating the left branch of the lower right-hand
merge. This is only one of several possible sequences in which the guideway could be calculated.
Any sequence is as good as any other.

Now assume that the entire mainline guideway has been calculated for a series of values of s spaced
a distance ds apart, where for each s the x, y, z system coordinates have been recorded. Next we
add the calculation of the off-line guideways for each station. We first have derived in advance
the equations needed to calculate each off-line guideway in local coordinates in which x is in the
direction of the mainline guideway at the start of the transition and 0x = at the start of the
transition. As before 0y = at the start of the transition and increases to the left perpendicular to
the x axis. Then, for each point along the transition into and out of the off-line station, we apply
the above-mentioned transformation equations to calculate the corresponding x, y, z system
coordinates.

For each station, we tabulate the number of the station ahead and behind on the same link, the
number of the branch point ahead and behind, the number of loading berths in each station, whether
the station off-line guideway is to the left or right of the main guideway, and the spacing between
the main and bypass guideway. We have calculated and stored the x, y, z system coordinates of
the entire guideway at each of a series of values of s spaced ds apart. Next we identify and store
the values of s at the merge and diverge points, which information is needed later to identify the
locations of the vehicles so that they can be plotted. The process for doing this is straightforward
for any engineer with the background needed to carry the process this far.
The next step is to calculate the switch table, i.e., a table of left or right switch commands that
enable a vehicle from any diverge point to reach any station in the shortest time. The means of

136

making these calculations is well known from Operations-Research theory. In the above diagram
the switch directions from each of the two diverge points are easily picked out, but in a very large
network the calculations become quite complex.

The next step in the set-up routines is to load the vehicles onto the network by placing them in
passenger and storage stations. Each vehicle carries with it quite a large number of parameters.
These include the distance to the branch point ahead, the vehicle’s system x, y, z coordinates, the
number of the station the vehicle is in or approaching, the number of the branch point ahead, the
number of the branch point behind, the position of the vehicle’s switch (left or right), the number
of the berth the vehicle is in or approaching, the vehicle’s speed and acceleration, the vehicle’s
mass, the number of the passenger group aboard if any, the vehicle’s destination, the passenger
group’s loading time taken from a normal distribution, the passenger’s mass also taken from a
normal distribution, the distance of the next command point ahead to the next branch point ahead,
etc. When one begins the process of designing a network simulation program, it is impossible to
know all the parameters that will be required. Start with what is obvious, run the program, find as
a result of errors missing parameters that must be added, and proceed in this way by trial and error
until the program works without error.

The final step in setting up the simulation is to specify the demand from every station to every
other station, called the Demand Matrix. We can start by assuming a reasonable demand matrix,
which from a series of runs will give us trip times between all station pairs. But for a real problem,
we must obtain as accurate an estimate of the peak demand as possible because it affects the
network layout, the location and number of stations required, the number of berths required in each
passenger station, the number of storage berths required, the headway needed, and the line ot civic
speed. The demand depends on the trip time between stations, which can only be accurately
determined by running the simulation, thus the process is iterative. The demand also depends on
factors such as walk time, wait time, and fare.

The code developed thus far is the “Setup” code. It calculates a set of values that must be stored
as constants and arrays that can be loaded into the operating simulation program.

1.2 The Simulation Program

We now know the system coordinates of a series of closely spaced points on the network including
the coordinates of closely spaced points that describe each off-line guideway. The points are
sufficiently closely spaced that we can calculate intermediate points by linear interpolation. We
also know the numbers of the branch points and stations ahead of and behind each branch point
and all other information required to establish the connectedness of the network. We have loaded
the specified number of vehicles into passenger and storage stations.

137

The time history of motion of the vehicles will advance in predetermined steps dt, called
“computational intervals,” so required changes will be calculated only at these time intervals. In
our simulation, the step size has usually been 0.5dt = sec. The simulation is “event driven,” i.e.,
changes will be calculated as a result of certain events such as arrival of a passenger, loading of a
passenger on a vehicle, permitting a passenger group to disembark, permission for a vehicle to
leave a station, motion of a vehicle to avoid conflict at a merge point, determining the switch
position of a vehicle that reaches a diverge command point, the decision to switch into or past a
station when a vehicle reaches a station switch command point, the decision to initiate deceleration
into a station to stop at a certain berth when a vehicle reaches a deceleration command point, the
decision to advance a vehicle in a station when the berth ahead becomes available, etc.

The first step in the simulation is to generate passengers. Details are given in the next section.
Then the passenger group is loaded usually but not always in the forward-most empty vehicle in
the origin station. (If there are more passengers arriving from other stations than from the street,
forward empty vehicles will need to be released, hence in such cases it is better to load passengers
several berths back from the front so that vehicles in the forward berths can be released more
quickly.) When the passenger group is loaded, a clock is started at the loading time and reduced
by dt every computational cycle. When the clock reaches zero the vehicle is ready to be
commanded to line speed. The station zone controller (SZC) keeps track of the position and speed
of each vehicle in and bypassing the station. For the given acceleration, speed and position of the
loaded vehicle, the SZC determines if there is a gap in the station-by-pass guideway of sufficient
length and of the correct position that would permit the vehicle to arrive at line speed sufficiently
far behind a vehicle ahead and sufficiently far ahead of a vehicle behind to meet the required
minimum headway. If this condition is met, the SZC determines if any vehicle ahead on the station
bypass guideway is sufficiently far ahead so as to not violate the headway criterion when it arrives
at line speed. If this condition is met the vehicle is commanded to line speed. The vehicle follows
a profile of speeds and distances calculated in its computer at each of the series of dt intervals until
it reaches line speed. The calculation of acceleration, speed, and distance for each vehicle is given
in the companion paper “Transitions.” The events encountered by a vehicle are discussed in the
paper “Asynchronous Point Follower.”

II. Elements of the System to be Simulated

A computer program that can simulate accurately the motion of vehicles in a network of guideways
consists of ten elements, six of which are simulations of system elements and four are code that
can operate a real system. The system elements are

• Guideway
• Switch dynamics
• Stations
• Vehicles
• Passengers

138

• Power and energy

The system software elements are in

• The Station Zone Controller (SZC)
• The Merge Zone Controller (MZC)
• The Diverge Zone Controller (DZC)
• The Empty-Vehicle Movement

2.1 The guideway

1. Guideway Coordinates. The distance from an arbitrarily selected zero point on the
guideway along the guideway is called the ARC LENGTH and is denoted by s. The
coordinates of the guideway are inputs to the simulation as functions of s, i.e., x(s), y(s),
z(s). These coordinates include the coordinates of the station bypass guideways.

2. Branch Points. The line-to-line BP, i.e., the merges and diverges, are numbered, and the
program is informed of the numbers of the BP ahead and behind each BP. A setup program
calculates and records the two values of s at each BP and specifies which s is continuous
through the BP. These values are used to calculate the distances between the BP.

3. Stations. The stations are numbered and the program is informed of the number of the BP

ahead and behind each station, the distance of the input diverge point into each station to
the BP ahead, the distance to the front edge of the station platform (the forward edge of the
first unloading and loading berth), to the output diverge point out of each station, and the
number of station berths and staging berths in each station.

4. The Shortest Path. A program must be written to calculate the shortest time between each

station pair. This serves two purposes: 1) to calculate for each diverge point the switch
table, i.e., the switch command (left or right) to each downstream station, and 2) to permit
each SZC to look upstream in the most efficient way for the nearest available empty
vehicle.

5. Minimum distance between branch points. The wayside element of the switch is a pair of

flared switch rails that receive the switch wheels. The length of the flare is determined from
a dynamic simulation of the motion of the vehicle through the merge or diverge in the
extreme cases of maximum side wind and maximum unbalanced passenger load. The
simulation determines the effect of flare length on ride comfort.11

11 A Dynamic Analysis of the Switch Rail Entry Flare.docx
 Lateral Dynamics of the ITNS Vehicle,docx

139

The minimum distance between branch points is determined by the distance traveled
during throw of the switch and verification that it has been thrown plus the distance
require to make an emergency stop before reaching the flared switch rails. This
minimum distance is computed from the formula

2

min 2
L

L swx flare tolerance
e

VD V t D D
a

= + + +

in which

LV = line speed

swxt = time to throw and verify throw of switch

ea = emergency deceleration rate, usually 0.4g

flareD = length of flared switch rail

toleranceD = tolerance added to reflect worst cases

2.2 Switch Dynamics

The Vehicle Controller (VC) commands a voltage pulse to a rotary solenoid that throws the switch
by overcoming switch arm inertia and bi-stability spring torque. The switch is modeled as time
delay of 0.5 sec. More detailed modeling of the switch is unnecessary for a system simulation. In
a real system, the VC commands the switch to throw and simultaneously commands initiation of
an emergency stop in half a second if the VC cannot verify from a proximity sensor that the switch
is thrown. The signal from the proximity sensor cancels the command to stop.

2.3 Passengers

The term ijD in the demand matrix represents the number of people per hour traveling from station

i to station .j If t∆ is the computation interval in seconds, the quantity / 3600ij gD t p∆ , where

gp is the average number of persons per group, represents the average number of small groups of
people traveling together by choice who wish to board vehicles in the time interval t∆ . If this
number were one, there would be an average of one group boarding during each t∆ . If this number
were one tenth, an average of one group every tenth TMI would board. Therefore, generate a
random number 0 1RND< < and introduce a passenger group into station i if

 / 3600 .ij gRND D t p< ∆ 12

The value of t∆ must be small enough so that the above quantity never exceeds one. This passenger
group is assigned three numbers ijk where i is the boarding-station number, j is the loading-berth
number, and k indicates the number of the passenger group. The group’s mass is picked from a

12 A simulation was developed to simulate this procedure for an hour, and was found to give close to Dij trips per hour

140

distribution and assigned to a memory location corresponding to the passenger group. The group’s
wait time at this point is set to zero. Group ijk is now ready to board a vehicle. Berth j is the
forward-most berth having the shortest queue of passengers waiting. The passenger-group waiting
time is recorded. When a vehicle enters berth j , stops, unloads, and is empty, it is ready for
boarding. When passenger group ijk has reached the first position in its queue, it is caused to
board by 1) placing its number, mass, wait time and destination in vehicle’s memory slots, 2)
setting the corresponding riding time to zero, and 3) removing its number from the queue of
waiting passengers. When the vehicle arrives at the destination, stops, and is ready for unloading,
the door is opened (simulated by door-opening time), and the passengers egress, indicated by 1)
removing the passenger’s data from the vehicle’s computer by setting the corresponding memory
positions to zero, and 2) assigning to one of the passenger’s memory locations the string
“Disembarked.” While waiting at the origin station, this memory location will state “Waiting”,
and while riding, it will say “Riding.” The trip’s wait time, ride time, trip length, and average
speed are recorded in the system data bank for later analysis.

The loading and unloading time depends on the door opening and closing time and varies
according to the agility of the passenger group. Thus we assume a Gaussian distribution of loading
and unloading times with a given mean meanT and variance .varT Thus the probability P that the

loading time is a time loadT is

2

var1
2

T Tload mean
T

eP
 −
−  
 =

which assumes that the probability that loadT is meanT is one half. Solving for loadT and letting R be
a random number between 0 and 1 we get

var

min min

max max

ln
1

if then
elseif then

load mean

load load

load load

load load door

RT T T
R

T T T T
T T T T

T T T

= +
−

< =
> =

= +

2.4. Power and Energy

Equations for instantaneous power use and motor efficiency permit the electrical input power to
the vehicle to be calculated and summed over the computational intervals to obtain energy use.
Summing power and energy use over all the vehicles gives the system power requirement for
vehicle operations. Air drag is calculated from the formula

() 2

1
2

coswind vehicle wind

D front

AirDrag AirDragCoeff V V

AirDragCoeff C A

ψ ψ

ρ

= + −  
=

in which

141

Vehicle speed
Assumed constant wind speed
Azimuthal direction of guideway at the vehicle
Assumed constant direction from which the wind is coming
Air density
Vehicle drag coeffi

wind

vehicle

wind

D

V
V

C

ψ
ψ
ρ

=
=
=
=
=
= cient

Vehicle frontal areafrontA =

Next the force on the vehicle is calculated from the equation

 ()Force m A g a bV G AirDrag= + + + +  

in which

 Vehicle gross mass
 Vehicle acceleration

g = Acceleration of gravity
 Vehicle dimensionless road resistance coefficient
 Vehicle road resistance coefficient in units sec/meter
 Local grade at ve

m
A

a
b
G

=
=

=
=
= hicle

Regenerative braking could capture a portion of the braking energy, i.e. the portion of the energy
when the force is negative. The energy saved by regenerative braking is less than the kinetic
energy the vehicle has at the moment it starts decelerating. Since there are no intermediate stops,
most of the energy required goes into overcoming air drag and road resistance, thus the energy
recoverable with regenerative braking is a small fraction of the total. It is calculated separately to
show how much energy could be saved if regenerative braking, which adds weight and cost, were
used.

