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Control of Personal Rapid Transit Systems 

J.  Edward Anderson 

Abstract 

The problem of precise longitudinal control of vehicles to follow predetermined time-varying speeds and positions 
has been solved.   To control vehicles to the required close headway of at least 0.5 sec, the control philosophy is 
different from but no less rigorous than that of railroad practice.  A PRT system can be designed with as good a safety 
record as any existing transit system and, because of the ease of adequate passenger protection, quite likely much 
better.  The basis for the control of a fleet of PRT vehicles of arbitrary size is a complete set of maneuver equations.  
The author's conclusion is that the preferred control strategy is one that could be called an "asynchronous point 
follower."  Such a strategy requires no clock synchronization, is flexible in the face of all unusual conditions, permits 
the maximum possible throughput, requires a minimum of maneuvering and uses a minimum of software.  Since each 
vehicle is controlled independently, there is no string instability.  Since the wayside zone controllers have in their 
memory the same maneuver equations as the on-board computers, accurate safety monitoring is practical.  To obtain 
sufficiently high reliability, careful failure modes and effects analysis must be a key part of the design process, and 
the control computers must be checked redundant.  
 

Introduction 

The problem of closed-loop automatic longitudinal control of a single vehicle constrained 
to follow a guideway at a specified time-varying speed and position within adequate accuracy has 
been solved by several investigators [1, 2], and analytical equations for the required speed and 
position gains have been derived.  The architecture of checked redundant microprocessor control 
for automated transit vehicles has been developed and has been shown to be able to achieve a 
safety record as good or better than a modern rapid rail system [3].  The major challenge in PRT 
control has been to control a large fleet of vehicles operating at fractional-second headway and 
merging and diverging in and out of stations and between separate branches in a network of 
guideways with an acceptable level of safety, comfort, and dependability, while meeting other 
essential criteria.  A great deal of work has been done on this problem over the past few decades.  
Much of the published work can be found in conference proceedings [4, 5, 6], in papers referenced 
in those proceedings, and in results of the Urban Mass Transportation Administration's Advanced 
Group Rapid Transit Program [7, 8].  While the AGRT system was designed for 3-sec headway, 
much of the work is directly applicable to PRT.  Together with the work of The Aerospace 
Corporation PRT Program [9] and the DEMAG+MBB Cabintaxi PRT Program [10], one can 
obtain an excellent perspective on the field.   

In a short paper, it is not possible to describe any appreciable portion of this work, but it is 
more useful to give a synthesis of conclusions reached concerning the means of controlling a PRT 
system, which have been built on the shoulders of prior investigators.  I first discuss the criteria 
any PRT control system must meet.  Then, it is necessary to discuss the problem of safe 
achievement of adequately low time headway between vehicles and how the safety philosophy 
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must differ from standard railroad practice.  Next is a discussion of strategies of control of many 
vehicles in a network.  With this background, the next topics are the information that must be 
available on board the vehicles and at various wayside points, the sensing and communication 
requirements, and the mathematics involved.  I do not discuss lateral control because, in most PRT 
systems, wheels running against lateral surfaces achieve it passively. 

Control Criteria 

Line and Station Throughput 

Analysis of PRT networks in many applications has shown that fractional-second 
headways are both needed and attainable.  The 1974 UMTA Administrator Frank Herringer, in 
testimony before a committee of the Congress of the United States, said: "A DOT program leading 
to the development of a short, one-half to one-second headway, high-capacity PRT system will be 
initiated in fiscal year 1974 [11]."  This statement was a result of consensus among workers in the 
PRT field in consultation with the Research and Development staff of UMTA on the need and 
practicality of headways as low as 0.5 sec.  Off-line stations must be designed to meet expected 
input and output flows, and the system must be designed to prevent excessive congestion at merge 
points and destination stations. 

Safety 

A PRT system must provide a level of safety in terms of injuries per 100 million miles at 
least as good as a modern rapid rail system [3], and preferably better because the improvements 
provided by PRT in all areas must be good enough to justify the development cost.  To achieve 
this level of safety, the on-board and wayside computers must be checked redundant.  

Dependability 

The term "dependability" is less often used than "availability," which is measurable in 
conventional transit systems as the percentage of trains that arrive at stations when expected.  The 
quantity dependability, which is the ratio of person-hours not delayed to the number of person-
hours of operation, is a more meaningful criteria and, in PRT, can be easily measured and updated 
trip by trip by a central computer [12].  In a recent PRT program, it was specified that the 
undependability (1 - dependability) should be no more than 3 person-hours of delay per 1000 
person-hours of operation.  From our analysis, if the safety criterion is met, the undependability 
will be at least an order of magnitude less. 

Ride Comfort 

Longitudinal maneuvers must be performed in such a way that International Standards 
Organization ride comfort standards on acceleration as a function of frequency are met.  As to 
maneuvers, the National Maglev Initiative Office set the most recent federal standards on ride 
comfort that would be applicable to vehicles in which all passengers are seated.  They restrict 
acceleration to 0.2 g and jerk to 0.25 g/s in normal operation.  The maximum emergency-braking 
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deceleration depends on whether passenger constraints are provided.  If not, the criterion must be 
that the passenger does not slide off the seat in an emergency stop. 

Changing Conditions 

The control system must be able to reduce cruising speed in high winds and must be able 
to cope with any unusual situation, such as a stopped vehicle, that would require vehicles to slow 
down or stop away from a station. 

Dead-Vehicle Detection 

There must be a means to detect a dead vehicle on the guideway, however remote that 
possibility may be.  In Section 5, it is stated that the vehicles must transmit their speeds and 
positions at frequent intervals to a wayside computer − a zone controller.  If the zone controller 
suddenly does not receive the expected signal, it must be programmed to remove the speed signal 
for all vehicles in that link and transmit this information to the next upstream zone controller.  Each 
vehicle's control system is configured to command reduction in speed to creep speed1 if the zone 
controller's speed signal is not received.  Magnetic detectors are placed at specified intervals along 
the guideway to inform the zone controller of passage of a vehicle.  Thus, if a vehicle passes one 
of these markers and not the next, the location of the dead vehicle is approximately known.  Then, 
as discussed at the end of Section 3.2, because the passengers are seated and can be protected and 
the vehicle can be protected by appropriately designed shock-absorbing bumpers [13], a creeping 
vehicle can be permitted to advance until it soft engages with the dead vehicle, whereupon the 
position of the dead vehicle becomes known and an appropriate failure strategy can be engaged. 

Interchange Flexibility 

The simplest interchange is a Y, with either two lines entering and one exiting or vice versa.  
Such an interchange gives the least visual impact at any one point, but it requires that vehicles first 
merge, then diverge, which creates a bottleneck after a merge.  Desiring to obtain maximum 
possible throughput, The Aerospace Corporation [9] used two-in, two-out, multilevel interchanges, 
which permit vehicles to diverge first and then merge.  With such interchanges, the input and 
output capacity of the lines is the same, hence the worst that can happen is that a vehicle may have 
to be diverted from the direction it would normally go.  Thus, the control system does not have to 
be concerned with sending too much traffic along a particular line.  If Y-interchanges are used, 
control is more complex and is discussed below.  Since Y-interchanges are often necessary, the 
control system must permit them. 

 

 

 
1A finite creep speed permits the vehicle ahead of the failed vehicle to move safely to the next zone, 

reduces anxiety, and with seated passengers is safe. 
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Vandalism and Sabotage 

A system in which the control functions are distributed, and the wayside computers are 
protected, for example in safe rooms under the stations, will be less susceptible to damage than a 
system in which a central computer plays an essential role.  To minimize the consequences of 
failures of any kind, distributed control is also preferred.  The required central-computer functions 
should be such that the worst that can happen if it fails is that the system will operate less 
efficiently. 

Modularity 

The control units should be easily exchangeable so that down time is minimized. 

Expandability 

The control system should be designed for easy expansion of the system. 

Principles of Safe, High-Capacity PRT 

The Headway Equation 

The minimum safe spacing between vehicles is the longest emergency stopping distance 
minus the shortest failure stopping distance.  It is given by the equation 

2

min
1 1
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in which V is the line speed, tc is the time constant for brake actuation, Ae is the minimum 
emergency braking deceleration, and Af is the maximum failure deceleration.  Strictly speaking 
there should be a term added involving the rates of change of deceleration (jerk), but the emergency 
jerk can be made high enough so that jerk does not add to Hmin.  If L is the length of the vehicle, 
the minimum time headway, using equation (1), is 

min
min

1 1
2c
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L H L VT t
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             (2) 

Equation (2) shows first that PRT vehicles should be as short as possible.  With careful design, a 
length of 2.6 m is practical.  A typical operating speed is 13 m/s, in which case the first term in 
Tmin is 0.2 sec.  Boeing work [14] showed that vehicles can transmit their speeds and positions as 
frequently as once every 40 msec.  To command emergency braking requires two such 
transmissions.  The braking time constant, once a signal is received must be very short.  With the 
right technology, 100 msec is practical.  Therefore, with some extra allowance, assume tc = 0.2 
sec.  If the minimum line headway is to be 0.5 sec, the third term in equation (2) can thus be no 
more than 0.1 sec − practically zero.  This means that in a fractional-second headway PRT system, 



7 
 

the design must be such that the minimum emergency deceleration must be as high as the maximum 
reasonably possible failure deceleration. 

The most recent indication of the practicality of close-headway control is an announcement 
by the National Automated Highway System Consortium [15] that in about a year "10 specially 
outfitted Buick LeSabres will take part in the first test of an automated highway." A companion 
article on the same page says that these 200-inch long autos will operate at a spacing of only 6 feet 
at "50-plus miles an hour."  This works out to a time headway of 0.309 sec.  At 30 mph the headway 
would be 0.515 sec.   

Departures from Railroad Practice 

In railroad practice, trains may be so long that the first term in equation (2) may be several 
times the term V/2Ae.  Also, at grade level, it is easiest for some foreign object or another train to 
quite suddenly appear ahead.  In the worst case the train ahead theoretically stops instantly, in 
which case the fourth term in equation (2) is zero.  Relative to the size of the term L/V, this is not 
a severe assumption and is conservative.  In railroad practice it is standard to design for the so-
called "brick-wall" stop in which Af is infinite.   

A railroad block control system depends in emergency situations on a vital relay that 
virtually never fails.  Its failure is likely to cause a collision, but such a failure is so rare that it is 
assumed never to occur.  What is implied is that the probability that the vital relay fails when it is 
needed is so low that it is acceptable.  There is no other choice.  In any moving system the 
simultaneous occurrence of two very improbable major failures may set up the conditions for a 
collision. 

In simple terms, in railroad practice the philosophy is that if one train is to stop 
instantaneously, the train behind must be able to stop in a distance short enough to avoid a 
collision.  In PRT, the philosophy must and can be that if one vehicle stops instantaneously, 
someone is already killed.  Therefore, one must and can design the system so that, barring a 
calamitous external event, it is "impossible" for one vehicle to stop instantaneously.  Just as in 
railroad practice, "impossible" has the meaning stated in the paragraph above. 

This failure philosophy requires careful analysis of every circumstance in which a sudden 
stop could theoretically occur.  There are only two:  1) Something falls off a vehicle or a foreign 
object appears that wedges the vehicle in the guideway and causes it to stop very quickly, and 2) 
a collision with the junction point of a diverge.  Making the first of these possibilities acceptably 
remote requires careful design and an inspection procedure that frequently assures that nothing is 
coming loose.  Experience with road vehicles gives a feeling for the possible frequency of such an 
occurrence, which almost never happens to a well-maintained vehicle.  By more detailed analysis 
than possible here it can be shown that by proper design a diverge collision will require two 
simultaneous highly improbable failures plus a rare "Act of God" event.   
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If there are many vehicles on a guideway, there are two additional possibilities for a sudden 
stop.  One is a runaway vehicle entering a station and failing to stop before colliding with a 
standing vehicle, and the other is a merge collision.  By use of checked-redundant vehicle control 
such as developed by Boeing [8], it is practical to design the control system in such a way that the 
mean time between over-speed failures continuing to a station collision is at least a million years.  
It can be shown that a merge collision would require two such failures in very close proximity in 
space and time, which places its MTBF in a range more remote than the estimated life of the 
universe. 