Next we calculates the input electrical power and the potential regenerated power to each vehicle
in kilowatts from the equation

1 , 0.
1000

Re , 0.
1000regen

Force VInputPower Force

Force VgenPower Force

η

η

×
= >

×
= <

142

in which η = propulsion efficiency, assumed to be 0.55 until detailed calculations with the specific

motors can be made; and regenη is the regeneration efficiency, assumed to be 0.5 until detailed
calculations can improve on this number.
Finally, the electrical energy used in kW-hr by all vehicles in a run is accumulated by summing
the power multiplied by the computation interval dt over all vehicles and all computation intervals
during a run. In equation form

,

3600
ReRe .

3600

TimeIntervals Vehicles

TimeIntervals Vehicles

InputPower dtTotalElectricalEnergyUsed

genPower dtTotalPotential genPower

×
=

×
=

∑ ∑

∑ ∑

III. Locating and Moving Vehicles

3.1. The required number of vehicles in a network

The required number of vehicles in a PRT network is given by the formula13

 peak trip
op

v av

D l
N

p V
=

in which

 peakD is the peak-period demand in people per unit of time

 tripl is the average trip length

 vp is the average number of people per vehicle, counting empty vehicles

 avV is the average speed
3.2. Initial vehicle placement

To accomplish vehicle placement and proper identification, the station zone controller (SZC) has
within it the array staVehicleInBerth(i, j), which is the number of the vehicle in berth j of station
i, 0 if none. This assignment is needed so that the SZC will know where and which vehicles are
in its berths, to assign incoming vehicles to the forward-most free berth, and to move vehicles
forward in the station when possible.

The vehicle array Vehicle (i, j), which is stored in the computer in vehicle i, must be loaded with
the correct data for each property j. Among other properties, one of them is the number of the BP
ahead and the number of the BP behind vehicle i, if the BP ahead is a merge another property is
the leg (0 or 1) vehicle i is on, and another gives the distance vehicle i is behind the BP ahead.

13 “Calculation of Performance and Fleet Size in Transit Systems,” JAT, 16:3(1982)231-252, equation (50).

143

This information is necessary to determine the unique arc length (s) at the vehicle, and hence from
stored values of x(s), y(s), and z(s) the coordinates of the vehicle, which, in the simulation, can
then be plotted. In the real system the coordinates can be compared with GPS coordinates for
verification.

The domain of a zone controller is defined in terms of a range of values of arc length s. The ZC
may maintain in its memory the values of x(s), y(s), and z(s) for its range of values of s. The local
line speed is also maintained in memory.

3.3. Vehicle states

The vehicles can be in any one of three states: rest, constant speed, or maneuvering. If
maneuvering, the command values of acceleration (A), speed (V) and position (X) from the start
of the maneuver are calculated each time-multiplexing interval. In the system, position is a
negative number BPD that goes to zero when the vehicle reaches the branch ahead. The reason for
this measure of distance is to make the stored distance ahead of the merge the same for vehicles
on the two legs of a merge that are at the same distance from the merge junction. Thus, during
the maneuver

0BP BPD D X= +

where
0BPD is the negative distance at the start of the maneuver.

 If a vehicle is at rest, the acceleration and speed are set to zero, and the position is given in
terms of the distance BPD . If a vehicle is moving at constant speed V, distance is given by

 () ()BP BPD t D t t V t= −∆ + ∆

where t is time and t∆ is the time-multiplexing interval.

IV. Classification of Network Properties

To plot the position of a vehicle correctly, it is necessary to identify positively the arc length, s,
ahead of the vehicle. To do this, it is necessary to identify four types of situations that relate one
branch point to the branch point ahead. These types and the notation we use are the following:

brAheadTypeR(Brn) = “Right” if Brn is a merge point going to the right leg of a merge or to a
diverge, or if Brn is a diverge with the right leg going to the right leg of a merge or to a diverge,
as shown in the following diagram.

144

brAheadTypeR(Brn) = “Left” if Brn is a merge going to the left leg of a merge, or if Brn is a
diverge with the right leg going to the left leg of a merge, as shown in the following diagram.

brAheadTypeL(Brn) = “Right” if Brn is a diverge with the left leg going either to the right leg of
a merge or to a diverge, as shown in the following diagram.

brAheadTypeL(Brn) = “Left” if Brn is a diverge with the left leg going to the left leg of a merge,
as shown in the following diagram.

The above arrays permit positive identification of the value of arc length, s, ahead of the vehicle.
All of these quantities are calculated in the setup program.

V. Discussion of the Simulation Program

5.1. Introduction

There are two objectives to the PRT Network Simulation Program:

145

 1) to develop and prove the code needed to operate a real three-dimensioal PRT network
of any complexity, and

 2) to provide a planning tool needed to simulate and hence design accurately any PRT
system.

Both of these objectives are met with the program described here. The purpose of this section is
to describe with some repition the program that will take as inputs raw data on a specific network
and from it calculate and store in a set of files the information needed to run the simulation
program.

A specific application is laid out first in planform, i.e., in the projection onto a horizontal plane,
the x-y plain. Such a projection is defined by giving the x-y coordinates of the apexes (inter-
section of tangents) to the curves, which is practical if one takes into account that curved guide-
way will be at least 50% more expensive than straight guideway, so one must keep as much
guideway as possible straight. To the horizontal projection we specify the height, the z-
coordinates, of the apexes of vertical curves.

We use the variable s to represent uniquely every point on the network. I call s the “arc length” as
it is called in analytic geometry. Thus the rectangular coordinates of a point on the guideway are
designated as (), (), ().x s y s z s To specify the guideway to the manufacturer, we specify it as a
pair of curved lines the width of the main-wheel support angles. Thus, we need also the angular
coordinates, which we denote as () () (), , .azm s pitch s roll s

5.2. Apex Data

In the program, apexes (intersections of the tangents to a curve) can relate to curves of any radius
down to zero, i.e., no change in direction. Apexes with zero curve radius are defined at branch
points where one guideway, usually the main guideway may stay straight while the other branches
off in a new direction. Apexes with zero radius are also defined at points along a straight guideway
where the line speed is required to change.

The calculations of the coordinates of the guideway are performed in “curve-straight” sets, i.e., the
curve around the apex followed by the straight segment after the apex. The program described
herein calculates both the curve and the length of this straight segment, which may be of zero
length.

The apexes are numbered from a starting point usually but not necessarily sequentially in the
direction of flow. The following data related to each apex is needed:

• The number of the next apex in the direction of flow.
• At apexes at branch points, the number of the second next apex.
• The x, y, and z coordinates at the apex
• The intended line speed in the curve around the apex.
• The intended line speed in the straight segment after the curve.

146

• The order in which the apexes are to be treated in the direction of flow.

Giving this information permits branches to be added later without having to change the
numbers of the previous apexs.

5.3. Station Data

The stations are numbered generally but not necessarily in the direction of the flow of vehicles.
The following data related to each station is needed:

• The number of the closest apex upstream of the station.
• The number of the closest apex downstream of the station.
• The distance of the entry diverge point into the station from the nearest upstream apex.
• The side, right or left, of the main guideway the station is on.
• The station type, passenger or storage.
• The number of loading and unloading berths in a passenger station, or the total number of

berths in a storage station.
• The separation distance between the centerline of the main line and the centerline of the

bypass line as it passes through the loading and unloading area.
• The number of the branch point ahead of the station (branch point numbers are not the

same as apex numbers.)
• The number of the branch point behind the station.
• The number of the station ahead before the next branch point ahead, zero if none.
• The number of the station behind, zero if none before the branch point behind.
• The number of the nearest downstream storage station.
• The station “call criterion” in terms of the number of vehicles that must be present before

an additional vehicle is called. By increasing this number, vehicles will be called sooner
to reduce the wait time.

5.4. The Demand Matrix, (,)D i j , where i is the origin station and j is the destination.

The demand between a pair of stations depends on the average trip time between them. For the
first calculation of the demand matrix the ridership analyst must estimate the average trip time.
Runs are then made to determine the actual trip time, which is fed back into the demand model for
a second iteration. Such analysis is likely to result in recommendations for changing something
about the network and the station sizes. Further runs – likely a great many of them – must be
performed to obtain satisfactory results.

5.5. Branch Data

The branches, i.e., line-to-line merges and diverges can be numbered in any order, but usually
increasing in the direction of flow. By using this notation, any network is an assembly of links,
each treated the same. The following data is needed:

147

• The number of the branch point ahead, i.e., in the direction of flow.
• The number of the branch point behind.
• The number of the first station ahead on the same link, zero if none.
• The number of the first station behind on the same link, zero if none.
• The strings (“R” or “L”) brnTypeAhR(i), brnTypeAhR(i), where i is a branch point. The

meaning of these terms is given in Section IV. These terms are needed in the simulation
program to determine from which side a merge is being approached.

• The switch table brnSwitch (,)i j . It gives the direction to switch, “R” or “L”, at each
diverge branch point. The switch table will be computed in a program that determines the
minimum time path from any station to any other station.

5.6. Compute Azimuth

All of the above information except the switch table must be picked off manually from a layout of
the specific network to be simulated. To prepare to compute the curves, it is necessary first to
compute the azimuth angle at each apex. The azimuth angle is taken as zero in the +x-direction,
which is usually east, and is taken to increase in the counterclockwise direction. It is restrained to
be less than or equal to 360 deg.

5.7. Compute Direction Change

Having the azimuth angles at all apexes, we next compute the direction change as a vehicle would
move from one direction to the next. The direction change will usually be between 0 and 180 deg.

5.8. Compute Curve Properties

We now have all of the information needed to compute the set-up parameters for each of the curve,
which are derived in the paper “Curved Guideways.” These are the projections of the curves in
the horizontal plane. In “Curved Guideways” it is shown that the vertical curves can be
superimposed to get the total three-dimensional curves.

5.9. Calculate Straight Section

Knowing the aX values for each curve, i.e., the distances between the apex and the start or end of
the curve, which are calculated in “Curved Guideways”, we now have the information needed to
calculate the length of each straight section after each curve. As mentioned, the length of the
straight section may be zero, and generally is for curves that connect into a merge branch point.

5.10. Calculate Start Coordinates

Next we must calculate the x-y coordinates of the point where eacht curve begins, upstream of its
apex. We designate the arc length at the first point of the first curve as 0.s =

148

5.11. Calculate Station Properties

The station properties that must be calculated and stored are the transition length, the length of the
straight section in the station-bypass guideway, the total station guideway length, the coordinates
of the starting point of the bypass guideway, and the number of berth positions counting waiting
positions in each station.

5.12. Calculate Guideway Coordinates

We now have all of the information needed to calculate the x-y guideway coordinates. We do so
at discrete steps ,ds which we take in the first program as one meter. The end result are the
coordinates (), (), (), (), (), ()x s y s z s azm s pitch s roll s . To calculate these quantities we use a
subroutine called Curve() to calculate the coordinates through each curve and includes
superelevated turns if elected. A subroutine called Offline() calculates each offline guideway.
There may be a case in which there is a change in direction of the main guideway in the region of
a station, i.e., there may be an apex in the guideway in the region of a station. This requires special
handling that is accomplished by a routine called SpecialOffLine(). These calculations are
performed in local coordinates and then a subroutine Transform() is used to convert local
coordinates into system coordinates. Subroutines GradeSetUp() and Grade() are used to add the
z-coordinate and pitch angle or grade to the guideway.

5.13. Find Jump Points

To position a vehicle on the guideway in the simulation program – as opposed to a real operating
system – we need to know the arc length s at the vehicle, which is needed to find its space
coordinates, which are needed to plot its position. In paragraph 5.12 we calculated the coordiates
at discrete points ds apart. In the simulation program, the position of each vehicle is calculated at
each time step as a negative distance behind the branch point ahead. This value goes positve when
a vehicle passes a branch point, which indicates that it must be handed over to the next zone
controller. To determine the value of arc length s at the vehicle, we must know the arc length value
at the branch point ahead. To find it two steps are needed, the first is to find the coordinates and
values of s at the points of arc length discontinuity, i.e., the jump points at all branch points
including the station entry points. Also, there will be an additional jump point that is neither at a
branch point or a station entry point, i.e., at the point 0.s = Calculation of all of these jump points
is the task of this routine.

5.14 Main-guideway arc length at the Jump Points.

With the coordinates of the jump points calculated, we can and must calculate the values of arc
length s on the main guideway at the jump points. These values are needed to calculate the value
of s at each vehicle, which as mentioned is needed to calculate the vehicle’s coordinates.

149

5.15. Find the Apex at each Branch Point corresponding to the curve there.

At each branch point there are two apexs, with each corresponding to a different change in
direction, often with one having no change in direction. Resolution of this difference is needed in
two routines, one in calculation of the merge command point, and the other in determining the
speed through the curve used in calculating the distances between branch points. In the later case,
the two apexs must give the same curve speed, but in the former the largest change in direction
will result in calculating the longest distance to the merge command point, which is the one
required for safe merging. The apex corresponding to the greatest change in direction is thus
desired and is calculated in this routine.

5.16. Calculate Distances between Branch Points and Branch Command Points

This routine calculates for use in the simulation program the distance from one branch point to the
branch point ahead in case of a merge, and from one branch point to the right and left branch points
ahead in case of a diverge. It also records the values of arc length at the junction point on the two
legs of a merge or diverge, calculates the merge command distance from each merge point, and
calculates the switch command distance from each diverge point.

5.17. Calculate Negative Station Distances To the Branch Point ahead

This routine calculates the following quantities;

• The negative distance from the station entry point to the branch point ahead.
• The distance from the station entry point to the front of the station.
• The negative distance from the front of the station to the branch point ahead.
• The negative distance from the middle of the vehicle in the first berth to the branch point

ahead.
• The negative distance from the command point after the station exit point to the branch

point ahead.
• The negative distance from the station switch-command point to the branch point ahead.
• The negative distance from the station deceleration-command point to the branch point

ahead.

5.18. LoadVehicles

This routine gives each vehicle a permanently assigned number and loads it into a passenger or
storage station for the start of a simulated run by giving it the following information:

• The number of the branch point ahead.
• The number of the branch point behind.
• The number of the station the vehicle is in.

150

• The vehicle’s switch position corresponding to the side of the main guideway the station
bypass guideway is on.

• The vehicle’s destination, which now is the station it is in.
• The passenger number, which is now zero.
• The number of the berth the vehicle is in.
• The maneuver command, which is now “None.”
• The negative distance of the vehicle to the branch point ahead
• The vehicle’s speed, now zero.
• The vehicle’s acceleration, now zero.
• The mass of the passengers aboard the vehicle, now zero.
• The distance the vehicle has travelled, now zero.
• The negative distance of the vehicle from the next command point, which is the

ResetOnStationExit command point.

Simultaneously, this routine gives the station-zone controller two pieces of information;

• The number of the vehicle in each berth.
• The number of the vehicle in each position in the array “staVehOnStationGdwy,’ which

enables the station zone controller to keep track of each vehicle on the station off-line
guideway.

5.19. Distance To the Next Station

This routine determines the distance of each station to the station ahead on the same link, or to the
station ahead on either branch in the nearest link or the link after that. The routine can be continued
recursively until a station is found in either direction, but it will be unusual to have links with no
stations. This data will be used to calculate the switch table.

5.20. The number of the next upstream station.

This routine determines the number of the nearest upstream station on the same link or on the next
upstream link past a merge or on either of the next upstream stations on a diverge. This data is
useful for dispatcihing empty vehicles.

151

VI. Summary of Setup

1.

2.

3.

4.

Input following Apex Data for each apex, numbered in any convenient way, usually in the
direction of motion, starting with 0. At each branch point there will be an apex number for
each direction. Points at which there must be a speed change are given an apex number even
though there may be no change in direction.

1. X coordinate
2. Y coordinate
3. Z coordinate
4. Number of next apex
5. Number of second next apex if a diverge point ahead
6. Super elevation angle in the curve around the apex
7. Speed in the curve
8. Speed in the straight segment after the curve

Layout the best initial estimate of the network on a street map. Because curved guideway is
more expensive than straight guideway, use straight lines whenever possible. Locate the
stations where you want them. Identify the line-to-line diverges and merges, and number
them, diverges first. There must be as many diverges as merges. Establish an x-y reference
frame and record the coordinates of each apex.

Input the following Station Data for each station, numbering the stations in any convenient
order:

1. Number of the nearest upstream apex to the station off-line entry point.
2. Distance of the station off-line entry point to the upstream apex.
3. Designate passenger station “P”, storage station “S”
4. Number of loading and unloading berths in a passenger station, total positions in

storage station.
5. Separation between the mainline and the station by-pass or off line.
6. “L” if the station is on the left side of the main guideway while facing in the

direction of motion, “R” if the station is on the right side.
7. The number of the line-to-line diverge or merge (branch) point ahead of the station.
8. The number of the line-to-line diverge or merge (branch) point behind the station.
9. The number of the station ahead on the same link (length of guideway between

branch points), 0 if none.
10. For stations with a merge point ahead designate “L” if the station is on the left of

the merge, “R” if on the right. Designate “ ” if a diverge ahead.

Perform a graphic check of the network without showing the curves.

152

5.

6.

7.

8.

9.

10.

11.

12.

13.

Calculate the azimuth angle into each apex, assuming azimuth = 0 in the x-direction to the
right. From the x-axis the azimuth angle increases in the counterclockwise direction.

Calculate the change in direction of the curve passing each apex; + counterclockwise, -
clockwise.

For the curve at each apex, calculate

1. Length along the curve (arc length) of the constant jerk region of the curve.
2. The distance along the curve to the end of its constant-curvature region.
3. The local coordinates of the center of curvature of the constant-curvature region,

where the local x-axis is in the direction the curve begins, y perpendicular to the left.
4. The radius of curvature of the constant-curvature region.
5. The local end coordinates of the curve
6. The distance Xa from the curve’s apex (intersection of tangents) to the beginning of

the curve. Calculate the length of the straight segment of guideway following each curve. The straight
segment may be of zero length and must be of zero length for a curve entering merge point.
Every network of guideways is made up of segments consisting of a curve followed by a straight
segment.

Calculate the x-y start coordinates of each curve, and from
them identify the coordinates of each line-to-line branch

Calculate the x-y start coordinates of the entry off-line to each station.

Calculate and record the x-y and Azimuthal coordinates of the mainline guideway
in small steps ds. This is done apex by apex for the sequence curve-straight for
each apex. These calculations make use of a routine that calculates each curve in
local coordinates and a second routine that transforms the local curve followed
by the straight section in local coordinates into system coordinates.

Locate the main-guideway arc length at the entry point of each station. This quantity
is needed to transform the local off-line-station coordinates to system coordinates.

153

14.

15.

16.

17.

18.

19.

20.

21.

22.

Locate the incremental arc length before and after each guideway jump point.
The first of these will be the jump from the end of the first loop (sEnd) to the first
diverge point, then to the jumps between successive branch points. These values
are needed to identify the values of arc length at each merge and diverge point.

Calculate the coordinates of each off-line guideway and then transform them to
system coordinates in a special way: that is in such a way that if the main line curves
around an apex in the area of the off-line, the off-line guideway follows the curve.

Prepare to calculate the elevation at each point along the horizontal projection of
the guideway by calculating the grade angle between each pair of apexes.

Calculate the elevation at the starting
point of each curve-straight segment.

Calculate the elevation changes at each point along the
horizontal projection (the x-y plane) of the guideway.

Using data from the previous routine, calculate the
main-guideway arc lengths at each branch point.

Correct the merge-point arc lengths or s-values by interpolation between the
segments of length ds. This is necessary at merge points because the distance
to vehicles on each of the two branches of a merge must be referenced
accurately to the same point.

Calculate the distance from each branch point to the next
on each leg of a diverge or on the one leg of a merge.

Calculate the negative distance from the input
diverge into each station to the branch point ahead.

154

23.

Requirements for ITNS Control

1. Communication must be totally secure and not subject to interference from the outside,
which means that the computers cannot be connected to any external source that may be
disruptive, such as the Internet. This requirement has led to the use of leaky cables within
a shielded guideway, a scheme that was tested in the Raytheon test track and was first
used in the Boeing AGRT program and described in publicly available papers.

2. Minimum headway. Even though early applications will not require close headways, the
design of the control system must take into account the need to achieve fractional second
headways safely and reliability as the system expands. Offline stations must be designed to
meet expected input and output flows, and the system must be designed to prevent excessive
congestion at merge points and destination stations.

3. Safety. A PRT system must provide a level of safety in terms of injuries per billion miles at least as
good as a modern rapid rail system, and preferably better—better because the improvements provided
by PRT in all areas must be good enough to justify the development cost. To achieve this level of
safety, the on-board and wayside computers must be dual duplex. Safety must not depend on one set of
computers, i.e., vehicle flow must be monitored by wayside zone-control computers, which requires
wayside measurement of position and speed.

4. Ride Comfort. Longitudinal maneuvers must be performed in such a way that International
Standards Organization ride comfort standards on acceleration as a function of frequency are met. In
maneuvers, longitudinal acceleration must be limited to 0.25 g, lateral acceleration to 0.2 g and jerk to
0.25 g/s in normal operation. The maximum emergency-braking deceleration depends on
whether or not passenger constraints are provided. If not, the requirement must be that the
passenger must not slide off the seat in an emergency stop. With passenger constraints, twice the
normal values are permitted. The control system must not be a factor in causing motion sickness.

5. Changing Conditions. The control system must be able to reduce cruising speed in high winds,
restore speed smoothly when the wind dies down, and must be able to cope with any unusual

Calculate the positions of the following command points:

1. Station switch command point.
2. Station deceleration command point.
3. Merge command point.
4. Diverge command point

155

situation, such as a stopped vehicle, that would require vehicles to slow down or stop away from a
station.

6. Dead-Vehicle Detection. It must be possible to detect a dead vehicle on the guideway, however
remote that possibility may be. Each vehicle must transmit its speed and position at frequent
intervals to a wayside computer—a zone controller. If the zone controller suddenly does not
receive the expected signal, it must be programmed to remove the speed signal for all vehicles in
that link and transmit this information to the next upstream zone controller. Each vehicle's
control system must be configured to command reduction in speed to a creep speed if the zone
controller's speed signal is not received. A finite creep speed permits vehicles ahead of the failed
vehicle to move safely to the next zone, it reduces anxiety, and with seated passengers is safe.
Magnetic detectors must be placed at specified intervals along the guideway to inform the zone
controller of passage of a vehicle independent of the vehicle controller. Thus, if a vehicle
passes one of these markers and not the next, the location of the dead vehicle is approximately
known. Then, because the passengers are seated and can be protected, and the vehicle will be
protected by appropriately designed shock-absorbing bumpers, a creeping vehicle can be
permitted to advance until it soft engages with the dead vehicle, whereupon the position of the dead
vehicle becomes known and the failure strategy can be engaged.