In a PRT system designed as indicated above, there are no sudden stops; however, there 
may be on-board failures that require emergency braking.  Equation (2) shows that to achieve safe 
fractional-second headway, one vehicle cannot be permitted to stop quicker than the vehicle 
behind.  This requires closely controlled, constant deceleration braking regardless of the condition 
of the guideway, which rules out systems that rely on braking through wheels because in rainy or 
snowy weather the coefficient of friction may vary along the guideway.  This is the safety-related 
argument for the use of linear electric motors.2  It may be noted that it is quite likely best to 
decelerate at the normal rate if an on-board failure is detected.  Trying to decelerate too rapidly 
may cause more problems than it solves. 

The final factor in the difference between PRT and railroad practice is that PRT vehicles 
are light enough so that reasonably sized bumpers can absorb a great deal if not all of the collision 
energy, and all passengers are seated.  By using data from auto safety practice, a PRT vehicle 
therefore can and should be designed so that even a collision need not cause injuries [13].   

Control Strategy 

General Considerations 

Adequately tight control of the speed profile can be attained by using proportional plus 
integral (P+I) control based on tachometer feedback.  A vehicle must be able to perform any one 
of the following maneuvers: 

  Speed change from given speed and acceleration to new speed 

  Slip given distance forward or backward from line speed  

  Slip given distance from acceleration maneuver 

  Slip given distance from slip maneuver 

  Advance given distance in station from rest or from deceleration maneuver 

 
2Another important reason for use of linear electric motors (with an appropriate guideway design) is to 

eliminate the need for guideway heating. 
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  Emergency stop 

Code must be written so that the time-varying speed and position profiles of any of these 
maneuvers with any set of desired parameters can be calculated in the on-board computer and used 
as commands to the controller.  If during each computational or time-multiplexing interval a 
wayside zone controller transmits a speed signal to all vehicles in its domain and at certain 
command points can transmit to a specific vehicle a maneuver command with a parameter (the 
desired speed, distance to slip, etc.), the vehicle has all the information it needs to perform the 
maneuver.  Moreover, by calculating the speed profile in parallel, the zone controller has all of the 
information it needs to monitor the execution of the maneuver.  If a vehicle moving at line speed 
moves away from the desired time varying position, the integral portion of the P+I controller 
corrects the position.  If the tachometer drifts, as it will, magnetic markers along the guideway 
provide the basis for correcting the tachometer constant, and, by commanding a slip maneuver, the 
time-varying position.  If the speed of the vehicle at a certain time is in error in excess of a preset 
amount, the zone controller assumes a fault and removes the speed signal from its domain.  The 
vehicle controller is programmed to command creep speed if it does not receive the speed signal, 
so any failure causes a safe reaction.  

  
We now have a system in which the vehicles each closely and reliably follow commanded 

speed profiles and are simultaneously monitored for failures by wayside zone controllers. Upon 
this basis it is possible to describe the maneuvers needed to operate the system.  This discussion is 
based on extensive experience with a PRT-network simulation.  We first consider the progress of 
an occupied vehicle from the point a passenger group enter to the point that they arrive at their 
destination, then we consider movement of empty vehicles. 

Movement of an Occupied Vehicle 

Let's join a group traveling together to the same destination by choice.  We either have a 
magnetically coded ticket with the destination recorded on it because we take the same trip every 
day, or we must approach a ticket machine to punch in a destination, pay a fare, and receive a 
ticket.  With a valid ticket we approach the forward-most available vehicle in a line of vehicles 
and insert the ticket into a stanchion in front of the stopped and ready vehicle.  This action flashes 
the origin and destination station to a central computer which has in its memory the estimated 
arrival times of all vehicles moving through the system.  If our vehicle is expected to arrive at its 
destination station at a time when the station is full and cannot receive another vehicle, we are 
informed that we must wait a specified time before we can try again.  Generally, this will be a very 
small time and the central computer will prioritize the unfulfilled demands for service. 

When the ticket can be accepted, the station computer so informs us, causes our vehicle's 
door to open, and transfers the memory of the destination to the on-board computer.  We enter our 
vehicle, sit down and when ready one of us presses a "GO" button.  Thereupon the door is 
automatically locked. If our vehicle is not in the forward-most loading berth, it must wait until the 
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vehicle or vehicles ahead move out.  If it cannot yet be commanded to line speed because an 
opening is not yet available, it is commanded to advance as far forward as possible. 

The station zone controller meanwhile is examining the flow passing the station for an 
opening.   By zone-controller supervision the vehicles on the main line are maintained at 
separations at or greater than the minimum separation permitted by equation (1).  Note that there 
need at this point be no synchronization.  If there is no traffic on the main line a vehicle can be 
commanded to accelerate to line speed at any time it is ready.   As traffic on the main line builds 
up, say with the approach of the morning rush hour, vehicles pass stations at any spacing down to 
the minimum allowed.   

To create an opening for our vehicle, the zone controller may command a mainline vehicle 
too close ahead to slip ahead if possible and a mainline vehicle behind to slip behind at the moment 
it commands our vehicle to line speed.  If slipping of the mainline vehicle behind would cause the 
headway between it and the vehicle behind it to fall below the minimum, the zone controller would 
within a few milliseconds cause that vehicle to slip too, and so on upstream.  If there would be too 
much slipping of upstream vehicles or if the slipping of downstream vehicles has propagated into 
the station area, our vehicle would wait until there is an acceptable opportunity to accelerate out 
of the station.   

When an opening appears, our vehicle is commanded to accelerate out of the station, either 
from rest or from a station-advance maneuver.  While our vehicle is accelerating, a vehicle ahead 
may be caused to slip because of a conflict at a downstream merge point.  If that happens and if 
our vehicle would reach line speed too close behind the vehicle ahead after it is through slipping, 
our vehicle is commanded to slip the necessary amount while accelerating and, if necessary, the 
main-line vehicles behind it will be commanded to slip by the amount needed to maintain 
minimum headway.   

Next, suppose our vehicle approaches a line-to-line merge point.  As it passes a command 
point at a predetermined location upstream of the merge junction, the cognizant wayside zone 
controller, having in its memory the positions, speeds and slip maneuver data for each vehicle 
within this merge zone, gives a maneuver command needed to resolve any conflict. If the vehicle 
ahead on the other branch of the merge is too close, the zone controller commands it to slip ahead 
if possible3, or if not, it commands our vehicle to slip back.   If our vehicle is commanded to slip 
back it may slip into the headway domain of the vehicle behind on the same leg of the merge, in 
which case that vehicle and possibly vehicles behind it are commanded simultaneously to slip 
necessary amounts.  Since our vehicle may thus already be slipping when passing the command 
point, the on-board maneuver algorithm is designed so that it can cause additional slip of a slipping 
vehicle.  Such operations have been found by simulation to be completely stable. 

 
3Slipping ahead is practical only if the minimum line headway is less than about one second.  Otherwise 

the maximum travel distance to slip is excessive. 
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After passing the merge point, suppose our vehicle next approaches a diverge point.  At a 
predetermined command point upstream of the diverge, the cognizant zone controller requests our 
destination, which is transmitted through a transmission medium to the zone controller.  The 
diverge zone controller has in its memory a switch table giving the left or right switch command 
for each station in the network from that diverge point.  By fiber-optic line, the central computer 
can transmit revised switch tables to various diverge-point zone controllers every few seconds if 
necessary to avoid excessive congestion in certain downstream links.  The zone controller 
transmits the right or left switch command to our vehicle, which then acts on the command. 

Next suppose our vehicle approaches a station.  As soon as it has passed a merge or diverge 
point, it is handed off to a new zone controller that asks for and receives its destination.  If this 
station is not our destination, the zone controller commands our vehicle to switch in the direction 
opposite the station off-line guideway.   If this station is our destination, the zone controller does 
not give a switch command immediately but waits until our vehicle reaches a switch command 
point at the farthest downstream point at which the switch can, with a tolerance, be safely thrown.  
The wait is necessary because the station may have been full when our vehicle first entered the 
domain of the cognizant zone controller, but the last position in the waiting queue on the station 
off-line guideway may have cleared a few moments later.   

When our vehicle reaches its destination station's switch command point, the zone 
controller commands it to switch in the direction of the station if there is an available berth, and if 
not commands it to switch away from the station.  If the zone controller commands our vehicle to 
switch into the station, it assigns it a berth so that the next vehicle will find that this berth is 
reserved.  Our vehicle switches if necessary and continues forward at line speed to a deceleration 
command point.  At this point, if one or more positions down- stream of the assigned berth have 
cleared, a new farther-forward position is assigned, the old one is cleared, and our vehicle is 
commanded to decelerate along a speed profile that first reduces the speed to a predesignated 
station speed and then moves the vehicle forward, usually at station speed, until it must decelerate 
at the comfort rate to stop at the assigned position.  If, at any time during the deceleration 
maneuver, the zone controller has advanced a vehicle out of the position or positions ahead of the 
assigned position, it reassigns our vehicle to the forward-most empty or to-be-empty position and 
revised the deceleration maneuver accordingly.   

If our vehicle must stop at one of the waiting positions upstream of the station unloading 
and loading berths, it waits until the zone controller can command it to advance into a loading 
berth.  If, any time during the station-advance maneuver, the berth ahead of the previously assigned 
berth clears, the station-advance maneuver is revised to dock our vehicle at the new forward-most 
free berth.  When our vehicle stops, the door is either opened by a passenger or by an automatic 
device. 

   The reader may note that some PRT designers have proposed that there be separate loading 
and unloading platforms.  This doubles the station length, reduces the throughput, and with the 
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small passenger groups characteristic of PRT it does not significantly reduce the time required for 
unloading then loading.  

Synchronous, Quasi-synchronous and Asynchronous Control 

In the early 1970s, the discussion of PRT control virtually always started with a discussion 
of the relative merits of synchronous, quasi-synchronous, or asynchronous control.  In a purely 
synchronous control system, a vehicle that is ready to leave a station waits until it has a confirmed 
reservation through every merge point and at the destination before being dispatched.  Such a 
system was discarded because it is inflexible in a slow-down or stoppage on the main line; and, if 
the number of merges that must be negotiated exceeds three or four, the wait time becomes 
excessive [18].   The quasi-synchronous system was therefore proposed to permit vehicles to 
maneuver to resolve merge conflicts.   

 
In his book [9] Dr. Jack Irving, while advocating quasi-synchronous control, commented 

that the essential point is that a wayside computer command and monitor maneuvers, just as 
described above.  Until reaching a merge point, there is no need to synchronize the flow, and to do 
so in advance results in more maneuvering than necessary.  As in the scheme described in the 
above paragraphs, whenever a vehicle arrives at the merge command point, if there is an 
approaching conflict, a merge-point zone controller either commands the conflicting downstream 
vehicle on the other leg of the merge to slip ahead if possible, or if not to slip the vehicle that has 
just arrived at the command point back.  There is no need at merges to synchronize with specific 
clock times.  We have also found that the described strategy requires less software than quasi-
synchronicity. 

Such a scheme is asynchronous except for the technicality of having to synchronize 
merging of certain vehicles with respect to one vehicle, but not with respect to a clock.   In the 
1970s, asynchronous control usually implied car following, in which each vehicle is controlled 
based on the position and sometimes the speed of the next downstream vehicle [1].  As pointed 
out above and by Dr. Irving, car following is not necessary.  It complicates the control problem 
and is difficult for the necessary wayside monitor because the monitor does not know 
independently the profile of the maneuver.  In the terminology used in the 1970s, the system we 
prefer could be called an "asynchronous point follower." 