7. Interchange Flexibility. The simplest interchange is a Y. Such an interchange gives the least
visual impact at any one point, but requires that vehicles first merge, then diverge, which
creates a bottleneck after merging. To obtain maximum possible throughput, two-in, two-out,
multilevel interchanges can be used. They permit vehicles to diverge first and then merge. With
such interchanges, the input and output capacity of the lines is the same, hence the worst that can
happen is that a vehicle may have to be diverted from the direction it would normally go. Thus the
control system does not have to be concerned with sending too much traffic along a particular
line. If Y-interchanges are used, control actions are not limited to one interchange; however,
they are often necessary. Thus, the control system must permit them.

8. Vandalism and Sabotage. A system in which the control functions are distributed and the
wayside computers are protected, for example in safe rooms under the stations, will be less
susceptible to malicious damage than a system in which a central computer plays an essential
role. To minimize the consequences of failures of any kind, distributed control is preferred.
The required central-computer functions should be such that the worst that can happen if it fails is
that the system will operate less efficiently.

9. Modularity. The control units must be easily exchangeable so that down time is minimized.

10. Expandability. The control system must be designed for easy system expansion.

156

Distance to Slip

Velocity-Time Diagram, Mirror Symmetry about point 3.

The purpose of this paper is to determine the distance required for a vehicle to slip one or more
headway lengths. To do this I make use of the above velocity-time diagram of two slip
maneuvers. The jerk from point 0 to point 1 is –Jc, from point 1 to point 2 is zero, and from
point 2 to point 3 is +Jc in which Jc is the magnitude of the maximum comfort jerk. I assume the
reader is familiar with the three equations for the transition from one point to the next at constant
jerk, viz.:

1) The time interval between two points at constant jerk is the quantity new acceleration
minus old acceleration divided by jerk, or if jerk is zero, the quantity new speed minus
old speed divided by acceleration.

2) The new speed is the old speed plus the time interval multiplied by the average
acceleration.

3) The distance interval is the time interval multiplied by the quantity old speed plus the
time interval multiplied by the quantity twice old acceleration plus new acceleration
divided by six.

157

Equations for the general case.

The time, speed, and distance relationships during the interval from point 0 to point 1 are

 1 1 1
01 1 01 01 01 01 1, , , 0

2 6L L
c

A A Adt V V dt dx dt V dt A
J

 = = + = + < −  
 (1)

In which A1 is the negative acceleration at point 1, VL is the line speed, V1 is the speed at point 1,
dt01 is the time interval from point 0 to point 1, and dx01 is the distance travelled in moving from
point 0 to point 1.

The similar relationships in going from point 1 to point 2 at constant deceleration are

 ()2 2
1 22 1 1

12 2 1 12 1 12 12 1 12 1
1 1

, , , 0
2 2

V VV V Adt V V dt A dx dt V dt A
A A

−−  = = + = + = <  − 
 (2)

In going from point 2 to point 3 we have

 1 1 1 1
23 01 3 2 23 23 23 2 23 23 3 01, ,

2 3 6c

A A A Adt dt V V dt dx dt V dt dt V dt
J
−    = = = + = + = −   

   
 (3)

The usual case A1 = -Ac

 If A1 = -Ac, where Ac is the maximum comfort value of acceleration, we have

 ()

2 2

01 1 01

2 3
33 31 2 1 2

12 12

2 2

23 01 3 2 23 3

, ,
2 6

,
2 2

, ,
2 6

c c c c
L L

c c c c

LL c L c

c c c c c c

c c c

c c c

A A A Adt V V dx V
J J J J

V VV V A V V AV V V Vdt dx
A A J A A J

A A Adt dt V V dx V
J J J

 
= = − = − 

 
+   − −− −

= = − = = −   
   
 

= = − = + 
 

 (4)

 ()

3
03 01 12 23

3 3
03 01 12 23

3
03

2
2

2

L c

c c

L c L c

c c c

L

V V Adt dt dt dt
A J

V V A V V Adx dx dx dx
J A J

V V dt

−
= + + = +

+  −
= + + = + − 

 
+ =  

 

 (5)

Let S = Slip, Tm = 2dt03 = maneuver time, and Dm = 2dx03 = maneuver distance. Then

158

()

()

()

()

3
3

3 3
3

2
2

2

3 2

2 2

, let

4 /Then 0, 1 1
2 /

4 /1 1
2 /

L m
L m m m L L

L c L
L

c c c

c c c

c c c c c

c c
L

c c c

V V TS V T D T V V V

V V A V VV V x
A J A

A A S ASx x x
J A J A J

A S AV V
J A J

 +  = − = − = −    
 − −

= − + = 
 

 
 + − = = + −
 
 

 
 = − + −
 
 

 (6)

The smallest value of S for which equations (6) apply occurs when V2 = V1. Then, from
equations (4),

 3L c

c c

V V A
A J
−

=

Then, from the second line of equations (6)

2

min 1 2 c
c

c

AS S S A
J

 
= = =  

 
 (7)

We usually assume Ac = 0.25g, Jc = 0.25 g/s. Then Smin = 4.9 m and VL – V3 = 0.25g = 2.45 m/s.
The distance travelled in the headway time Th is VLTh. We want to consider slipping one
headway distance. Then, if we set VLTh = Smin the corresponding speed is VL = 4.9m/Th.

Case for small S.

For small headways, we will have cases in which S < Smin. In such cases set dt12 = 0 in equations
(1) and (3) to get

 ()

2 2
1 1 1

01 1 01 01 1

2 2 2
1 1 1 1

23 3 1 23 01 1 01

2
1 1 1

1/33 2
1

12

, , , 0
2 6

5, ,
2 3 6

4 , 2 2

2 ,
2

L L
c c c

L
c c c c

m m L
c c c

c
L m m

c

A A Adt V V dx dt V A
J J J

A A A Adt V V dx dt V dt V
J J J J

A A AT D V
J J J

A J SS V T D A
J

 
= = − = − < −  

   −
= = − = − = −   

   
 

= − = − − 
 

−  
= − = = − 

 
 (8)

159

Case for Large S.

We will need to set a minimum speed V3 = Vmin, which will be reached for large values of slip.
In this case

 () min
2 min

cL
L

c c

AV VS S V V
A J

 −
= = − + 

 
 (9)

If S > S2 we must add a section of time dt34 between the descending and ascending speed regions,
in which

 2
34

min

.S Sdt
V
−

= (10)

Setup Code

The given parameters are

 min, , ,c c LA J V V

Then calculate

 ()
2

min
1 2 min2 ,c cL

c L
c c c

A AV VS A S V V
J A J

   −
= = − +   

   
.

Given S then

If 1S S≤ then

1/32 2

1
1 1 3 1

1/3

1
01 12 23 01 34 45 01 56 67 01

2
1 1 1

01 01 01 12 23 01 1 01 01

, , ,
2 2

, 0, , 0, , 0,
2

5, 0,
6 3 6

c
L

c

c c

L L
c

J S AA dV V V dV V V dV
J

A Sdt dt dt dt dt dt dt dt dt dt
J J

A A Adx dt V dt dx dx dt V dt dt V
J

 
= − = = − = − 

 

 
= − = = = = = = = 

 
    = + = = + = −    

     

()

34

45 23 56 67 01

1/3 2 /31/ 22
1

01 23 01

, 0

, 0,

42 2 2 2
2

c
m L L

c c

dx

dx dx dx dx dx

J SA SD dx dx dt V V
J J

=

= = =

      
 = + = − = −     
       

160

else

 If 2S S≤ then

()

2

3 34 342
4 /1 1 , 0, 0

2 /
c c

L
c c c

A S AV V dt dx
J A J

 
 = − + − = =
 
 

 else

 () ()3 min 34 2 min 34 min 34, / , .LV V dt S S V V dx V dt= = − − =

 end if

()

() ()

()

01 1 01 01 01 01

23 01 2 3 23 23 23 2 23 01 3 01

2 2
1 2 1 2

12 12 12 1 12

45 23 56 12 67 01

45 23 56 12

, / 2, / 6

, / 2, / 3 / 6

, / 2
2

, ,
, ,

c
L c L c

c

c c c

c
c c

Adt V V dt A dx dt V dt A
J

dt dt V V dt A dx dt V dt A dt V dt A

V V V Vdt dx dt V dt A
A A

dt dt dt dt dt dt
dx dx dx dx d

= = − = −

= = + = − = +

− −
= = − =

= = =
= =

() () ()
() ()

()

67 01

3 3
03 01 01

2 2
03 01 3 01 3 3 01

3 33
01 03

3
3 2

2

1
2

2 2

, if 0 else 0.

L L c

c c c

L L L c c
c

L LL

c

L c m
m L

c c L m

x dx
V V V V Adt dt dt

A A J

dx dt V V V V dt A V V dt A
A

V V V VV Vdt dt
A

V V A VD V V S S e e e
A J V V

=
− −

= + − = +

 = + + − − + 

+ + −
= + = 

 
   −

= + + + − = >   −   

end if

1 01 1 01

2 1 12 2 1 12

3 2 23 3 2 23

4 3 34 4 3 34

5 4 45 5 4 45

6 5 56 6 5 56

7 6 67 7 6 67

t dt x dx
t t dt x x dx
t t dt x x dx
t t dt x x dx
t t dt x x dx
t t dt x x dx
t t dt x x dx

= =
= + = +
= + = +
= + = +
= + = +
= + = +
= + = +

161

The run code is now

Initial conditions: 0, 0, , 0Lt x V V A= = = =

1

2

3

4

5

6

7

0

0

0

0

c

c

c

c

if t t
Jerk J

elseif t t
Jerk

elseif t t
Jerk J

elseif t t
Jerk

elseif t t
Jerk J

elseif t t
Jerk

elseif t t
Jerk J

else
Jerk

endif

<
= −
<
=
<
=
<
=
<
=
<
=
<
= −

=

2 3

2
2 6

2

dt dtx x Vdt A Jerk

dtV V Adt Jerk

A A Jerk dt
t t dt

= + + ⋅ + ⋅

= + + ⋅

= + ⋅
= +

Distance Merge Point to Clearance Point, Dm-S

Slip V3 V3,used Dm,base Dm Dm-Sprev

m m/s m/s m m m

g= 9.807 m/s^2 1 5.0 7.516 7.516 35.262 35.262 35.262

Ac= 2.452 m/s^2 2 10.0 6.125 6.125 41.612 41.612 36.612

Jc= 2.452 m/s^3 3 15.0 5.039 5.039 45.471 45.471 35.471

162

tJ= 1 s 4 20.0 4.117 4.500 47.029 48.797 33.797

VL= 10 m/s 5 25.0 3.302 4.500 47.029 52.888 32.888

Th= 0.5 s 6 30.0 2.563 4.500 47.029 56.979 31.979

Vmin= 4.500 m/s 7 35.0 1.882 4.500 47.029 61.070 31.070

S1= 4.903 m 8 40.0 1.247 4.500 47.029 65.161 30.161

S2= 17.839 m 9 45.0 0.651 4.500 47.029 69.252 29.252

10 50.0 0.086 4.500 47.029 73.343 28.343

11 55.0 -0.451 4.500 47.029 77.434 27.434

12 60.0 -0.964 4.500 47.029 81.525 26.525

13 65.0 -1.457 4.500 47.029 85.616 25.616

14 70.0 -1.932 4.500 47.029 89.706 24.706

15 75.0 -2.390 4.500 47.029 93.797 23.797

Conclusion

The maximum maneuver distance for a slip maneuver beyond the merge command point is
produced by the vehicle one headway interval behind the merge command point. This distance
is

()

()

2

3 2

3 min 3 min

3
3 2

4 /1 1 where 2
2 /

if then

Minimum Merge Length Clearance Length

c c
L L h

c c c

L c m
m L

c c L m

m L h

A S AV V S V T
J A J

V V V V

V V A VD V V S S
A J V V

D V T

 
 = − + − =
 
 

< =

   −
= + + + −   −   

= − +

 Computer Program

'This routine SLIPHDWY.BAS calculates maneuvers for slipping N headway
distances.
'Units are MKS
g = 9.80665
Ac = .25 * g
Jc = .25 * g
tJ = Ac / Jc
VL = 9
Vmin = .4 * VL
Th = .5 'minimum headway
S1 = 2 * Ac * tJ ^ 2