Movement of Empty Vehicles 

During the night when there is little or no traffic on the system, most of the vehicles are 
stored at strategically located storage barns and the rest are stored at stations so that, as in elevator 
service, passengers don't need to wait anxiously on deserted platforms, but instead vehicles that 
are ready to leave immediately wait for passengers.  The number of vehicles required to wait at 
each station must be determined by an operational study.   
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As passengers start arriving at stations, the waiting empty vehicles are used up and more 
must be ordered.  Based on operational experience, a flow of empty vehicles can be started in 
anticipation of passengers.  In any case, once the number of vehicles in a station that have not been 
given destinations plus the number within a specified time of arrival is less than the number of 
passengers waiting, the station computer signals to the central computer via fiber-optic line that it 
needs an empty vehicle.  Other stations will have surplus empty vehicles either because there are 
no passengers at the station and there are more vehicles in or approaching the station than the 
specified minimum, or because the flow of occupied vehicles in and approaching the station 
exceeds the flow of passenger groups entering the station from the street.  In the later case, it will 
sometimes be necessary to dispatch an empty vehicle while a passenger group is approaching it in 
order to permit occupied vehicles to enter the station and unload.  In this case, the passenger group 
will be informed by computer voice that another vehicle will be docking in a few seconds.  As 
soon as a station has a surplus vehicle its computer so informs the central computer and dispatches 
the surplus vehicle to the next station. 

When an empty vehicle reaches the switch command point of a station, if the station does 
not need an empty vehicle its computer waves it off to the next station.  If this station could use an 
empty vehicle, it would like to call this one in, but there may be a greater need for it at a 
downstream station.  So, the central computer, having a knowledge of the number of empty and 
occupied vehicles in each link in the network and of the number and wait time of passenger groups 
waiting at each station, has the basis for determining whether each station should accept or wave 
off needed empty vehicles.  Since the situation is updated every few seconds, no passenger group 
need wait much more than at other stations.  The average wait time can be reduced by increasing 
the number of empty vehicles in the network, but at the expense of increased congestion and 
system cost.   

The major decision points for distribution of empty vehicles are the diverge points.  Here, 
as already mentioned, the central computer, with knowledge of the whole system, can, by fiber-
optic link, direct left or right switch commands for the next empty vehicle.  Such frequent updating 
of empty-vehicle commands at the last possible moment is a far easier problem to solve than the 
general transport problem.   

Information Transfer 

With the above described control strategy, the information that must be fed to the vehicle 
computer is the vehicle's actual speed and position; the cruising speed, which could be a function 
of wind or position in the guideway; and, at certain command points, the number of a maneuver 
with a parameter.  The information required by each wayside zone controller is all vehicle positions 
and speeds in its domain including hand-off of the state of each vehicle as it enters its zone, and 
any information about anomalies.  The information needed by the central computer is the stations 
at which there are surpluses or deficits of empty vehicles, the number of empty and occupied 
vehicles in each link, the destinations of and the departure times of all vehicles commanded to 
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leave stations, the arrival times, the distance each vehicle has traveled, the distance traveled at 
which each vehicle is due for maintenance or cleaning, the location of and data on any faults in 
the system, and the weather conditions. 

To perform the required data transfer there must be a continuous and noise resistant means 
for data transfer between vehicles and zone controllers, such as the three-wire communication line 
developed by Boeing [14,16], a series of magnet markers to signal passage of vehicles, and fiber-
optic links between the central controller and all zone controllers.  At predetermined intervals 
(Boeing used 40 msec), each vehicle must transmit to the cognizant zone controller its vehicle 
number, speed, position, destination on call from the zone controller, and any data about faults.  
The wayside zone controller must be able to transmit to all vehicles in its domain a continuous 
cruise-speed signal, and it must be able to transmit parameterized maneuver commands and switch 
commands to specific vehicles when needed.   

 For position and speed sensing, Boeing engineers [17] found that incremental wheel-angle 
encoders with a resolution of 0.04 foot per pulse were enough as the basis for computing both.  
Position measurement consisted only of counting pulses, but the calculation of speed was 
"considerably more complex and, to a large extent, dictated the Programmable Digital Vehicle 
Control System configuration" they selected. The vehicle must also be equipped with sensors to 
detect the magnetic markers and to transmit to and receive data from the communications line.  

Mathematics 

Maneuver equations 

Parameterized equations are needed for all the maneuvers required to run a PRT system as 
described.  This is not an easy task, but once the algebra is worked out, as we have done, it is 
available forever.  The equations can easily be programmed into the memory of the on-board and 
wayside computers, which then permits accurate control and monitoring of each vehicle with a 
minimum of data transfer.   

Curved-Guideway Equations 

In the above discussion, reference was made to the location of certain command points.  
Determination of the positions of all such points requires a complete understanding of the 
equations of curved guideways and their use in minimization of off-line guideway lengths and 
distances between branch points.   

Empty-Vehicle Movement 

A general scheme of the points and times in the system where empty vehicles are to be redirected 
has been given and the use of decision algorithms has been suggested.  In relatively small systems, 
these are quite simple, but the challenge is to optimize such algorithms as the network grows.  
Some good work [9] has been done on this problem, but more is needed. 
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Conclusions 

Analysis, simulation and hardware experience has shown that the problem of precise 
longitudinal control of vehicles to follow predetermined time-varying speeds and positions has 
been solved.   To control vehicles to the required close headway of at least 0.5 sec, the control 
philosophy is different from but no less rigorous than that of railroad practice.  Available results 
show that a PRT system can be designed with as good a safety record as any existing transit system 
and, because of the ease of adequate passenger protection, quite likely better.   

With maneuver equations derived in easily programmable form, one has the basis for the 
control of a fleet of PRT vehicles of arbitrary size.  The author's conclusion is then that the 
preferred control strategy is one that could be called an "asynchronous point follower."  Such a 
system requires no clock synchronization, is flexible in the face of all unusual conditions, permits 
the maximum possible throughput, requires a minimum of maneuvering, and a minimum of 
software.  Since each vehicle is controlled independently, there is no string instability.  Since the 
wayside zone controllers have in their memory the same maneuver equations as the on-board 
computers, accurate safety monitoring is practical.  To obtain sufficiently high reliability, careful 
failure modes and effects analysis must be a key part of the design process, and the control 
computers must be checked redundant.  Work of the federal Advanced Group Rapid Transit 
Program showed a decade ago how that can be done in a very satisfactory manner. 
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I. Introduction 
The above-listed references provide the basic background used to develop the work described herein.  The 
serious reader needs to be familiar with this work before delving into the details developed in this document.  
The system under discussion is referred to as an “Intelligent Transportation Network System” (ITNS) to avoid 
direct use of the generic name “Personal Rapid Transit” or PRT because this type of “transit” has been identified 
with railroads, which have been for over a century subject to the 1911 Railroad Safety Act, which requires a 
minimum headway between trains such that if one train stops instantly, the one behind can stop without 
colliding.  Based on experience discussed in the above references, with today’s technology used as specified 
we can safely operate at substantially shorter headways, and we have been advised that one step is to stop 
calling the system a form of transit.  The true proof, however, must come with extensive operation in daily 
practice.  But the fact is that in this discussion we can’t avoid using the term PRT because it is so ingrained in 
advanced transit culture. 
 
Reference 7 provides the first description of an asynchronous, point-follower system published and explains 
how I concluded that it is the best way to control the vehicles in ITNS.  Here is a quote from the abstract: 
 

“The problem of precise longitudinal control of vehicles so that they follow predetermined 
time-varying speeds and positions has been solved.  To control vehicles to the required close 
headway of at least 0.5 sec, the control philosophy is different from but no less rigorous than 
that of railroad practice.  The preferred control strategy is one that could be called an 
"asynchronous point follower."  Such a strategy requires no clock synchronization, is flexible 
in all unusual conditions, permits the maximum possible throughput, requires a minimum of 
maneuvering and uses a minimum of software.  Since wayside zone controllers have in their 
memory  the same maneuver equations as the on-board computers, accurate safety monitoring 
is practical.” 

http://www.advancedtransit.net/
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The key to a practical asynchronous point follower is possession of the exact equations for all of 
the transitions, which are developed beginning in Reference 1 and improved over the years as a 
result of teaching engineering mechanics and transit systems analysis and design.  In a companion 
paper “Transitions,” Reference 11, equations are derived from which to compute the transitions 1) 
from any speed and acceleration to rest in a given distance, 2) from any speed and acceleration to 
line speed while losing a given distance called “slip”, and 3) from one speed and acceleration to 
another speed.  Many of these transitions are derived in Appendix A of Reference 2.  With the 
equations of Reference 11 developed, a high-gain controller designed according to Reference 6 
causes the vehicle to follow the commanded speed-position profile very accurately.  In 
Asynchronous Control there is no clock synchronization.  All vehicle movement is a result of 
events.  In the Section III a series of such events is discussed.  In Point-Follower Control of ITNS, 
every transition follows the code derived in Reference 11. 
 
II. The Control Strategy 

1. A Hierarchy of three levels of control:  
a. VC – vehicle controllers 
b. ZC – wayside zone controllers 
c. CC – central control 

2. Asynchronous point follower, i.e., no clock synchronization of vehicle positions.  
Vehicles follow calculated transitions commanded by the ZC.  Each ZC checks the 
movement of each vehicle within its jurisdiction. 

3. Adjacent ZCs pass vehicle position and speed data.  Each upstream ZC informs the 
downstream ZC of the arrival of a vehicle, indicating its number, position, speed, and 
maneuver.  Each downstream ZC informs its upstream ZC of the number, position, speed, 
and maneuver of the vehicle closest to it to warn of a slipping vehicle, i.e. one that has 
been commanded to a slip back to maintain prescribed minimum headway from the 
vehicle ahead. 

4. A time interval called a “time multiplexing interval” (TMI4) is established.   (This may 
not need to be a fixed interval, just an interval long enough so that the necessary 
information can be passed.)  During each TMI a speed signal from the cognizant ZC is 
sent to all vehicles in its jurisdiction, and each vehicle in that zone sequentially transmits 
to the ZC its ID, speed, position, and any fault information.  The TMI must be short 
enough so that in the case of an anomaly, action can be taken before a dangerous 
situation can develop.  In 1993 Raytheon settled on a TMI of 200 msec.  In the early 
1980’s, Boeing used 40 msec, but in a GRT system with fewer vehicles.   

5. The number of vehicles that can be managed by one ZC depends on the reliable data 
rate. 

 
4 A term first introduced by Boeing Company in their study of AGRT for UMTA. 
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6. The electronic engineering team must establish the maximum number of vehicles that can 
be accommodated by one zone controller, and this determines the maximum zone size. 

7. Each VC is configured so that if it misses a speed command two TMI in a row; it is 
commanded to reduce to creep speed, which at this time must be zero.  (For the sake of 
reducing passenger anxiety by moving affected vehicles into stations, it would be better 
to reduce to a non-dangerous speed such as 2 mph.  Substantial testing is needed to prove 
that a non-zero speed is safe.) 

8. If a ZC misses the information or senses anomalous information from a vehicle two TMI 
in a row, it removes the speed signal from the faulty vehicle and those upstream of it, so 
as to signal them to reduce speed. 

9. When the controller in a vehicle commands the vehicle’s switch to be thrown, it initiates 
a command to stop one second later, which command is cancelled by a signal from a 
proximity sensor that indicates that the switch has been thrown. 

 
III. Follow a Vehicle through a Network 
 
We explain the events the software must perform by following a vehicle through a network: 

Start with a vehicle leaving a station.  Having met the conditions needed to be commanded out of 
the origin station (discussed in Section VIII), the vehicle reaches the Station-Exit Command Point, 
i.e., the point of intersection of the main guideway with station by-pass guideway.  At this point, 
a routine called ResetOnStationExit resets various quantities to either the next station or if none on 
the link to the merge or diverge point ahead. 
 
Assume the vehicle we are following then approaches the command point ahead of a merge.  (The 
positions of all of the command points were calculated and stored in setup programs.) When our 
vehicle reaches the merge command point (MCP) the merge zone controller (MZC) goes into 
action.  It determines if our vehicle will merge with the closest vehicle behind on the other leg of 
the merge at a headway closer than the established minimum headway.  If so, the MZC commands 
the other vehicle to slow down and then return to line speed (called “slip”) sufficiently far back to 
achieve the specified minimum headway through the merge.  If in slipping back, the vehicle behind 
would violate the minimum headway criterion that vehicle is also caused to slip, and so on 
upstream until no more slipping occurs.  A routine calculates slip in upstream station areas and 
upstream of any branch point in the network.  The longer the minimum headway the farther 
upstream these slips will propagate.  
  
The MZC can cause our vehicle to slip ahead instead of behind if 1) it would not reduce the 
headway to the vehicle ahead to less than the set minimum headway or 2) if there is sufficient 
space on the guideway to move the MCP back enough to permit slipping ahead.    
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Next assume the vehicle approaches the switch command point (SCP) of a downstream station that 
is not its destination.  The cognizant station-zone controller (SZC) causes the vehicle to switch 
away from that station.  The vehicle continues downstream to ResetOnStationExit and then until 
it reaches say a diverge command point (DCP).  The cognizant diverge zone controller (DZC) 
reads the vehicle’s destination, looks up the appropriate switch direction, and gives it a command 
to switch either to the right or left depending on which direction provides the shortest time to its 
destination.  The CC can change these switch commands if necessary to balance the flow in the 
network. 
 
Now assume our vehicle reaches the SCP of the desired destination station.  The cognizant SZC 
determines if the destination station is or is not full of vehicles.  If the station is full the vehicle 
must be “waved off”, i.e., switched away from the station, whereupon it must proceed through the 
network until it returns for a second try.  If there is room in the station, the SZC commands the 
switch to be thrown in the direction of the station and assigns our vehicle to the forward-most 
empty berth.   
 
Next, our vehicle approaches the deceleration command point (DCP) where the SZC re-determines 
the forward-most berth and commands the vehicle to stop at that berth.  Having received this 
command to stop in a specified distance, the VC calculates the appropriate sequence of positions 
and speeds at each time interval dt that will cause the vehicle to slow down comfortably.  These 
positions and times become commands to the onboard control system to cause the vehicle to slow 
to a stop.  During this maneuver, a berth or berths forward of the commanded stopping position 
may have opened, in which case the SZC commands our vehicle to a new farther-forward stopping 
position. This process continues at each computational interval until the vehicle has stopped. 
 
If our vehicle is commanded to stop in a berth upstream of the station loading-and-unloading 
platform, it waits until it can be commanded by the same routine to stop at a berth farther forward.  
When it stops at a station berth and there are no empty positions ahead of it, if the vehicle is 
occupied the vehicle’s door is commanded to open and the passengers begin to disembark.  Once 
the passengers have left the vehicle, the vehicle is either available for a new group of passengers 
right away or it is moved forward to fill any empty berths before loading.   
 
If the vehicle in the first berth in a station is empty, if there are no passengers wanting to board, 
and if there are vehicles waiting to enter the station platform, the SZC will give that first empty 
vehicle the destination of the nearest storage station, whereupon based on the criteria given in 
Section VIII it is commanded to leave the station.  The ID number of this vehicle is also placed in 
a register of empty vehicles headed to storage, with these numbers referenced to each station.  For 
this purpose, every segment of guideway is assigned to a station.  Now, if according to an 
established criterion a station needs an empty vehicle, its SZC looks upstream from station to 
station until it either finds an available empty in one of the empty-vehicle registers or it reaches a 
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storage station where an empty vehicle is available.  The SZC then simply changes the destination 
of that empty vehicle to its own, whereupon the vehicle is committed and no longer available to 
be diverted to another station.  The priority in which stations seek empty vehicles is important.  
During each computation interval, in a routine called SetupCallEmpty the priority is taken in 
accordance with wait time for stations in which passengers are waiting, longest wait first, then for 
the remaining stations the order is randomized differently each computational interval.  If the wait 
time at a certain station has become unusually long, its call criterion can be increased so that 
vehicles can be called sooner. 
 
Line speed changes are of two types: 1) due to high winds the line speed must be reduced according 
to a formula and then increased after the wind dies down, and 2) at specific points in the network 
where the vehicle must slow down for a curve and then increase speed again after passing the 
curve.  Code for these functions is included in the routines ChangeLineSpeedDueToWind and 
ChangeLineSpeedAtSpecificPoints.  In the latter routine, increasing speed at a specific point has 
no effect on the vehicles behind, but in decreasing speed, if a vehicle behind is too close, the 
headway between it and the vehicle ahead may go below the minimum allowable unless it is 
commanded to the new line speed at the same time, which is done. The criterion for slowing a 
vehicle down simultaneously with one that has reached the speed-change command point is 
derived in Reference 11. 
 
Converting the above commands into code is a straightforward iterative process that can be 
appreciated in detail only through the process of writing code.  To do it one must simply plunge 
in.  Only then will one appreciate the conditions that arise and that must be corrected though code 
revision and addition.  To catch errors in the developmental program, the primary but not only tool 
is a Headway Checker, which stops the simulation program if a headway violation is found.  It 
provides enough information so that with the Randomizer off5 the program can be run again and 
again until the exact cause of the error is found and corrected.  Often quite a number of runs are 
needed to discover the exact cause of the error.  While laborious, it is essential that the programmer 
not guess at a cause of an error.  Much more often than not the real cause is not obvious.  The 
present stage of the developmental program is such that hundreds of runs have been made with no 
error.  While laborious and requiring a great deal of patience, the development of the program 
needed to simulation an ITNS network is a straight-forward application of mathematics, 
mechanics, and logic, and has been developed by almost every PRT developer (See Reference 9). 
 
 
 
 
 

 
5 With the Randomizer off the program generates the same sequence of pseudo-random numbers each time. 
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IV. Hardware & Software Elements 
 

The Control System needed to operate ITNS consists of the following elements.   

Hardware: 

WHAT HOW 

Instruments on board the vehicles to sense speed 
and position.  

Encoders mounted on wheels convert motion 
into a series of electrical pulses that can be 
converted into digital information.  Since we 
use the main support wheels only for 
suspension and not for propulsion and braking, 
such devices provide accurate information on 
both distance and speed and are commercially 
available.  Averaging left and right encoder 
outputs gives the correct position and speed 
around curves and providing encoders in both 
front and rear wheels provides redundancy. 

Instruments at wayside to separately sense speed 
and position of vehicles for wayside computers. 

The best-known scheme uses magnetic 
markers, pairs of which permit speed to be 
measured by measuring the time between 
closely spaced magnets. 

A secure, environmentally friendly 
communications medium. 

Leaky cables are commercially available at low 
cost and can be mounted inside the guideway 
to act as the communications medium.  There 
are many suppliers.   

Transcevers to transmit and receive information 
between vehicles and wayside via the leaky 
cable. 

It may be necessary to design these devices 
from scratch to conform to the specific 
requirements. 

Transducers, i. e., devices that convert 
information from one type to another – analog 
to digital, digital to analog. 

Commercially available. 

Means for propelling and braking the vehicle. Linear induction motors (LIM) driven by 
variable frequency drives (VFD) provide all-
weather operation and are commercially 
available.  A pair of parking and emergency 
brakes will be provided, in which a high-
friction pad presses down on the running 
surface and is operated by a ball-screw 
actuator.  For parking this brake operates every 
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time the vehicle stops.  It is used for 
emergencies in the rare case that LIM braking 
is not available.  

Means for permitting a vehicle to switch from 
one guideway to another. 

The preferred means has an on-board switch 
arm that can engage a switch rail on either the 
left or right side.  The guideway has no moving 
track parts. 

Computers to be used in dual duplex sets. Commercially available. 

 

Software: 

Software to convert information from sensors 
to digital information. 

Commercially available. 

Software to convert information from digital 
to voltages and frequencies. 

Commercially available. 

Software in vehicle computers to cause the  
vehicle door to open or close. 

Commercially available, e. g. for operating 
elevator doors. 

Software in vehicle computers required to 
operate the heating, ventilating, and air 
conditioning equipment. 

Commercially available. 

Software in vehicle computers required for 
calculating speed and position commands, 
comparing them with actual speeds and 
positions, multiplying them by suitable gain 
constants, and outputing commands to analog 
devices. 

Commonly known to control engineers. See 
paper “Longitudinal Control of a Vehicle.” 

Vehicle software that corrects for step 
changes in position due to encoder calibration 
without the controller seeing a step change in 
position. 

When the encoder must be calibrated, the 
same correction must be fed into the 
command position. 

Software in each wayside computer to receive 
speed-and-position information separately 
from each vehicle in its domain, to verify that 
that information is correct, and to take 
corrective information if not.  

This is the monitoring and safety function of 
the zone controller. 

Software in each wayside computer to 
interpret the position and speed of each 

The methods are described in open literature 
and the needed code has been developed. 
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vehicle in its domain and to send the 
appropriate maneuver command when needed 
to a specific vehicle.  Different software is 
needed in station zone controllers, merge zone 
controllers, and diverge controllers. 

Software in a central computer to calculate 
the switch table needed in diverge-zone 
controllers and to adjust it for traffic 
conditions. 

This is a straightforward process using known 
methods. 

Software to permit wayside diverge-point 
computers to command vehicles to switch left 
or right based on transmitted knowledge of 
the destination. 

When a vehicle reaches a diverge command 
point, the cognizant wayside computer 
interrogates the vehicle for its destination, 
looks up in a switch table the right or left 
switch command for that destination, and 
transmits it to the vehicle.   

Software to permit wayside merge-point 
computers to command vehicles to slip when 
necessary to maintain pre-set minimum 
headway. 

When a vehicle reaches a merge command 
point, the wayside ZC for that merge checks 
the positon of vehicles on the other branch 
and commands slip when needed.  These 
actions have been programmed. 

Software to permit speed to be changed in 
different parts of a network, to reduce speed 
in high wind conditions, and to increase it 
again when the wind dies down. 

This process has been programmed. 

Software in wayside computers called “zone 
controllers” to permit one zone controller to 
pass vehicles to the next zone controller. 

A straightforward programming task. 

Software in wayside zone controllers to pass 
status information from vehicles to a central 
computer. 

A straightforward programming task. 

Software in a central computer to assist the 
optimum movement of empty vehicles. 

The method we have programmed is 
described in Reference 9. 

Software in a central computer to gather, 
interpret, and display performance data. 

A straightforward programming task. 

Software to enable voice communication 
between vehicles and a wayside control room. 

This has not yet been programmed. 

 



26 
 

V. The System Software Elements  
 
Some of this information has been given in a different form. 
 
5.1. Control of a Vehicle 

• Inputs from wayside Zone Controller: 

        Speed every Time Multiplexing Interval. 
      Maneuver command at Command Points. 
      Switch commands before every diverge and merge. 
 

• Input from on-board Encoder: 
      Distance-pulse stream 

• At fixed intervals along the guideway, update vehicle position and correct speed. 
 

• As a vehicle leaves a station, calibrate the position signal. 

• Calculate: 
Command Acceleration(t) 

      Command Speed(t) 
       Command Position(t) 
       Measured distance, from encoder 
       Measured speed, from distance and time encoder increments 
       Command Thrust using calculated gains 
       Switch Position 
 

• Outputs: 
      Voltage 
       Frequency 
       Switch command 
 
5.2. Control of a Station Zone (SZC) 

• The domain of the SZC is from the closest upstream branch point (BP), which may be a 
line-to-line BP or the nearest upstream guideway diverge point to the cognizant station 
output diverge point. 

• Every Time Multiplexing Interval (TMI) the SZC sends the line speed to all vehicles in 
its domain, and receives from each vehicle in its domain its speed and position measured 
from the nearest downstream line-to-line BP.  

 
• The SZC calculates the expected speed and position of each vehicle in its domain and 

removes the speed signal if the values from a vehicle are outside an agreed range. 
 

• Every TMI the SZC is informed of a vehicle in the upstream zone that will arrive in its 
domain in the next TMI and so informs the downstream zone of the same. 
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• When a vehicle reaches the station’s switch command point (SCP), the SZC determines if 

it is to switch into the station and if so, assigns it the forward-most empty berth. 
 

• When a vehicle commanded to switch into the station reaches the station’s deceleration 
command point (DCP) the SZC reassigns it to the forward-most empty berth, which may 
have changed, and commands it to stop in the distance to that berth.  

 
• When a vehicle is either decelerating into the station or stopped and a berth further 

forward becomes empty, the SZC commands the vehicle to stop at the new forward-most 
available berth.  The vehicle’s door must be closed in order for it to accept the command 
to move forward. 