163

dV = VL - Vmin
S2 = dV * (dV / Ac + tJ)

dt = .0002 'computation interval

SCREEN 9
COLOR 7, 8
T0 = 10
Y0 = 250
ScaleT = 15
ScaleX = 2
ScaleV = 10
ScaleA = 10
LINE (T0, Y0)-(640, Y0)
LINE (T0, Y0)-(T0, 0)
LINE (T0, Y0 - ScaleV * VL)-(640, Y0 - ScaleV * VL)

PRINT " i S Dm Dm - S Dm / S"
FOR i = 1 TO 20
 'Initial conditions
 t = 0
 x = 0
 V = VL
 A = 0
 S = VL * Th * i
 IF S <= S1 THEN
 A1 = -(Jc ^ 2 * S / 2) ^ (1 / 3)
 dV = .5 * A1 ^ 2 / Jc
 V1 = VL - dV
 V3 = V1 - dV
 dt01 = -A1 / Jc
 dt12 = 0
 dt23 = dt01
 dt34 = 0
 dt45 = dt23
 dt56 = 0
 dt67 = dt01

 dx01 = dt01 * (VL + dt01 * A1 / 6)
 dx12 = 0
 dx23 = dt23 * (V1 + dt23 * A1 / 3)
 dx34 = 0
 dx45 = dx23
 dx56 = 0
 dx67 = dx01
 ELSE
 IF S <= S2 THEN
 V3 = VL - .5 * tJ * Ac * (SQR(1 + (4 * S / Ac) / tJ ^ 2) - 1)
 dt34 = 0
 dx34 = 0
 ELSE
 V3 = Vmin
 dx34 = S - S2
 dt34 = dx34 / Vmin
 END IF
 dt01 = tJ
 V1 = VL - dt01 * Ac / 2

164

 dx01 = dt01 * (VL - dt01 * Ac / 6)
 dt23 = dt01
 V2 = V3 + dt23 * Ac / 2
 dx23 = dt23 * (V2 - dt23 * Ac / 3)
 dt12 = (V1 - V2) / Ac
 dx12 = dt12 * (V1 - dt12 * Ac / 2)

 dt45 = dt23
 dt56 = dt12
 dt67 = dt01

 dx45 = dx23
 dx56 = dx12
 dx67 = dx01
 END IF

 Tm = 2 * (dt10 + dt12 + dt23) + dt34
 Dm = 2 * (dx01 + dx12 + dx23) + dx34

 t1 = dt01
 t2 = t1 + dt12
 t3 = t2 + dt23
 t4 = t3 + dt34
 t5 = t4 + dt45
 t6 = t5 + dt56
 t7 = t6 + dt67
 x1 = dx01
 x2 = x1 + dx12
 x3 = x2 + dx23
 x4 = x3 + dx34
 x5 = x4 + dx45
 x6 = x5 + dx56
 x7 = x6 + dx67

 DO
 IF t < t1 THEN
 Jerk = -Jc
 ELSEIF t < t2 THEN
 Jerk = 0
 ELSEIF t < t3 THEN
 Jerk = Jc
 ELSEIF t < t4 THEN
 Jerk = 0
 ELSEIF t < t5 THEN
 Jerk = Jc
 ELSEIF t < t6 THEN
 Jerk = 0
 ELSEIF t < t7 THEN
 Jerk = -Jc
 ELSE
 Jerk = 0
 END IF

 x = x + V * dt + A * dt ^ 2 / 2 + Jerk * dt ^ 3 / 6
 V = V + A * dt + Jerk * dt ^ 2 / 2
 A = A + Jerk * dt

165

 t = t + dt

 PSET (T0 + ScaleT * t, Y0 - ScaleX * x), 10
 PSET (T0 + ScaleT * t, Y0 - ScaleV * V), 11
 PSET (T0 + ScaleT * t, Y0 - ScaleA * A), 12
 PSET (T0 + ScaleT * t, Y0 - ScaleA * Jerk), 13
 LOOP UNTIL t > t7 + 1
 PRINT i;
 PRINT USING "####.###"; S; Dm; Dm - S; Dm / S
NEXT i

Potential Headway Violation upon Decelerating into a Station

Figure 1. The velocity profiles of a pair of vehicles entering a station.

Consider a vehicle #1 decelerating into a station to station speed staV , followed by a vehicle #2 a
time Line Headway behind undergoing the same maneuver. Let the position of vehicle #1 at
time zero be (0) 0.x = The times, accelerations, speeds, and positions of vehicle #1 at the points
1, 2, 3 in Figure 114 are as follows:

14 For the methodology, see the internal paper “Speed and Position vs. Time”

V

t

0 1 2 3

Line Headway

VL

1

2

Vstation

166

01 1 01 01 01 01

23 2 23 23 23 2 23

1 2
12 12 12 1 12

1 01 2 1 12 3 2 23

1 01 2 1 12 3 2 23

, ,
2 6

, ,
2 3

,
2

, ,
, ,

c c c
L L

c

c c c
sta

c

c

c

A A Adt V V dt dx dt V dt
J
A A Adt V V dt dx dt V dt
J

AV Vdt dx dt V dt
A

t dt t t dt t t dt
x dx x x dx x x dx

 = = − = − 
 

 = = + = − 
 

−  = = − 
 

= = + = +
= = + = +

 (1)

From equations (1) we find

2 2

03 01 23 12
12

2 2
c c c L sta c

L sta
c c c c c c

A A A V V Adt dt dt dt V V
J A J J A J

  −
= + + = + − − − = + 

 
 (2)

Thus, the maneuver time from line speed to station speed is

L sta c
m

c c

V V AT
A J
−

= + (3)

From equations (1) we also find

()

() ()() () ()

() ()

2 2 2
1 2

03 01 23 12 1 2

2

1 2 1 2

03

2 6 3 2

1 1
2 2

2 2

c c c c
L sta

c c c c c

c c c
L sta L sta L sta L sta

c c c c c

L sta L staL sta c

c c

A A A A V Vdx dx dx dx V V V V
J J J J A

A A AV V V V V V V V V V V V
J A J A J

V V V VV V A dt
A J

   −
= + + = + + − − + +   

   
 

= + + − + = + + − − + 
 

+ + −
= + = 

 

(4)

Thus, the distance traveled from line speed to station speed is

()

2
L sta

m m

V V
D T

+
= (5)

167

Using the above canonical formulation, the acceleration, speed, and position of vehicle 1 at any
value of t are as follows:

()

1

1 2 1 1 1 1

2 3 2 2 2 2

0 : , , ,
2 6

: , , ,
2

: , , ,
2 3

c L L

c

c
c c

A At t t t A J t V V t x t V t

At t t t t t A A V V tA x x t V t

A A At t t t t t A A J t V V t x x t V t

 ≤ ≤ ∆ = = − ∆ = + ∆ = ∆ + ∆ 
 

 ≤ ≤ ∆ = − = − = + ∆ = + ∆ + ∆ 
 

− +  ≤ ≤ ∆ = − = − + ∆ = + ∆ = + ∆ + ∆ 
 

(6)

For vehicle #2 up to time t LineHeadway= the speed stays constant at LV and the distance
traveled is

Lx V t= . For t LineHeadway> we can obtain the acceleration, speed, and position as functions
of time by making the following substitutions in equations (5): t t LineHeadway→ −

()

1

1 2 1 1 1 1

0 : 0, ,

: , , ,
2 6

: , , ,
2

h

h L L h

h h h c L L

h h c

T LineHeadway
t T A V V x V t T

A AT t t T t t T A J t V V t x t V t

AT t t T t t t t A A V V tA x x t V t

=

≤ ≤ = = = −

 ≤ ≤ + ∆ = − = − ∆ = + ∆ = ∆ + ∆ 
 

 + ≤ ≤ + ∆ = − = − = + ∆ = + ∆ + ∆ 
 

()
2 3 2 2 2 2: , , ,

2 3
c

h h c c

A A AT t t T t t t t A A J t V V t x x t V t
− +  + ≤ ≤ + ∆ = − = − + ∆ = + ∆ = + ∆ + ∆ 

 

(7)

The Minimum Headway

Figure 2. A pair of vehicles moving to the right.

#1 #2

D1

L D2

Hmin

V1 V2

168

Assume vehicle #1 stops due to a failure at deceleration fA and jerk .fJ From equation (5), the
stopping distance of vehicle #1 is

1 1
1 2

f

f f

AV VD
A J

 
= +  

 
 (8)

After a control time delay ,ct vehicle #2 stops at the emergency deceleration rate eA and

emergency jerk .eJ Its stopping distance is therefore

2 2
2 2 2

e
c

e e

AV VD V t
A J

 
= + + 

 
 (9)

Assuming the length of each of the two vehicles is L , the minimum allowable separation
between them is

min 2 1H L D D= + − (10)

The minimum permissible time headway is therefore

min

2

HMinHeadway
V

=

 (11)

A program to calculate the acceleration, speed, positions profiles and the minimum headway is
given in the Appendix. Some results are given in Figures 3 and 4.

0 1 2 3 4

TIME, seconds

-10

0

10

20

30

40

Ac
ce

ler
ati

on
, s

pe
ed

, a
nd

 di
sta

nc
e t

ra
ve

lle
d i

n M
KS

 un
its Acceleration of veh 1

Speed of veh 1
Distance veh 1 has traveled
Acceleration of veh 2
Speed of veh 2
Distance veh2 has traveled

169

Figure 3. Kinematics of motion of a pair of vehicles decelerating to station speed.

Figure 4. Separation and minimum allowable separation between two vehicles entering a station.

The parameters used in Figures 3 and 4 are those given at the beginning of the program shown in
the Appendix. Many runs can be made for different accelerations and jerks. For the set shown
in the program, runs were made with different line headways and control time constants to obtain
the maximum negative separations as shown in Table 1 and as calculated by the program.

Table 1. Maximum headway violations for the cases shown.

\ct LineHeadway → 0.5 1.0 1.3 1.5

0.05 -3.25 -1.03 0 0
0.10 -3.80 -1.59 -0.03 0
0.15 -4.36 -2.15 -0.60 0
0.20 -4.92 -2.71 -1.17 -0.01

It is seen that if the line headway between two vehicles sequentially entering a station is to be as
low as one second, the control time constant must be quite small, but not particularly small using
contemporary technology. Note from Figure 4 that in the case shown the small headway
violation increases from zero back to zero in about one second.

In this work, we considered only the portion of the maneuver from line speed to station speed.
Further development of the program included in the Appendix shows that, since the second of
the pair of vehicles will be stopping at least one berth behind the first, there is no headway
violation in the maneuvers from station speed to rest.

0 1 2 3 4

TIME, seconds

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Ac
tua

l a
nd

 m
ini

mu
m

se
pa

ra
tio

ns
, m

ete
rs

Separation between veh 1 and 2
Minimum allowable separation

170

Appendix

'This program MINHEAD.BAS calculates the minimum headway permissible
'between a pair of vehicles decelerating into a station
'Units are MKS
DEFDBL A-Z
DIM Counter AS INTEGER
DIM A(1 TO 2) AS DOUBLE 'acceleration of vehicles 1 & 2
DIM V(1 TO 2) AS DOUBLE 'speed of vehicles 1 & 2
DIM X(1 TO 2) AS DOUBLE 'position of vehicles 1 & 2
DIM t4(1 TO 2) AS DOUBLE 'time at end of station-speed section
DIM t5(1 TO 2) AS DOUBLE 'time at command to constant deceleration
DIM t6(1 TO 2) AS DOUBLE 'time at command to constant jerk
DIM t7(1 TO 2) AS DOUBLE 'time at maneuver end, total maneuver time

DIM X1(1 TO 2) AS DOUBLE 'position of command to constant deceleration
DIM X2(1 TO 2) AS DOUBLE 'position of command to constant jerk
DIM X3(1 TO 2) AS DOUBLE 'position at beginning of station-speed section
DIM X4(1 TO 2) AS DOUBLE 'position at end of station-speed section
DIM X5(1 TO 2) AS DOUBLE 'position of command to constant deceleration
DIM X6(1 TO 2) AS DOUBLE 'position of command to constant jerk
DIM X7(1 TO 2) AS DOUBLE 'position at maneuver end, total maneuver distance

DIM D(1 TO 2) AS DOUBLE 'stopping distances of vehicles 1 & 2

g = 9.80665 'acceleration of gravity
Ac = .25 * g 'comfort deceleration
Jc = .25 * g 'comfort jerk
tJ = Ac / Jc 'jerk time constant
Af = .4 * g 'maximum failure deceleration
Jf = .4 * g 'maximum failure jerk
Ae = .4 * g 'emergency deceleration
Je = .8 * g 'emergency jerk
VL = 12 'line speed
Vsta = 8 'station speed
tc = .15 'time constant
Lveh = 2.743 'vehicle length
B = 3.048 'berth length
LineHeadway = .5 'time headway between vehicles while at line speed
t = 0 'start time
dt = .01 'computational time interval

'Calculation of the maneuver increments and transition speeds
dt01 = tJ
V1 = VL - dt01 * Ac / 2
dx01 = dt01 * (VL - Ac * dt01 / 6)
dt23 = tJ
V2 = Vsta + dt23 * Ac / 2
dx23 = dt23 * (V2 - dt23 * Ac / 3)
dt12 = (V1 - V2) / Ac
dx12 = dt12 * (V1 - dt12 * Ac / 2)
dx34 = 10 'distance vehicle 1 travels at station speed
dt34 = dx34 / Vsta 'time of veh 1 at station speed

171

dt45 = tJ
V5 = Vsta - dt45 * Ac / 2
dx45 = dt45 * (Vsta - dt45 * Ac / 6)
dt67 = tJ
V6 = dt67 * Ac / 2
dx67 = dt67 * (V6 - dt67 * Ac / 3)
dt56 = (V5 - V6) / Ac
dx56 = dt56 * (V5 - dt56 * Ac / 2)

'Times and position increments at the transition points
t1 = dt01
t2 = t1 + dt12
t3 = t2 + dt23
t4(1) = t3 + dt34 'this and following times for veh 1
t5(1) = t4(1) + dt45
t6(1) = t5(1) + dt56
t7(1) = t6(1) + dt67 'maneuver time
t4(2) = t3 + dt34 - B / Vsta 'this and following times for veh 2
t5(2) = t4(2) + dt45
t6(2) = t5(2) + dt56
t7(2) = t6(2) + dt67 'maneuver time

X1(1) = dx01
X2(1) = X1(1) + dx12
X3(1) = X2(1) + dx23
X4(1) = X3(1) + dx34
X5(1) = X4(1) + dx45
X6(1) = X5(1) + dx56
X7(1) = X6(1) + dx67

X1(2) = dx01
X2(2) = X1(2) + dx12
X3(2) = X2(2) + dx23
X4(2) = X3(2) + dx34 - B 'veh 2 stops one berth short of veh 1
X5(2) = X4(2) + dx45
X6(2) = X5(2) + dx56
X7(1) = X6(1) + dx67 'total maneuver distance

CLS
SCREEN 9
COLOR 7, 8
scaleT = 600 / t7(2)
scaleA = 10
scaleV = 10
scaleX = 4
scaleS = 40
T0 = 10
Y0 = 280
LINE (T0, Y0)-(640, Y0)
LINE (T0, Y0)-(T0, 0)

OPEN "KINEMAT.ASC" FOR OUTPUT AS #1
OPEN "SEPRATN.ASC" FOR OUTPUT AS #2

DO
 'Motion of first vehicle

172

 IF t <= t1 THEN
 DelT = t
 A(1) = -Jc * DelT
 V(1) = VL + DelT * A(1) / 2
 X(1) = DelT * (VL + DelT * A(1) / 6)
 ELSEIF t <= t2 THEN
 DelT = t - t1
 A(1) = -Ac
 V(1) = V1 + DelT * A(1)
 X(1) = X1(1) + DelT * (V1 + DelT * A(1) / 2)
 ELSEIF t <= t3 THEN
 DelT = t - t2
 A(1) = -Ac + Jc * DelT
 V(1) = V2 + DelT * (-Ac + A(1)) / 2
 X(1) = X2(1) + DelT * (V2 + DelT * (-2 * Ac + A(1)) / 6)
 ELSEIF t <= t4(1) THEN
 DelT = t - t3
 A(1) = 0
 V(1) = Vsta
 X(1) = X3(1) + Vsta * DelT
 ELSEIF t <= t5(1) THEN
 DelT = t - t4(1)
 A(1) = -Jc * DelT
 V(1) = Vsta + DelT * A(1) / 2
 X(1) = X4(1) + DelT * (Vsta + DelT * A(1) / 6)
 ELSEIF t <= t6(1) THEN
 DelT = t - t5(1)
 A(1) = -Ac
 V(1) = V5 + DelT * A(1)
 X(1) = X5(1) + DelT * (V5 + DelT * A(1) / 2)
 ELSEIF t < t7(1) THEN
 DelT = t - t6(1)
 A(1) = -Ac + Jc * DelT
 V(1) = V6 + DelT * (-Ac + A(1)) / 2
 X(1) = X6(1) + DelT * (V6 + DelT * (-2 * Ac + A(1)) / 6)
 ELSE
 A(1) = 0
 V(1) = 0
 X(1) = X7(1)
 END IF

 'Motion of second vehicle
 tsec = t - LineHeadway
 IF tsec <= 0 THEN
 DelT = tsec
 A(2) = 0
 V(2) = VL
 X(2) = DelT * VL
 ELSEIF tsec <= t1 THEN
 DelT = tsec
 A(2) = -Jc * DelT
 V(2) = VL + DelT * A(2) / 2
 X(2) = DelT * (VL + DelT * A(2) / 6)
 ELSEIF tsec <= t2 THEN
 DelT = tsec - t1
 A(2) = -Ac
 V(2) = V1 + DelT * A(2)

173

 X(2) = X1(2) + DelT * (V1 + DelT * A(2) / 2)
 ELSEIF tsec <= t3 THEN
 DelT = tsec - t2
 A(2) = -Ac + DelT * Jc
 V(2) = V2 + DelT * (-Ac + A(2)) / 2
 X(2) = X2(2) + DelT * (V2 + DelT * (-2 * Ac + A(2)) / 6)
 ELSEIF tsec <= t4(2) THEN
 DelT = tsec - t3
 A(2) = 0
 V(2) = Vsta
 X(2) = X3(2) + Vsta * DelT
 ELSEIF tsec <= t5(2) THEN
 DelT = tsec - t4(2)
 A(2) = -Jc * DelT
 V(2) = Vsta + DelT * A(2) / 2
 X(2) = X4(2) + DelT * (Vsta + DelT * A(2) / 6)
 ELSEIF tsec <= t6(2) THEN
 DelT = tsec - t5(2)
 A(2) = -Ac
 V(2) = V5 + DelT * A(2)
 X(2) = X5(2) + DelT * (V5 + DelT * A(2) / 2)
 ELSEIF tsec < t7(2) THEN
 DelT = tsec - t6(2)
 A(2) = -Ac + Jc * DelT
 V(2) = V6 + DelT * (-Ac + A(1)) / 2
 X(2) = X6(2) + DelT * (V6 + DelT * (-2 * Ac + A(1)) / 6)
 ELSE
 A(2) = 0
 V(2) = 0
 X(2) = X7(2)
 END IF

 D(1) = .5 * V(1) * (V(1) / Af + Af / Jf) 'stopping distance of veh #1
 D(2) = .5 * V(2) * (V(2) / Ae + Ae / Je) 'stopping distance of veh #2

 Separation = X(1) - X(2)
 IF Separation < Lveh + V(2) * tc THEN SLEEP
 IF V(2) > 0 THEN Headway = Separation / V(2)
 MinSeparation = Lveh + V(2) * tc + D(2) - D(1)
 IF V(2) > 0 THEN MinHeadway = MinSeparation / V(2)
 dSep = Separation - MinSeparation
 IF dSep < MaxNegSep THEN MaxNegSep = dSep

 PSET (T0 + scaleT * t, Y0 - scaleA * A(1)), 14
 PSET (T0 + scaleT * t, Y0 - scaleV * V(1)), 13
 PSET (T0 + scaleT * t, Y0 - scaleX * X(1)), 12
 PSET (T0 + scaleT * t, Y0 - scaleA * A(2)), 11
 PSET (T0 + scaleT * t, Y0 - scaleV * V(2)), 10
 PSET (T0 + scaleT * t, Y0 - scaleX * X(2)), 9

 PSET (T0 + scaleT * t, Y0 - scaleS * Separation), 5
 PSET (T0 + scaleT * t, Y0 - scaleS * MinSeparation), 6

 'PRINT USING "#####.##"; t; A(1); V(1); X(1) ; A(2); V(2); X(2);
Separation; MinSeparation
 'PRINT USING "#####.##"; t; V(2); Separation; Separation - Lveh - V(2) *
tc; MinSeparation; dSep; Headway; MinHeadway

174

 IF Counter = 20 THEN
 Counter = 0
 'SLEEP
 END IF
 Counter = Counter + 1
 'WRITE #1, t, A(1), V(1), X(1), A(2), V(2), X(2)
 'WRITE #2, t, Separation, MinSeparation
 t = t + dt
LOOP UNTIL t > t7(2) + 1
PRINT " MaxNegSep = ";
PRINT USING "###.##"; MaxNegSep
CLOSE #1
CLOSE #2

Some History of PRT Simulation Programs
J. Edward Anderson, Ph.D., P. E.

Abstract

This paper documents 32 vehicle simulation programs that have been developed since
1969 to simulate the operation of automated vehicles operating in networks of guideway
under a variety of strategies.

Introduction

Every group intent on designing a marketable Personal Rapid Transit system has needed to have
close at hand a simulation program that permits detailed study of the system’s performance
characteristics both for design and planning purposes. Since all or any assumptions made in
developing the simulation must be thoroughly understood; each group, practically speaking,
must develop its own simulation program. Many engineers have understood this necessity and in
time I expect that the details will be taught in engineering courses to the benefit of not only PRT
designers, but the consulting firms and planners who need to know the details. Over the 40 years
in which I have been involved in PRT research, development and design I have become aware of
32 automated vehicle simulation programs of varying degrees of completeness, and it is my
purpose in writing this paper to call attention to and discuss them, with the hope thereby that the
best ideas will come into common use as the field of PRT matures. The simulation tool is the
slide rule of PRT development. If there are additional similar simulation programs, I regret not
including them, but I simply am not aware of them.

1970s Era PRT Network Simulation Programs

During the 1970s, at least the following organizations or individuals developed PRT simulation
programs:

1. Royal Aircraft Establishment, Ministry of Defense, Farnborough, UK
2. The Aerospace Corporation, El Segundo, CA
3. Morgantown PRT Program

175

4. Morse Wade, IBM Corporation, Poughkeepsie, NY
5. Applied Physics Laboratory, Johns Hopkins University
6. Prof. Harold York, University of Minnesota
7. Marvin A. Sirbu, Massachusetts Institute of Technology
8. IBM Corporation, Gaithersburg, MD
9. Kandasamy Thangavelu, Colorado Regional Transportation District
10. Johnson, Walter & Wilde, Colorado Regional Transportation District
11. S & A Systems, Dallas, Texas
12. Dr. Sakasita, Colorado Regional Transportation District
13. Professor Alain Kornhauser, Princeton University
14. Messerschmitt-Bölkow-Blohm, Munich
15. University of Karlsruhe, West Germany
16. Raytheon Missile Systems Division

Royal Aircraft Establishment

D. I. Paddison, “Cabtrack Studies: Estimation of Capacity of Cabstops,” RAE Technical Report
71132, June 1971. 49 pages and 10 figures.

J. C. H. Longrigg, “Cabtrack Studies: Data Sheets for Track Layouts,” RAE Technical Report 71024,
February 1971. 32 pages and 7 figures.