 
• When a vehicle is assigned to the first berth, whether in it or moving to it, the SZC, with 

knowledge of the positions of all vehicles on the main line guideway, determines when to 
command the vehicle to line speed.  See Section VIII.  

 
5.3 Control of Merging (MZC) 
 

• The domain of the MZC is from the downstream guideway junction (the merge point) 
upstream on each leg to the nearest BP. 
 

• Every TMI the MZC sends the line speed to all vehicles in its domain, and receives from 
each vehicle in its domain its speed and position measured from the merge point ahead. 
 

• The MZC calculates the expected speed and position of each vehicle and removes the 
speed signal if these values are outside an agreed range. 

 
• Every TMI the MZC is informed of the position, speed, and acceleration of a vehicle in 

the upstream zone on either leg that will arrive in its domain in the next TMI and so 
informs the downstream zone of the same. 

• When a vehicle just passes the merge command point (MCP), the MZC determines if the 
vehicle upstream of and closest to MCP on the other leg is close enough to violate the 
minimum-headway criterion.  If so, this vehicle is commanded to slip back enough to 
maintain the set minimum headway, and simultaneously any vehicle upstream of it that 
would violate set minimum headway is commanded to slip.  This process continues until 
no further slipping is needed.  The program is designed to slip vehicles upstream of the 
upstream station and line BPs if necessary. 
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5.4.  Control of Diverging (DZC) 

• The domain of the DZC is from the downstream guideway junction (the diverge point) 
upstream to the nearest station or line BP, 
 

• Every TMI the DZC sends the line speed to all vehicles in its domain and receives from 
each vehicle in its domain its speed and position measured from the diverge point ahead.   
 

• The DZC calculates the expected speed and position of each vehicle and removes the 
speed signal if these values do not agree within a set range of the values transmitted from 
the vehicle. 

 
• Every TMI the DZC is informed of the kinematic properties of a vehicle in the upstream 

zone that will arrive in its domain in the next TMI and so informs the downstream zones 
of the same. 

 
• The DZC maintains a switch table, which is a table of switch commands to each station 

in the system.  This table may be revised by commands from the central controller. 
 

• When a vehicle reaches the diverge command point (DCP) the DZC requests its 
destination, looks up the corresponding switch command (left or right), and sends the 
switch command to the vehicle.  

 
5.5. Central Control (CC) 

• The CC communicates only with the zone controllers.  Each ZC communicates with both 
the CC and the VC in its domain. 

• The CC receives and processes data received from each ZC.  This includes trip length, 
energy use, wait time, ride time, and expected ride time.   

• The CC updates a calculation of system dependability6 each TMI.  
• The CC obtains data from the ZCs each TMI on the positions and speeds of all of the 

vehicles and determines, based on traffic, when to change certain commands in the 
switch tables of certain SZCs. 
 

5.6 Empty-Vehicle Movement 

• When a station has a surplus empty vehicle in or approaching its first berth, based on a 
criterion given elsewhere, the cognizant SZC gives it the destination of the nearest 

 
6 "Dependability as a Measure of On-Time Performance of Personal Rapid Transit Systems," JAT, 26:3(1992):101-212. 
 



29 
 

storage station and simultaneously enters the number of this empty vehicle into a register 
corresponding to the station. 

• As the empty vehicle moves from zone to zone, its number is transferred to a register 
corresponding to the zone it is in.   

• When a station needs an extra empty vehicle, based on a given criterion, its SZC looks 
upstream from ZC to ZC in order of proximity on all branches for the nearest available 
empty vehicle, i.e., one in an empty-vehicle register.  When one is found, its destination 
is changed to that of the station in need. 

• The order of priority of the search for empties is important.  The order is that of the 
station with the longest wait time, the second longest, and so on until stations with no 
empty vehicles are reached.  For them the order is random, with the random order 
changed every computational interval. 

• The criterion for needing an empty is when the number of vehicles in a station is below 
n m+  where n  is the number of station berths (where unloading and loading can take 
place), and m  is a number (a call criterion) that can be changed by the operator or by the 
CC based on the observed wait times at each station, in order to decrease the difference 
between average wait times at all stations.  

• The system average wait time can be decreased by adding more vehicles. 
 

VI.  The Command Points and Actions 

Equations need to be incorporated into the program for the following command points.  

6.1. Switch Command Point (SCP) 

The SCP is located far enough upstream of the diverge point into the station so that if the vehicle 
failed to detect that the switch is in one of the two locked positions, the vehicle would be able to 
stop before hitting the diverge junction.  This distance is at least  

𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑉𝑉𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 +
𝑉𝑉𝐿𝐿2

2𝑎𝑎𝑒𝑒
 

in which VL is the line speed, tswx is the time required for the switch to throw and be detected, and 
ae is the emergency deceleration. 

6.2.  Deceleration Command Point  

As shown in the paper “Guideway Geometry”, we have found that to reduce the length of the 
offline guideway we can and should initiate deceleration into a station before the vehicle 
completely clears the main line.  In so doing, the bypass line length can be reduced a large amount 
while sacrificing as little as 0.1 second on-line headway.  The position of the DCP can be 
approximated as follows:  The length of the transition curve from the main line to the parallel by-
pass line is very close to 
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Thus, we can approximately set the DCP upstream of the diverge junction into the station by the 
amount 

    .DCP stop tD D L= −  

At low line speeds this quantity may be negative.  

The quantity 𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆  must be greater than 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑉𝑉𝐿𝐿 × 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠. 

6.3.  Diverge Command Point 

Set the DCP upstream of each line-to-line diverge junction by the amount 

2

2
L

DCP L swx flare tolerance
e

VD V t D D
a

= + + +   

Where Dflare is the distance from the diverge junction to the end of the switch rail. 

6.4.  Merge Command Point 

The merge command point must be place upstream of each line-to-line merge junction point by 
the amount 

    MCP slip clearance toleranceD D D D= + +  

in which slipD  is the distance traveled by a vehicle slipping two headway7 distances ,L hV t  in which 

ht  is the line headway. clearanceD  is the distance from the merge junction point upstream to the point 

 
7 Further simulation work may increase this value. 
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where a pair of vehicles on opposite branches approaching at equal distances from the junction 
point would just touch, and toleranceD is a suitable safety distance. 

6.4.1 Slip Distance 

If mV  is the minimum speed reached in a slip maneuver, the slip S  from line speed LV  to mV and 
back to line speed is 

         
( )

2

2 Maneuver Time

m
L m

L m r
m

r c

TS V V

V V AT
A J

= −

 −
= + = 

 

 

in which rA  is the reduced maximum acceleration.  The distance travelled while slipping S is 

     ( ) .
2
m

slip L m
TD V V= +  

The lower we set Vm the less Dslip will be for a given S. 

6.4.2 Clearance Distance 

There are two values of the clearance distance, depending on whether or not a curved path 
intersects a straight path, or if both incoming paths are curved.  In either case, a pair of vehicles 
will touch if the lateral distance between paths is the vehicle width vw .  In the former case this 

condition occurs when the lateral distance y between the curved path and the x-axis is vw .  In the 
latter case the condition occurs when the lateral distance y  between the curved path and the x-axis 

is / 2.vw   This topic is treated in the paper “Guideway Geometry”. 

6.5 Station-Exit Command Point 

At this command point, the vehicle is removed from the array of vehicles in the station domain, 
and is added to the array of the next station if there is one on the same link, or to the array for the 
next diverge or merge while setting the next station to zero. 

6.6. Procedure for Exercising Command Points 

When the distance recorded aboard a vehicle and transmitted to wayside goes to zero or to a small 
positive value the vehicle is just passing a line-to-line branch point where wayside control of the 
vehicle is handed over from the upstream ZC to the downstream ZC, and the distance recorded by 
the vehicle controller is set to the next line-to-line BP.  If there is a station ahead, this new ZC is a 
SZC and it has recorded in its memory as two of its properties the distances from its SCP and DCP 
to the next downstream branch point.  When the vehicle enters the domain of a new ZC it is entered 
into a register of vehicles passing through that ZC. 
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When a vehicle reaches a SCP the SZC evokes a subroutine that determines if it is to switch into 
the station based on the destination of the vehicle and the occupancy of the farthest upstream 
waiting berth.  If it is to switch into the station, the SZC commands the vehicle’s switch to be 
thrown, assigns it to the forward-most empty berth, and records that the SCP function for that 
vehicle has been evoked.  (The berth assignment is recorded both in the SZC and in the vehicle 
computer.)  Completion of the SCP function can be indicated by dividing the SZC’s register of 
vehicles into two sub-registers: one for those that are upstream of the SCP or downstream of it and 
committed to bypass the station, and a second for those that are downstream of the SCP and are 
committed to enter the station.   

When a vehicle reaches a deceleration command point (DCP) and the vehicle is to enter the station, 
the SZC evokes a subroutine that updates the forward-most berth assignment and commands the 
vehicle to stop at that forward-most berth.         

When a vehicle reaches the downstream merge point of the mainline and bypass line out of a 
station, it is passed off to either the SZC for the next station on the same link, or to either a DZC 
or a MZC for the same link.  In either case the vehicle is removed from the register of the upstream 
ZC and simultaneously entered into the register of the downstream ZC. 

If the downstream line-to-line branch point is a diverge, when the vehicle reaches its DCP it is 
interrogated for its destination, the DZC finds the appropriate switch command from its stored 
switch table and sends it to the vehicle controller, whereupon the VC commands its switch to be 
thrown if it is in the wrong direction. 

If the downstream line-to-line branch point is a merge, when the vehicle reaches its MCP the 
cognizant MZC determines if it will be in conflict with a vehicle on the other branch of the merge 
and if so causes vehicles to slip back as described in the paper “Transitions.” 

VII. Test for a Headway Violation upon Decelerating into a Station 
 
7.1 Kinematics of two successive vehicles moving into a station. 

Consider a vehicle #1 decelerating into a station to station speed staV and then to rest followed by 

a vehicle #2 a time hT behind undergoing exactly the same maneuver.  Let the position of vehicle 
#1 at time zero be (0) 0.x =   The times, accelerations, speeds, and positions of vehicle #1 at the 
points 1, 2, 3, 4, 5, 6, and 7 in Figure 7.1, following the methodology of the paper “Transitions,” 
are as follows: 
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Figure 7.1. The velocity profiles of a pair of vehicles entering a station. 
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            (7-1) 

     𝑡𝑡1 = 𝑑𝑑𝑡𝑡01, 𝑡𝑡2 = 𝑡𝑡1 + 𝑑𝑑𝑡𝑡12, 𝑡𝑡3 = 𝑡𝑡2 + 𝑑𝑑𝑡𝑡23, 𝑡𝑡4 = 𝑡𝑡3 + 𝑑𝑑𝑡𝑡34                        (7.2) 
                            𝑡𝑡5 = 𝑡𝑡4 + 𝑑𝑑𝑡𝑡45, 𝑡𝑡6 = 𝑡𝑡5 + 𝑑𝑑𝑡𝑡56, 𝑡𝑡7 = 𝑡𝑡6 + 𝑑𝑑𝑡𝑡67                                               (7.3) 

 
𝑥𝑥1 = 𝑑𝑑𝑥𝑥01, 𝑥𝑥2 = 𝑥𝑥1 + 𝑑𝑑𝑥𝑥12, 𝑥𝑥3 = 𝑥𝑥2 + 𝑑𝑑𝑥𝑥23, 𝑥𝑥4 = 𝑥𝑥3 + 𝑑𝑑𝑥𝑥34                     (7.4) 
𝑥𝑥5 = 𝑥𝑥4 + 𝑑𝑑𝑥𝑥45, 𝑥𝑥6 = 𝑥𝑥5 + 𝑑𝑑𝑥𝑥56, 𝑥𝑥7 = 𝑥𝑥6 + 𝑑𝑑𝑥𝑥67                                          (7.5) 

Using the above canonical formulation, the acceleration, speed, and position of vehicle 1 at any 
value of t are as follows:                
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(7-

6)

  

 

For vehicle #2 up to time ht T= the speed stays constant at LV and the distance traveled is  

Lx V t= .  For ht T> we can obtain the acceleration, speed, and position as functions of time by 

substituting ' forht t T t= −  in equations (7-6).  
 