The Summary of Paddison’s report contains the statement: “Results are presented of a digital
computer simulation of the operation of six small and medium-sized Cab-stops.” We now refer
to “Cab-stops” as “Stations.” Section 1.2 of Paddison’s report contains the sentence: “Study of
the control of a complete network will require a simulation of a network in operation.” None of
the RAE reports I have seen discuss a complete network simulation, but I have not seen all of the
reports the study produced. However, Longrigg provides the formulae needed for calculating all
of the curves and off-line transitions used in a complete PRT network.

The Aerospace Corporation

A. V. Munson, Jr., H. Bernstein, J. R. Buyan, K. J. Liopiros, and T. E. Travis of The Aerospace
Corporation, “Quasi-Synchronous Control of High-Capacity PRT Networks,” PRT15, pp.
325-350. On page 349 the following paragraphs can be found:

B.
 “The PRT network simulation was implemented to assist in establishing system
performance parameters such as trip times, waiting times, empty car trip lengths, and guideway
and stations loadings as a function of system configuration and operating strategies. A

15 J. E. Anderson, J. L. Dais, W. L. Garrard, A. L. Kornhauser, Personal Rapid Transit, Institute of Technology,
University of Minnesota, April 1972.

176

secondary but quite important objective was to provide a test bed for development and
demonstration of routing and empty car handling algorithms.

 The simulation is implemented in SIMSCRIPT and is currently operational on The
Aerospace Corporation CDC 6000 series computers. The configuration of a network with all of
its components is specified parametrically and great flexibility is available. In the current
version, PRT cars are simulated explicitly so that detailed records may be kept on individual
simulated trips. This level of simulation has many uses but because of computer memory
requirements is somewhat limited as to the network size that can be accommodated. Another
version of the simulator, which uses much of the basic structure already developed, is being
designed in which cars are modeled implicitly. This simulation will not provide the detail on
individual trips but will allow simulation of much larger networks for study of global questions
such as guideway and station loadings.”

J. H. Irving, H. Bernstein, J. Katz, P. Dergarabedian, and T. H. Silva, The Aerospace
Corporation, “Vehicle Management on Large PRT Networks,” PRT III16, pp. 345-368.

C. L. Olson, The Aerospace Corporation, Independent Study of Personal Rapid Transit, Report No.
UMTA-CA-06-0090-77-1, 16 December 1977.

Jack H. Irving, Harry Bernstein, C. L. Olson, and Jon Buyan, Fundamentals of Personal Rapid
Transit, Lexington Books, D. C. Heath and Company, Lexington, Massachusetts, 1978, 332 pages.

16 D. A. Gary, W. L. Garrard and A. L. Kornhauser, Personal Rapid Transit III, University of Minnesota, June 1976.

177

The analysis of a PRT system requires the following steps:

1. Develop and calculate via computer the coordinates of the lines and stations of the network,
which must assume certain types of stations and intersections, the discussion of which is
given in the above-mentioned documents. As background for this work, equations for
calculating all of the curves, transitions to off-line stations, and maneuvers had to be
developed; and the throughput of stations and intersections had to be understood. For the
Aerospace work, the curve and maneuver calculations are given in Appendix A of Irving et
al. The earliest paper I have found on the details of the Aerospace work on station design
and throughput is found in PRT II17 on pages 449-460 in the paper “PRT Station
Operational Strategies and Capacities,” by K. J. Liopiros. Discussion of an intersection
simulator is given in the above-mentioned PRT paper by A. V. Munson, et al.

2. Develop a switch table, i.e., for each line-to-line diverge point a Left or Right switch
command gives the optimum path to every station in the system. The Aerospace papers

17 J. E. Anderson, Ed. Personal Rapid Transit II, University of Minnesota, 1974.

178

describe in general terms their method for calculating such a table, which they call a Routing
Table.

3. Estimate ridership. The Aerospace papers describe a novel Monte Carlo mode split model
that performs this task more accurately than methods generally used in estimation of
ridership on conventional transit systems.

4. Estimate of the line and station loadings, the number of vehicles – occupied and empty –
needed, the trip lengths, and for given line speeds the trip times. The results of such
calculations are given and discussed in the Aerospace reports.

NOTE: From my own analysis of a PRT network for Indianapolis in 1980, I developed a
method for calculating these quantities. Subsequently one of my students at Boston
University, Richard Komerska, developed a convenient method to perform the
calculations on a PC. These works are referenced and discussed below under 1980 era
programs.

5. Finally, detailed simulations are run in which the arrival, loading and unloading times of
each passenger group are randomized. Such a simulation handles merge conflicts and all
vehicle movements exactly as they would be handled in a real system. Thus this tool not
only gives accurate information on wait times, ride times, and wave-offs; but it provides the
tool needed to verify the operational software. Munson et all reported in the above-
mentioned PRT paper that this work was done, apparently for small networks, but the
network on which it was done is not identified in the papers I have referenced.

Morgantown PRT Program

R. H. Bryan, S. E. G. Elias, and R. E. Ward, “Simulation of West Virginia University’s Personal
Rapid Transit System,” Summer Computer Simulation Conference, San Diego, CA, June 14-16,
1972. I have no detail on this work, but because this system, the Morgantown system, has been
in operation since 1972 and was well funded, the simulation work would have to be complete.

Morse Wade, IBM Corporation, Poughkeepsie, NY

R. Morse Wade, Staff Engineer, IBM Corporation, “THE MANHATTAN PROJECT: A Cost-
Oriented Control System for a Large Personal Rapid Transit Network,” PRT II, pp. 417-423.

A preliminary analysis of a 500-mile synchronously controlled PRT network for Manhattan is
presented; however, few details are given that would help one understand how it was done. It
does not appear from the text that Wade carried his simulation to the level of following
individual vehicles through the network.

Applied Physics Laboratory, Johns Hopkins University

The APL work to which I have access includes the following papers:

179

E. J. Hinman & G. L. Pitts, “Practical Safety Considerations for Short-Headway Automated
Transit Systems,” PRT II, pp. 375-380.

S. J. Brown, Jr., “Design Considerations for Vehicle State Control by the Point-Follower
Method,” PRT II, pp. 381-389.

W. J. Roesler, M. B. Williams, B. M. Ford and M. C. Waddell, “Comparisons of Synchronous
and Quasi-Synchronous PRT Vehicle Management and Some Alternative Routing Algorithms,”
PRT II, pp. 425-438.

M. B. Williams, B. M. Ford, and M. C. Waddell, “Analysis of Multiple Party Vehicle Occupancy
in an Automated, Guideway System, APL/JHU, CP 042/TPR 032, March 1976, 96 pages.

The first two of these papers are preparatory for simulating the operation of vehicles in a network
of guideways. The third paper bases its results on a simulation of vehicles operating in a simple
network of two-way guideways containing six stations, but interconnected in such a way that
there are four paths from any station to any other. Asynchronous, quasi-synchronous, and fully
synchronous operation were modeled. It appears that at least 360 vehicles were followed in the
simulation. The operation of merges is described for the quasi-synchronous strategy. In the
synchronous strategy, all merge conflicts are resolved before a vehicle is permitted to leave the
origin station.

The fourth paper describes, as the title suggests, the operation of an automated guideway system
using multi-party vehicles. From our interest in documenting simulation programs, this paper is
important because it includes the code of its simulation program. Most of the results presented
relate to a single two-way loop containing 12 off-line stations, but a more complex system
containing three two-way branches meeting at a center point is mentioned. Data curves are
shown corresponding to runs with up to about 650 vehicles. This statement is made: “Many
aspects of system operation such as details of vehicle movement, i. e. speed variations and
merging at station exits, and considerations of station design and capacity, were ignored.” They
were felt to have only secondary effects on the desired results, which were the relationship
between fleet size, vehicle capacity, vehicle occupancy, passenger delays, and the number of
intermediate stops required. How accurate that assumption may be can only be determined from
a more detailed simulation model.

Prof. Harold York, University of Minnesota

H. L. York, “The Simulation of a PRT System Operating under Quasi-Synchronous Control,”
PRT II, pp. 439-447.

Professor York tested his PRT simulation program on the network shown on the next page,
which consists of 23 stations, four multi-level interchanges, and four each of simple merges and
diverges. He assumed one-second headway and with his demand he assumed 1100 vehicles. His
program produced line flows in vehicles per hour and average waiting times, which he analyzed
in some detail. He mentions accumulating data on aborts (which I now call wave-offs as a
politically neutral equivalent) but shows no data. In his simulation he divided his guideway into

180

fixed intervals of equal time, taking the set headway as the time interval, and in each interval he
placed the destination number of the vehicle that occupies it, with zero for no vehicle.
Presumably these time intervals correspond to shorter distances as the vehicles maneuver into
and out of the stations. In this way the size of the network is a function of line speed, but need
not be and is not stated. His program was written in FORTRAN and ran on a CDC 6400
mainframe computer.

Marvin A. Sirbu, Massachusetts Institute of Technology

Marvin A. Sirbu, Jr., “Station Configuration, Network Operating Strategy and Station
Performance,” PRT II, pp. 461-478.

181

In Dr. Siribu’s work, he was mainly interested in
understanding the performance and throughput of
PRT stations of two types: parallel-loading and
linear. To accomplish his purpose, he developed
a simulation program in the Simcript 11.5
programming language that ran on an IBM
370/165 mainframe computer and made runs of
1.5 to 6 hours of simulated time. His guideway,
shown at the right, consisted of an outer and an
inner concentric ring interconnected in three
places with pairs of radial lines, thus giving 6
line-to-line diverges and 6 line-to-line merges.
The flow in the outer ring was counterclockwise
and in the inner ring clockwise. There were two
stations on the outer ring between each pair of
radial lines and one station on the inner ring between each pair of radial lines, making a total of
nine stations. He operated vehicles in a modified synchronous scheme at 3 seconds headway.
The modification was to permit vehicles to slip a slot to resolve merge conflicts, mainly as a
result of occasional station rejections or wave-offs that could occur when a station was too full to
receive a vehicle. He determined station capacity as a function of a tolerable frequency of
station rejections. At each time headway he updated the positions of the vehicles on the links,
merges and diverges. Station operations were event oriented in terms of random arrivals of
customers, random loading times, random unloading times, and as a result of these random
processes variable vehicle dispatching times. His reports give customer statistics, vehicle
statistics, and station statistics. He concluded that his linear stations provided better performance
than his parallel-bay stations.

IBM Corporation, Gaithersburg, MD

Martin S. Ross and Alan D. Melgaard, “Systems Management Analysis of Large PRT
Networks,” PRT III, pp. 369-376.

On the network shown below, Ross and Melgaard simulated the operation of automated vehicles
of various sizes assuming seven service polities ranging from pure PRT operation (demand
responsive single party) to fully scheduled operation. The network has 22.8 miles of guideway,
22 off-line stations with 6 loading and unloading berths each, 36 merges and 36 diverges. They
ran the simulations on an IBM 370/155 mainframe computer. Their simulation produced 25
measures of effectiveness that related to resource utilization, performance, and level of service in
terms of wait times. The pure PRT runs used a minimum headway of 1 second with a fleet of
1193 vehicles. For the larger-vehicle systems the headways ranged from 2 to 15 seconds and the
fleet consisted of 423 to 178 vehicles, with the smaller fleets used for the longer headway
scheduled service. Their results showed a high level of sensitivity to vehicle capacity, service
policy, and trip demand. For example, the average wait time for pure PRT was only 42 seconds,

182

but for the larger-vehicle, multi-party services the average wait time was longer by a factor of 5
to 13.

Thangavelu, Colorado Regional Transportation District

K. Thangavelu, “Development and Evaluation of Service Policies for Medium-Headway
Automated Rapid Transit Systems,” PRT III, pp. 329-344.

Thangavelu simulated the operation of medium capacity vehicles operating at a wide range of
headways on the city-wide automated rapid transit network (Colorado RTD’s 1973 plan) shown
below. He assigned passengers to the stations from city-wide demand data that had been
obtained in previous studies and determined the minimum-time routes based on a standard linear
programming model. He tested dynamically scheduled and what he called “advanced scheduled
service” policies. His program output some 23 parameters including every imaginable variable
produced in operating such a system. Typical results show average waiting time, average
number of stops, average vehicle occupancy, and empty-vehicle statistics.

183

Johnson, Walter & Wild, Colorado Regional Transportation District

R. E. Johnson, H. T. Walter, and W. A. Wilde, “Analysis and Simulation of Automated Vehicle
Stations,” PRT III, pp. 269-281.

Appendix A of this paper describes a simulation program that models the flow of vehicles
through an off-line station. It is a discrete event simulator consisting of 16 routines, is written in
FORTRAN IV, and ran on any CDC 6000 series computer.

Appendix B of this paper describes a second simulation program that includes a detailed
representation of control-system operation. It is a Monte-Carlo, discrete event simulator also
written in FORTRAN. “Extensive input options and input parameters were designed to allow
the definition and input of diverse control systems concepts and operating philosophies.” The
program models passenger and vehicle movement through the station in detail in 0.1 sec steps.
The authors say they were working on extending this program to simulation of an entire network.

S & A Systems, Dallas, Texas

J. G. Srygley, S. M. Stokes, and T. N. Coomer, “Transportation System Simulation – Case
Studies”. This paper was presented at the 46th National Meeting of ORSA (San Juan, Puerto
Rico, October 16-18, 1974). It included detailed simulation modeling of GRT Off-Line Stations
for Colorado RTD’s Alternatives Analysis.

Dr. Sakasita, Colorado Regional Transportation District

Masami Sakasita, “An Analysis of Merge Control for the Automated Scheduled Transit (AST)
System,” RTD, January 1975, 87 pages.

This very detailed program was written to study through computer simulation the operation of
merges. It is another excellent example of the use of computer simulation to study transit
problems. The report contains a copy of the program used.

Professor Alain Kornhauser, Princeton University

Alain L. Kornhauser, Steven Strong, and Paul Mottola. “Computer-Aided Design and Analysis of
PRT Systems,” PRT III, pp. 377-384.

The PRT simulation program developed at Princeton University was applied as a 29 station, 21
interchange network for Trenton, New Jersey. The simulation operated in the quasi-synchronous
mode and was designed to accurately model a hilly city. It used real demand data and resolved
line-to-line merges and flows in and around the stations. A method of simulating the flow of
empty vehicles is included in the paper. The outputs are wait times, passenger and vehicle miles
traveled, fleet size, etc. Shared riding was investigated.

Messerschmitt-Bölkow-Blohm, Munich

184

Richard Hesse, “Normal and Emergency Control of Automated Vehicles at Short Headways,
with Special Emphasis on the Development, Testing, and Dynamic Simulation of the Cabintaxi
System,” PRT III, pp. 283-288.

Hesse describes a detailed simulation program MBB used to study the Cabintaxi PRT system in
specific applications in German cities. The simulation is an asynchronous car follower and
addresses all aspects of the movement of vehicles and passengers, passenger destinations,
optimum vehicle paths, movement of empty vehicles and outputs the results on a color TV
screen as well as in print format, which includes wait time statistics, passenger-miles traveled,
energy use, etc. The program was written in assembler language and permitted a network size up
to about 30 km, 63 stations, and 1000 vehicles to be studied. It could be expanded by a factor of
10 by enlarging the core memory. The program was used to develop and test network control
systems and the optimization of network layouts with respect to topology, track positioning,
stations and number of vehicles.

University of Karlsruhe, West Germany

Gerd Bahm, “The Influence of Fleet Size and Vehicle Capacity on the Performance and Service
Quality of Group Rapid Transit Systems,” PRT III, pp. 289-298.

Bahm developed a simulation model, written
in the SIMULA 67 programming language,
which simulated vehicles of any size or any
number of seats operating under automatic
control in a network of guideways. The
vehicles operated quasi-synchronously in slot
lengths that permit complete stoppage, i.e., the
brick-wall stop distance. The model was a
mixture of an event-oriented simulation and a
discrete time-step simulation. It advanced in
steps equal to the minimum headway.
Passenger arrivals were randomized. The most
important output variables were the waiting
time, average speed, distance travelled, and
headways between vehicles. The paper reported results of application of the model to the
network shown here. The author concluded with the statement that he was investigating large
networks.

Raytheon Missile Systems Division

185

D. Girard, “AGTT Car Follower Autopilot – Design and Simulation.” Missile Systems Division,
Raytheon Company, Memo No. SDD-76-836, 18 March 1976, 97 pages.

This report was prepared as a part of a program to prepare to bid on a federal RFP on control of
PRT systems. To test the autopilot, which operated as a car follower, two simulation programs
were developed: one of them, called String, employed six vehicles and was used for testing line
maneuvers such as responding to line-speed changes, overtaking a slow vehicle, and emergency
stopping. The other, called Merge, used forty vehicles to evaluate the merging process, test ride
quality and determine the length requirement of the parallel data region. The larger number of
vehicles was needed to reach steady state. The detailed dynamics of each vehicle was followed
during these simulations.

1980s Era PRT Network Simulation Programs

At the beginning of the 1980s, any serious work on a PRT simulation program required the use
of computers far too expensive for an ordinary individual to afford, but by the end of this decade
such a program could be developed on an easily affordable laptop PC. During the 1980s, PRT
simulation programs were developed by at least the following organizations or individuals:

17. Boeing Company
18. Otis Elevator Company
19. The author.

Boeing AGRT Simulation Work

William E. Greve, Donald E. Haberman, and Robert P. Lang, “Advanced Group Rapid Transit Vehicle
Control Unit Design Summary, Boeing Aerospace Company, UMTA-WA-06-0011-84-3, May 1985,
249 pages.

Don D. Lyttle, Dave B. Frietag, and Doug H. Christenson, Boeing Aerospace Company, “Advanced
Group Rapid Transit Phase IIB, Executive Summary & Final Report,” UMTA-WA-06-0011-86-1,
March 1986, 205 pages.

186

The Boeing work in the AGRT program mainly involved developing a vehicle longitudinal
control system (VLCS) that would control each of a system of vehicles operating in a network at
a minimum of 3 seconds headway. Their controller was a “point follower” in that, as given in
the above control block diagram, which is taken from page 18 of the above-cited Greve,
Haberman and Lang report, each vehicle follows profiled acceleration, speed and position
commands. Feedback of position and speed was taken from the odometers shown in the above
diagram, which were digital encoders that directly provided distance information, and speed by
differentiating the distance pulses. Proof of their control system involved extensive simulation
work in which real components were an increasing portion of the simulation.

Otis AGRT Simulation Work

W. Womack, “Vehicle Longitudinal Control and Reliability Project Summary,” Otis Elevator
Company, Report No. UMTA-IT-06-0148-79-10, June 1979, 134 pages.

“Zone management and Control Conceptual Design,” Otis Elevator Company, Transportation
Technology Division, Denver, Colorado, August 1981, 124 pages.

These are reports of the second of the two federally funded AGRT studies aimed at development
of an appropriate VLCS that would permit operation of vehicles in networks of guideways as
close as 3 seconds apart. These reports describe a point-follower system in which each vehicle
followed a calculated maneuver profile to accomplish slot slipping during merging, deceleration
into a station berth, acceleration to line speed, and speed changes. During their development
program Otis used simulations to verify in detail the operation of their control concept during all
maneuvers.

187

J. E. Anderson simulation program

J. E. Anderson, “Calculation of Performance and Fleet Size in Transit Systems,” Journal of Advanced
Transportation, 16:3(1982)231-252.

Richard J. Komerska, Development of a Modeling Tool for the Preliminary Design of Personal Rapid
Transit Networks, a Master of Science Thesis in Civil Engineering, University of California, Irvine,
1995 163 pages.

With reference to item #4 on page 4, the above paper derives equations from which to calculate
the quantities indicated. Komrska programmed a model that provides a convenient way to make
these calculations on a PC.

In August 1986, I initiated the development of a PRT simulation program at a time when I was
teaching engineering at Boston University and at the same time organizing and working with a
team of engineers to ready the specifications for an operational PRT system. Notwithstanding
these other commitments, I had a working program ready by 1990 in time to be included in a
proposal for a Phase I PRT Design Study for the Northeastern Illinois Regional Transportation
Authority, which was completed in 1992. The program was subsequently used to analyze a 3-
mile, 8-station network for Rosemont, Illinois.

With no budget for use of a mainframe computer or a DEC Workstation, both computer
hardware and software were then quite limited for me. During my first year at BU I had access
only to the first Compaq so-called “portable” PC, which had a 9-inch screen, only 64K internal
memory and no hard drive. To see what my simulation was doing, the first version of which I
had running within a month of a standing start, I had to refer to print output. A year later I was
able to purchase a 286 machine, but it was too slow until it could be upgraded with the 287
coprocessor. A year or so later I upgraded to a 386 then 387. At the time, after experimenting
with C, Pascal and various versions of BASIC, I programmed in BASIC because it took less time
to program. But it was not terribly satisfactory until Microsoft came out with Quick BASIC 4.0,
which a year or so later upgraded to Professional Basic 7.1, which I used for many years as my
major computing device. Considering the other commitments I had and my limitations on
hardware and software, I estimate that the development of a usable PRT simulation program with
today’s tools would take me working full time no more than about 4 man-months of effort or
about 1000 hours at 60 hours per week.

1990s and 2000s Era PRT Network Simulation Programs

 During the 1990s, as a result of the Chicago project, PRT development became quite
active again. In Dr. Jerry Schneider’s web page http://faculty.washington.edu/jbs/itrans/ in the
index under Simulations reference to the following PRT simulation programs can be found.
Because of the details given by Dr. Schneider, I see no need to comment further on these
programs, except for my own.

http://faculty.washington.edu/jbs/itrans/

188

20. Hermes PRT Network Simulator by Chris Xithalis (Greece)
21. PRT International (USA) www.prtnz.com

J. E. Anderson, Transit Systems Theory, Lexington Books, D. C. Heath and Company,
Lexington, MA 1978, 340 pages, available on www.advancedtransit.org for calculation of
curves and maneuvers.
J. E. Anderson, "Longitudinal Control of a Vehicle," Journal of Advanced Transportation,
31:3:237-247, 1997 for the gains of a vehicle controller.
J. E. Anderson, "Control of Personal Rapid Transit Systems," Journal of Advanced
Transportation, 32:1:pp. 57-74, 1998 for explanation for the asynchronous point-follower
system.
M. Joborn, “Empty freight car distribution at Swedish State Railways,” Computers in
Railways VI, WIT Press, Boston, Southampton, 361-370, 1998 for an effective means of
moving empty vehicles.
J. E. Anderson, “Simulation of the Operation of Personal Rapid Transit Systems.” Computers
in Railways VI, WIT Press, Boston, Southampton, pp. 523-532, 1998 for a description of the
author’s PRT simulator.
J. E. Anderson, “A Review of the State of the Art of Personal Rapid Transit.” Journal of
Advanced Transportation, 34:1, 2000 for how the author applied Joborn’s empty-vehicle
movement concept.

22. Logistic Centrum’s PRTsim software (Sweden)
23. RUF International (Denmark)
24. The Innovative Transportation Simulator (Italy)
25. TrakEdit: PRT Simulator from Taxi 2000 (USA)
26. Raytheon’s NETSIM PRT Simulation Program (USA)
27. Calver Marketing (UK)
28. JKH Mobility Services’ Simulation Program (USA)
29. Princeton’s PRT Simulation Program (USA)
30. BASim (Australia)
31. Simulation and Analysis Tools for Urban Automated Rapid Transit Networks

(S.A.T.U.R.N.) (Canada)
32. PRT Microsimulation (UK)

http://www.prtnz.com/
http://www.advancedtransit.org/

	Some History of PRT Simulation Programs
	Some History of PRT Simulation Programs
	Introduction
	1970s Era PRT Network Simulation Programs
	Alain L. Kornhauser, Steven Strong, and Paul Mottola. “Computer-Aided Design and Analysis of PRT Systems,” PRT III, pp. 377-384.
	Messerschmitt-Bölkow-Blohm, Munich
	1980s Era PRT Network Simulation Programs
	1990s and 2000s Era PRT Network Simulation Programs