7.2 Results 

Some results of a program to calculate the kinematics of Section 7.1 are given in Figures 7.2 and 
7.3.  Note from Figure 7.3 that in the case shown the small headway violation increases from 
zero back to zero in about one second.  If based on criteria used, it is judged that the minimum 
headway between these two vehicles will be too small, vehicle #2 will have to be slipped back an 
amount that can be readily determined. 
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Figure 7.2.  Kinematics of a pair of vehicles decelerating to station speed. 

 
Figure 7.3. Separation and minimum allowable separation between two vehicles entering a station. 
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VIII. Boundaries of the Forbidden Zone 
 
When the Subroutine CommandLineSpeed determines that the vehicle in the first birth (here called 
Veh) has been given a destination and loading of passengers is complete, it runs the Subroutine 
setSpeedChangeManeuver.  This routine calculates the maneuver time and distance, Tm and Dm, 
respectively.  At this point, it is necessary to determine if any vehicles on the line bypassing the 
station would conflict if Veh would be dispatched at this instant.  Veh may be at any speed less 
than the station speed and any acceleration within comfort limits.  It follows a curved path such as 
the heavy line in Figure 8.1, which begins at zero time and zero distance.  When the maneuver is 
finished, it is at the time Tm and distance Dm.  A vehicle bypassing the station at line speed VL that 
would also arrive at the time Tm and distance Dm would at time zero be at distance 𝑉𝑉𝐿𝐿𝑇𝑇𝑚𝑚 − 𝐷𝐷𝑚𝑚 
upstream of the position of Veh.  If the minimum time headway is Th then any vehicle bypassing 
the station within a distance of 𝑉𝑉𝐿𝐿𝑇𝑇ℎ of the distance 𝑉𝑉𝐿𝐿𝑇𝑇𝑚𝑚 − 𝐷𝐷𝑚𝑚 at time 0 will be in the 
FORBIDDEN ZONE as shown by the red line in Figure 8.1.  If the position of Veh behind the 
branch point ahead is P, then the boundaries of the FORBIDDEN ZONE are 
 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃 − (𝑉𝑉𝐿𝐿𝑇𝑇𝑚𝑚 − 𝐷𝐷𝑚𝑚) + 𝑉𝑉𝐿𝐿(𝑇𝑇ℎ + 𝑐𝑐_𝑑𝑑𝑑𝑑) 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃 − (𝑉𝑉𝐿𝐿𝑇𝑇𝑚𝑚 − 𝐷𝐷𝑚𝑚) − 𝑉𝑉𝐿𝐿(𝑇𝑇ℎ + 𝑐𝑐_𝑑𝑑𝑑𝑑) 

 
in which 𝑐𝑐_𝑑𝑑𝑑𝑑 is the computation interval. 
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Figure 8.1. Boundaries of the Forbidden Zone. 
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Controlling many Vehicles in ITNS 
The control system consists of computers, sensors, and a communications medium. 

Computers 

All computers in the system are dual redundant, which means that each “computer” is really two pairs of 
computers.  The output of the computers in each pair is compared 20 times a second, and likewise the 
common output of the two pairs is compared 20 times a second.  Any error detected causes the vehicle to 
be directed to a maintenance shop directly upon completing its trip.   With this arrangement the mean 
time between serious events is extremely long, longer than would be believed without checking the 
calculations.  See the internal paper “Failure Modes and Effects.”  

There are three types of computers: vehicle computers, wayside computers, and a central computer.  Each 
section of guideway is managed by a wayside computer called a zone controller.  There will be station 
zones, merge zones, diverge zones, and line zones.  The zone controllers command specific maneuvers to 
specific vehicles and the vehicle computers respond to these commands.  We have worked out the algebra 
needed to command every maneuver required, which consist of maneuvering from a station to line speed, 
slipping a certain distance ahead of merge points, and stopping in a given distance.  With today’s high-
gain controllers we control the position of a vehicle almost as closely as we can measure it.   

Each zone controller provides the line-speed signal in its domain.  If anything goes wrong, it removes the 
speed signal, which causes the vehicles to slow to creep speed.   When a vehicle reaches a maneuver-
command point, the zone controller transmits the appropriate command maneuver to that vehicle, and the 
vehicle controller causes the vehicle to follow the required time sequence of positions and speeds.  The 
zone controller calculates the same maneuver sequentially for each vehicle in its domain and compares it 
with the vehicle’s position and speed.  If it detects an anomaly it removes the speed signal from its portion 
of the guideway, which causes the vehicles to slow to creep speed.   Adjacent zone controllers 
communicate with each other. 

The central computer balances traffic in certain conditions and accumulates data on the performance of 
the system. 

The data rates, computer speeds, and memory needed are well within the capability of today’s computers. 

On-Board Position and Speed Sensing 

The position and speed of each vehicle is measured on board each vehicle by means of digital encoders 
placed in the main bearing of each of the four wheels.  Averaging the left and right output gives the 
correct measurement in curves.  Having encoders in both the fore and aft wheels provides redundancy.  
These encoders register at least 4096 pulses per revolution, or with the 13.25” OD tires we plan to use, 
about 0.010” per pulse.  With this accuracy, experimental evidence has shown that we can differentiate to 
obtain accurate speed measurements.  If the assumed the OD was in error by say 1%, the distance 
measurement would be in error by 1%.  Thus, we will calibrate each vehicle as it leaves a station by 
means of fixed magnetic markers.  In this way we will know the position of each vehicle to an accuracy 
of less than one inch. 

Wayside Position and Speed Sensing 

The position and speed of each vehicle is measured by suitably placed pairs of wayside markers.  When a 
vehicle reaches the first marker, a pulse sent to the cognizant wayside computer, which detects its position 
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at that time.  When the vehicle reaches the second of the pair a known and short distance ahead, 
measuring the time interval between markers determines speed. 

Communication 

Each vehicle will be equipped with a transmitter and a receiver capable of sending information to and 
receiving information from a leaky cable placed on the inside of the guideway.  The zone controllers 
similarly talk to and from the cable.  Such cables are commercially available.  This type of 
communication is completely secure and cannot be interfered with by hackers. 

Background and Conclusions 

Many engineers have been working on controlling PRT vehicles since the 1960s.  We have followed this 
work closely and during our PRT Design Study for the Chicago RTA (1991-94) my team worked with 
experienced engineers from Raytheon and Hughes on the details.  We have continued to refine the control 
system and the simulation of PRT systems so that today we are extremely confident that the system will 
work as we predict.  Computer memory has doubled every 18 months since the 1960s so the computers 
needed today to handle the requirements are very small and extremely fast.  With the use of dual 
redundancy failures that may occur in the system will not be due to the computers. 
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Introduction 

The calculation of speed changes is fundamental to the design of the ITNS PRT control system.  
Once a PRT network is set up with vehicles introduced, the function of the control system is to 
command and then monitor speed changes. This paper provides the complete catalog of speed 
changes.  The code to calculate them will reside in both the vehicle controllers and in the zone 
controllers.  The wayside zone controller commands speed changes for an arbitrary initial speed 
and acceleration by giving the class (1, 2, 3, or 4) and a parameter: For Class 1 the parameter is 
the distance to stop, for Class 2 the magnitude of slip relative to the vehicle ahead, for Class 3 the 
final speed, and for Class 4 the minimum distance to stop.  The classes are defined as follows:   

1. Deceleration to rest in a given distance.  
2. Slip to move back a given distance behind the vehicle ahead.   
3. Speed change to a set final speed, including moving from the station to line speed. 
4. Emergency stop. 
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All these speed changes start from given speed and acceleration.  Since a very high-gain controller 
is use on board based on position and speed,8 the initial speed and acceleration used on board the 
vehicle to command speed changes are the command values.  The actual speed and position will 
differ by only a small amount.    The complete set of speed changes derived here are all performed 
in minimum time consistent with given ride comfort values of acceleration and jerk.   

In Section 1, the equations for going from rest to line speed are derived.  In Section 2 these 
equations are applied, as an example, to the simplest transition from rest to line speed. In Section 
3, the power-limited transition from arbitrary initial speed and acceleration to line speed is derived.  
This transition is included in the set derived in Section 6.  Section 4 derives Class 1.  Section 5 
derives Class 2, Section 6 derives Class 3, and next is the derivation of Class 4.  

1. Basic Transition Equations 

The transitions are driven by constant jerk, at the comfort level or below.  With this assumption 
consider the motion of a vehicle.  J is the constant jerk, A is acceleration, V is speed, and x  is the 
distance traveled.  Then 

2 2 3

0 0 0 0 0 0, , ,
2 2 6
t t tx J x A Jt x V A t J x x V t A J= = + = + + = + + +&&& && &   (1-1) 

Consider a transition from point 0 to point 1.  Call the time interval from 0 to 1 01dt .  Then 

( ) ( )

( )

( )

1 0
01

01 01 0 1
1 0 0 0 0 1 0 0 01

1 0
01

0 1

01 0 1
01 01 0 0 01 01 0 01

2 2
2 2 2

/ 2

23
6 6

A Adt
J
dt dt A AV V A Jdt V A A A V dt

V Vdt
A A

dt A Adx dt V A Jdt dt V dt

−
=

+ = + + = + + − = +  
 

−
=

+

 +    = + + = +        

  (1-2) 

So, in words, the time interval is the increase in acceleration divided by positive jerk, or the 
decrease in acceleration divided by negative jerk, or the increase in speed divided by the average 
acceleration.  The new speed is the old speed plus the average acceleration multiplied by the time 
interval, and the increase in distance is the time interval multiplied by a quantity consisting of the 
old speed plus the time interval times one sixth the quantity twice the old acceleration plus the new 
acceleration.  These simple rules are all that are needed to derive any transition.9 

 

 
8 J. E. Anderson, "Longitudinal Control of a Vehicle," JAT, 31:3(1997):237-247. 
9 These rules were, to my knowledge, first derived by Raytheon control engineer Richard Radnor. 
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2. Basic Transition from rest to line speed 

We start the transition by applying the comfort level of jerk, cJ  until the acceleration reaches the 

comfort level cA .  We then increase speed at this constant acceleration until we approach the 

desired speed LV .  If we were to continue to line speed and then suddenly reduce acceleration to 
zero, the passengers would experience infinite jerk, so to stay within comfort jerk, we must at a 
certain point gradually reduce the acceleration to zero at the rate .cJ−   Thus, like all Gaul, the 

transition is divided into three parts: part 0 to 1 at constant cJ until ,cA A=  part 1 to 2 at constant 

cA , and part 2 to 3 at constant cJ− , which ends when 0A =  and .LV V=   So we can write 

( )
( ) ( )

2
01 1 01 01 01

23 2 23 23 23 2 23

12 2 1 12 12 1 12

/ , / 2, / 6
/ / , / 2, / 3

/ , / 2

c c c c

c c c c L c c

c c

dt A J V dt A dx dt A
dt A J A J V V dt A dx dt V dt A

dt V V A dx dt V dt A

= = =

= − − = = + = +

= − = +

  (2-1) 

Note that the second row must be calculated before the third row because the speed 2V  is not 
known until the second row is calculated.  From the first and middle of the second set of equations 

2

2 2
c

L
c

AV V
J

= −  

Then, using all three sets of equations (2-1) the time from rest to line speed is 

2 2

03 01 12 23
12

2 2
c c c cL

L
c c c c c c

A A A AVdt dt dt dt V
J A J J A J

 
= + + = + − − = + 

 
  (2-2) 

The distance from rest to line speed is 

( ) ( )

( )

3 2 2
2 1

03 01 12 23 1 2 12

2 22 2 2 2 2
2 1 2

23

2
6 2 2 3

1 1
2 2 2 2 2

if .
2

c c c c
L

c c c c c

c c c c c
L L L L

c c c c c c c c

c cL L L
L

c c c c

V VA A A Adx dx dx dx V V V V
J A J J J

V V A A A A AV V V V
A J A J J A J J

A AV V V V
A J J J

−  
= + + = + + − + − + 

 
 −    
 = + = − + − +   
     

 
= + = < 

 

 (2-3) 

So the distance from rest to line speed is simply half the line speed multiplied by the time to line 
speed, which if graphed shows the symmetry of the transition. 
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Note that if the speed LV in the above equations were to be a very small value say V it may be that 

the acceleration cannot reach the comfort value cA before negative jerk must be applied to arrive 

smoothly atV .  In such a case 2 1,V V=  or from equations (2-1), 

    
2

.m
L m c

c

AV V or A J V
J

= = =     (2-4) 

In equations (2-4), mA  is a value of acceleration smaller that .cA   In this case, the reader can show 

that if mA  is substituted for cA the final results in equations (2-2) and (2-3) still hold. 

3. Transition from Arbitrary Acceleration and Speed in a Station to Line Speed with 

    Power-Limited Acceleration 

Next consider a more complex transition, but the one we need to command acceleration of a 
vehicle moving through a station to line speed.  This transition is needed for the following two 
reasons: 

1) A vehicle in a station behind the first berth may be ready to accelerate out of the station as 
soon, with an acceptable delay, as a vehicle ahead has left; and as soon, therefore, as there is 
an opening in the main line.  When berths ahead if it open up, it is commanded to the forward-
most empty berth, and while it is moving forward the station zone-control computer must, 
every computation interval, check to see of there is an opening for it to enter the main line 
from that particular state.  If so, at any speed and acceleration it is commanded to the main 
line.  
 

2) Power-Limited Acceleration.  The acceleration power per unit of mass is VA .  Thus, as speed 
increases at constant acceleration the power required increases in direct proportion, and then 
suddenly as the acceleration drops as the vehicle approaches line speed, the power required 
drops markedly, thus creating a sharp peak in the power required.  This power peak is 
alleviated by causing the acceleration to decrease, as shown in Figure 1, from a point, usually 
at about half line speed, until the acceleration is say half the maximum value at which point 
maximum negative jerk is applied to bring the vehicle to the final speed. 
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Figure 1. Power limited acceleration to line speed. 

So, start the transition with 0 0,A V  different from zero.  Apply positive jerk until maximum 
acceleration is reached at point 1.  Then continue at maximum acceleration to a point 2 where 
negative jerk is applied until a point 3 is reached, where maximum negative jerk is applied until 
the acceleration is zero at a final speed at point 4.  With this transition we have the following 
equations: 

0 0 0
01 1 0 01 01 01 0 01

2 1
2 1 12 12 12 1 12 2

3 3 3
23 3 2 23 23 23 2 23 3

2, ,
2 6

, , ,
2

2, , ,
2 6

c c c

c

c
c L

c

c c c
c

n

A A A A A Adt V V dt dx dt V dt
J

V V AA A A dt dx dt V dt V V
A

A A A A A Adt V V dt dx dt V dt A A
J

dt

α

β

− + +    = = + = +        
−  = = = = + =  

− + +  = = + = + =  −   

3 3 3 3
34 4 3 34 34 34 3 34

0 0 2 0, ,
2 6L

c c

A A A AV V V dt dx dt V dt
J J
− + +  = = = = + = +   −   

(3-1) 

01 12 23 34 01 12 23 34,m mT dt dt dt dt D dx dx dx dx= + + + = + + +   

Now with 3A  and 2V  known, from the fourth row of equations (3-1) we can solve for 3.V   Thus 

3
3 34 .

2L
AV V dt= −      (3-2) 

From the second and then the first equation in the third row, we have 

( )3 2 3
23

3 23

2
, c

n
c

V V A Adt J
A A dt

− −
= =

+
    (3-3) 
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Case when 1 .LV Vα>   When 1 LV Vα≤  point 1 is defined as the point where  1 .cA A=   But the 

power-limited condition is determined by reducing 1A  above 2 .LV Vα=   Indeed, when 

3 3, .cV V A A Aβ= = =   Thus we must reduce 1A  when 1 LV Vα>  linearly from cA  when 1 LV Vα=  

to 3 cA Aβ=  when 1 3V V= .  Thus, when 1 2 LV V Vα> =  let 

     ( )1 1c LA A m V Vα= − −      (3-4) 

where 

     
3

(1 ) .c

L

Am
V V

β
α
−

=
−

    (3-5) 

From the first of equations (3-1) we have a second equation relating 1 1and ,A V  namely 

     
2 2

1 0
1 0 .

2 c

A AV V
J
−

= +      (3-6) 

If we substitute 1V  from equation (3-6) into equation (3-4), the result can be reduced to the 

following quadratic equation for 1.A  

     2
1 12 0A bA c+ − =      (3-7) 

where 

     
22

2 3
0 0

1, 2 ,
/ 1 1 1 2

L c
c L L

c c c

V V AVb c A J V V V V V
A J J

α α βα
β β β

−  −
 = = + − + = = − ×   − − − 

 (3-8) 

Equation (3-7) has one positive root: 

     2
1A b c b= + −      (3-9) 

It can be shown that in practical cases both b and c are always positive.  After 1A  is calculated 

from equation (3-9), it must be substituted into equation (3-6) to calculate 1.V   To use the standard 

transition equations, we must then set 2 1.V V=  

With these quantities known, the rest of the calculations are straightforward and the reauired 
routine could be written.  From it Figure 1 was calculated.   
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3.1 Lag remaining behind Vehicle at Line Speed 
 

If a station precedes a line-to-line merge, it will occasionally be necessary to slip vehicles upstream 
of the station output merge junction.  In so doing, vehicles accelerating out of the station may be 
required to slip, and to determine if slipping is necessary, it is necessary to know the lag in the 
position of the accelerating vehicle compared with its position if it were at line speed.  In 
comparison with the Slip-Remaining term calculated in Section 5.1, let’s call this distance “Lag 
Remaining.” 
 
The acceleration transition ends at a point 4.  At point 3, maximum negative jerk is applied, and 
as calculated in Section 5.1 the Lag Remaining (LR) at point 3 is 
 

( )3 4 3 3( ) / 3LLR t t V V= − −  
 
At point 2, where the negative jerk nJ  begins, the Lag Remaining is 
 

( ) ( )( )2 3 3 2 2 3 2 2 32 / 6LLR LR t t V V t t A A= + − − − − +    
 
At point 1, where acceleration has just reached the maximum value 1 cA A=  the Lag Remaining is 

( ) ( )1 2 2 1 1 2 / 2LLR LR t t V V V= + − − +    
 
Define a point a  at which the acceleration is zero.  If 0 0A >  point a  occurs for 0.at t<   The Lag 
Remaining at point a  is 
 

( ) ( )
( )[ ]

1 1 1

1 1 1 1

/ 3

2( ) / 3
a a L a a

a L a

LR LR t t V V V V

LR t t V V V V

= + − − − −  
= + − − + −

 

in which 
 

     ( )1 1 1 1 1/ , / 2.a c a at t A J V V t t A− = − = −  
Thus 

2
1 1

1 1 3a L
c c

A ALR LR V V
J J

 
= + − + 

 
 

 
Using these values of Lag Remaining, the lag remaining at any time during the acceleration 
transition can be computed from the following code, in which it is assumed that 0t =  at the start 
of the transition. 
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( )( )

( ) ( )( )

( ) ( )

( ) ( )

3

4

2

3 3 3 3

1

2 2 2

1 1
2

1 1

2
1 1

1 1

if then
/ 3

elseif then

2 / 6

elseif then

/ 2

else
/

/ 2

/ 3
3

end if

L

L

L

a c

a c

L a L a a
c c

t t
LR t t V V

t t

LR LR t t V V t t A A

t t

LR LR t t V V V

t t A J
V V A J

A ALR LR V V t t V V V V
J J

≥

= − −

≥

= + − − − − +  
≥

= + − − +  

= −

= −

 
= + − + − − − − −    

 

 

                                         
 
4. Transition from Station Entry to Rest at a Specific Station Berth 

The problem addressed in this section is the transition deceleration-to-rest-in-a-given-distance, i.e., 
the calculation of the acceleration, speed, and position as functions of time for all transitions 
resulting in a vehicle stopping in a station at a specific berth.  The vehicle may be initially at any 
acceleration within the comfort range and any speed from zero up to line speed.  With a time step 
of 20 millisecond and transitions lasting from 3.1 to 8.2 seconds, the program timer shows a time 
for each calculation of acceleration, speed and distance averaged over 1000 runs of between 2.88 
and 3.59 microseconds, corresponding to over 5000 of such calculations during each 20 msec 
interval.  The processor speed of the computer on which these calculations were made was 1500 
mega Hz.  

The transitions are described in Figures 2a and 2b.  The upper figure, 2a, is for transitions for 
which 2

0 0 / 2 c sV A J V+ ≥ , where 0V  is the initial speed, 0A is the initial acceleration, cJ  is the 

maximum comfort value of jerk, and sV  is the maximum speed permitted in each station.  The 

lower figure, 2b, is for transitions for 2
0 0 / 2 .c sV A J V+ <    
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Figures 2a and 2b.  The Deceleration Transitions 

Consider Figure 2a. 

Five curves are illustrated: A, B, C, D, and E. Curve A is for the smallest stopping distance for any 
curve defined by 2

0 0 / 2 c sV A J V+ ≥ .  Curve B corresponds to the minimum stopping distance minD

for an arbitrary value of 2
0 0 / 2 c sV A J V+ ≥ .  Curve E is the speed profile for the case where the 

vehicle cruses some distance at station speed during the time period between points 4 and 5.  Curve 
D is for the case for which the distance cruised at station speed is zero.  It is denoted as the upper 
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boundary curve 1.bndD   Curve C is for a case for which the stopping distance min 1.stop bndD D D≤ <   
For Curve C we calculate a slightly reduced deceleration so that the vehicle stops in the specified 
distance .stopD   The upper figure is drawn assuming that 0 0A >  at the left-hand boundary.  The 

case 0 0A <  can be treated as if the ordinate is moved to the dashed position with 0 at 0'.t =  

Consider Figure 2b.   

Figure 2b is drawn for the case 0 0A <  and also illustrates five curves.  Note that if stopD  is large, 
to minimize time to stop, speed is first increased up to station speed, the vehicle may cruise some 
distance at station speed, and then it decelerates to rest.   So, curve E is for such a case.  Curve D 
is for the case for which the vehicle reaches ,sV but the distance cruised there is zero.  It is also 

called the upper boundary curve 1bndD and is calculated below exactly as is the curve D in the 

upper figure.  When 1stop bndD D< point 4 moves below station speed, as illustrated by curve C.  If 

stopD  is further reduced, a point corresponding to curve C is reached at which the acceleration at 

point 2 just reaches cA but the time interval 23 0.dt =   This curve is designated as 2bndD  because 

above it an exact solution for 4V is easily found, but below it a numerical solution is used.   

The curve B is reached when there can be no region of positive jerk, i.e., when points 2,3,4,5 all 
merge with point 1.  This is the boundary curve 3,bndD  so labeled because if 3stop bndD D<  it must 

be calculated differently and the acceleration at point 1 is less than zero.  As stopD  reduces further 

the minimum stopping distance minD is soon reached.   It is represented as curve A.  The case 

0 0A >  is treated, as above, by moving the ordinate to the right, as illustrated by the vertical dashed 
line. 

Consider Figure 2a for the case 0 0.A ≥    

Using the method of Section 1, we have for the interval from 0 to 1: 

   

0 0 0
01 1 0 01 01 01 0 01

2 2
0 0 0

1 0 01 0

, ,
2 3

or ,
2 3

c

c c c

A A Adt V V dt dx dt V dt
J

A A AV V dx V
J J J

 = = + = + 
 

 
= + = + 

 

  (4-1) 

In the interval 1 to 4, if 2
1 / ,s c cV V A J− ≥  where cA  is the maximum comfort acceleration, then 

2 3 .cA A A= = −   For a smaller speed difference set 2
1 2 / ,s cV V A J− =  from which 
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     2 1( )c sA J V V= − −      (4-2) 

Like equation (2-3), the distance traveled in the interval 1 to 4 is 

    ( ) ( )1 1 2
14

22
s s

c

V V V V Adx
A J

+ − −
= + − 

    (4-3) 

If 2
1 /s c cV V A J− < , equation (4-3) reduces to 

    ( ) 1
14 1

s
s

c

V Vdx V V
J
−

= +               (4-3a) 

Because in this case we will always have 2 /s c cV A J>  we always have 

    58 2
s s c

c c

V V Adx
A J

 
= + 

 
      (4-4) 

Using equations (4-1), (4-3, 3a), (4-4) 

    1 01 14 58.bndD dx dx dx= + +      (4-5) 

To calculate the transitions we need the times, speeds and distances at each point between 0 and 
8.  So for this case, 2

0 0 0/ 2 0, 0cV A J A+ ≥ ≥  we have 

2 2 2
12 2 1 12 12 12 1 12, ,

2 6c

A A Adt V V dt dx dt V dt
J

 = = + = + −  
 

2 2 2
34 3 34 34 34 3 34, ,

2 3s
c

A A Adt V V dt dx dt V dt
J
−  = = − = + 

 
 

3 2 2
23 23 23 2 23

2

,
2

V V Adt dx dt V dt
A
−  = = + 

 
 

Note that 

  

2
2 3 12 2

1 1
2 2

1 01 2 1 12 3 2 23 4 3 34

1 0 01 2 1 12 3 2 23 4 3 34

1 0 when .

, , ,
, , ,

s
s s

c c c

V V V VA AV V V V
A A J J J

t dt t t dt t t dt t t dt
x x dx x x dx x x dx x x dx

 − −
= − − → + → → − −  

= = + = + = +
= + = + = + = +

  (4-6) 
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1 45 1 45 45 45 45

5 4 45 5 4 45

If then , / else 0
,

stop bnd stop bnd sD D dx D D dt dx V dx dt
x x dx t t dt

> = − = = =

= + = +
  (4-7) 
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A A Adt V V dt dx dt V dt
J
A A Adt V dt dx dt V dt
J
V V Adt dx dt V dt

A
t t dt t t dt t t dt
x x dx x x dx x x dx

 = = − = − 
 

 = = = − 
 

−  = = − 
 

= + = + = +

= + = + = +

   (4-8) 

Consider Figure 2a for the case 0 0.A <    

In this case 0t =  occurs after the virtual point 1, at which speed is a maximum and acceleration 
is zero.  Point 0 is shown by the vertical dashed line.  Then proceeding using equations (1-2) now 
with the point 1 earlier than point 0, we get 

        

0 0 0 0
10 0 1 10 10 10 1 10 10 0 10

2 2
0 0 0

1 0 10 0

, ,
2 6 3

,
2 3

c

c c c

A A A Adt V V dt dx dt V dt dt V dt
J

A A AV V dx V
J J J

   = = + = + = −   −    

 
= + = − + 

 

  (4-9) 

But in this case, we must subtract the time and distance increment to get the correct values of the 
intermediate and final times and distances.  By comparing with equations (4-1) we see that this is 
accomplished simply by using equations (4-1) for all values of 0.A  With this interpretation, 

equations (4-1) through (4-8) apply to all values of 0.A  

Consider the curve C of Figure 2a. 

When min 1stop bndD D D≤ <  let’s adjust the deceleration 2A so that the stopping distance is given by  

    1 1 2
01

22stop
c

V V AD dx
A J

 −
= + + − 

          (4-10)  

Then     ( )2
2 01 2 1

1

2 ( ) 0c
stop c

JA D dx A J V
V

− − − + =  

from which   ( ) ( )
2

2 01 01 1
1 1

c c
stop stop c

J JA D dx D dx J V
V V

 
= − − + − − 

 
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With this value of 2A we have 

  

2 2 2
12 2 1 12 12 10 1 12

2 2 2
34 3 34 34 34 3 34

3 2 2
23 23 23 2 23
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45 56 67 78

45 56 67 78
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J
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 = = + = + −  
−  = = − = + 

 
−  = = + 

 
= = = =
= = = =

            (4-11) 

Consider Figure 2b for the case 0 0.A ≤    

When 3 1 0stop bndD D A≥ =  so we have the equations 

0 0 0
01 1 0 01 01 01 0 01
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1 0 01 0
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 

 
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                         (4-12) 
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4 1 14 14 4 1

If then 0 and ,

So, if then A else

If then else
2

c
c

c
c c

c

c c

c c c c

AV V dt dx V V A J V V
J

AV V A A J V V
J

V VA AV V V VV V dx dx V V
J A J J

= = = − = = −

− ≥ = = −

+  − −
− ≥ = + = + 

 

     (4-13) 

Now we can write 

    
41 01 14 58 from eq. (6.4-4)sbnd V V

D dx dx dx
=

= + +             (4-14) 
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When 1 4 1 4. If .stop bnd s stop bnd sD D V V D D V V≥ = < <   Thus, in equation (4-14) 4 sV V<  must be 

substituted for ,sV  and we must take into account that 

        

2
4 4

58 4

2
4

4 4

if
2

if

c c

c c c

c

c c

A AV Vdx V
A J J

AVV V
J J

 
= + ≥ 

 

= <
             (4-15) 

For 3 1bnd stop bndD D D≤ <  we find the curve properties by setting 

    01 14 58stopD dx dx dx= + +               (4-16) 

If 
2

4 1
c

c

AV V
J

− ≥  we can substitute from equations (4-11) and (4-15) to get 

  

( )4 1 4 1 4 4
01

2
2 1 1

4 1 01

22 2
1 1

4 01

2 2

or 2 0
2 2

or
2 2 2

c

c

c c
stop

c c c c

c c
c stop

c c

c c c
c stop

c c c

V V A AV V V VD dx
A J A J

A AV VV V A D dx
J A J

A A AV VV A D dx
J J A J

+    −
= + + + +   

   
   

+ − − + − =          

   
= − + + − + −          

           (4-17) 

which is the one solution for which 4 0.V >   If 
2

4 1
c

c

AV V
J

− < then substitution into equation (4-16) 

results in a quartic in 4 ,V  which is most easily solved by iteration.  Before considering iteration we 

derive formulae for 2 3and .bnd bndD D  

The Boundary 2.bndD  

The boundary 2bndD  is found from the equation 2 01 14 58 ,bndD dx dx dx= + +  in which we substitute 
2

4 1 / .c cV V A J= +   Thus 

   

2 2
1

2 01 1 1

3
1 1

01 2

12 2
2

7 2
2

c c c c
bnd

c c c c c

c c

c c c

A A A AVD dx V V
J J J A J

A AV Vdx
A J J

    
= + + + + +    

    
 

= + + + 
 

           (4-18) 
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The Boundary 3.bndD  

This boundary is defined by the conditions that points 2, 3, 4, and 5 are collapsed into point 1, in 
which case 12 23 34 45 0,dt dt dt dt= = = =  which means that 4 1.V V=   Thus 

   

2
1 1

3 01 1

2
1

01 1 1

if
2

if

c c
bnd

c c c

c

c c

A AV VD dx V
A J J

AVdx V V
J J

 
= + + ≥ 

 

= + <
             (4-19) 

Solution for 3 2.bnd stop bndD D D< <  

Consider the function ( )4D V , which between these boundaries is a quartic, and for which the 

solution is known at both ends, i.e., ( ) 2
1 3 1 2and ( / )bnd c c bndD V D D V A J D= + = , where in this case 

2
1 / .c c sV A J V+ <   So start the solution by drawing a line between the upper and lower points and 

calculate the first approximation as the value of 1
4 4V V= on that line, which intersects .stopD   Draw 

a line between the point ( )1
4D V and either the upper or lower end point (whichever is closest).  Let 

the second approximation 2
4V be the value on this line that intersects .stopD   This process 

continued converges very rapidly.  The details are in the program that follows. 

Solution for 3.stop bndD D<  

When min 3stop bndD D D≤ < 1A  can no longer reach zero, i.e., 1 0.A <   In this case there is no point 
in applying first positive jerk then negative jerk in the path to zero speed.  Thus consider a virtual 
point ‘a’ left of point 0, let 

           
2
0

0 2a
c

AV V
J

= +               (4-20) 

Hence 1A  is defined by the equation 

  
2

0 01
0 0 0

1

, where
2 3
a a

stop a a
c c c

V V A AAD dx dx V
A J J J

   −
= + + = +   −   

           (4-21) 

Let 1 0and 'm stop aA A D D dx= − = − .    Then equation (4-21) can be written in form 

    2 '2 0c
m m c a

a

D JA A J V
V

− + =               (4-22) 
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which has the relevant solution 

    
2

' 'c c
m c a

a a

D J D JA J V
V V

 
= − − 

 
             (4-23) 

in which aV  is given in equation (4-20).  The sign in front of the radical is determined from the 

condition that increasing mA  must decrease .stopD   Now for this case we have  

 

0 0 0 0
0 0 0 0 0 0 0 0 0

1 0 1 0 0 1
01 1 0 01 01 01 0 01

1 1 1
23 2 23 23 23 2 23

1 2
12 12

1

, ,
2 6 3

2, ,
2 6

, ,
2 3

,

a a a a a a a a a
c

c

c

A A A Adt V V dt dx dt V dt dt V dt
J

A A A A A Adt V V dt dx dt V dt
J

A A Adt V dt dx dt V dt
J

V Vdt dx dt
A

   = = − = + = −   −    
− + + = = + = + −  

−  = = − = + 
 

−
= =

−
1

12 1 12

34 45 56 67 78

2
0

AV dt

dt dt dt dt dt

 + 
 

= = = = =

   (4-24) 

Consider Figure 2b for the case 0 0.A >  

In this case the lower boundary 3bndD does not appear.  As in the case of Figure 2a this case is most 
easily solved by assuming a virtual point 1 to the left of point 0, which lies at a time denoted by 
the vertical dashed line.  Thus, for the interval 1 0→  

 

0 0 0 0
10 0 1 10 10 10 1 10 10 0 10

2 2
0 0 0

1 0 10 0

, ,
2 6 3

,
2 3

c

c c c

A A A Adt V V dt dx dt V dt dt V dt
J

A A AV V dx V
J J J

   = = + = + = −   
   

 
= − = − 

 

         (4-25) 

Comparing with the first of equations (4-12), and considering that the time and distance intervals 
0-1 must be subtracted in this case when 0 0,A >  we see that we get the correct results in both 
cases if we use the equations 

   
2 2

0 0 0 0
01 1 0 10 0, ,

2 3c c c c

A A A Adt V V dx V
J J J J

 
= − = − = − − 

 
           (4-26) 

to describe the cases of Figure 2b for all values of 0.A    

The cases of Figure 2a apply when 
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2
0

0 0 0
2 s

c

AdV V V
J

= + − >               (4-27) 

and the cases of Figure 2b apply when 0 0.dV <   The case 0 0dV =  is an important special case 

because it applies to a commanded change of stopD  while a vehicle is either cruising at sV  or in the 

constant cJ− region of deceleration from sV to rest.  So let the quantities of the interval 0-1 be 

computed for all conditions except 0 0dV =  from the equations 

( ) ( ) ( )
2 2

0 0 0 0
01 0 1 0 0 01 0 0sgn , sgn , sgn

2 3c c c c

A A A Adt dV V V dV dx dV V
J J J J

 
= = + = + 

 
     (4-28)    

in which, to avoid round-off errors we will assume that if 0 00.0001 then 0.dV dV< =  

The Case 0 0.dV =  

In this case we may have 0A either positive, negative, or zero.  Using the previous method the 
solution is 

  

( )
2

0 0 0
01 1 0 0 01 01 0 01

12 23 34 45 1 45 45

4 5 5 6

56 6

, sgn ,
2 3

0, , /
, 0,

/ , . . .

c c

stop bnd s

s c

c

A A Adt V V A dx dt V dt
J J

dt dt dt dx D D dt dx V
V V V A A A
dt A J

 = = + = + 
 

= = = = − =

= = = = −
= −

 

in which the remaining terms are the same as given by equations (4-8). 

5. Slip Transitions 

5.1 Introduction 

A slip transition is used to cause a vehicle to reduce and then increase speed in order to increase 
the headway between it and the vehicle ahead.  The final speed that ends the transition is always 
the line speed .LV   The transition may be initiated at any acceleration 0A  within the comfort range 

and any speed 0V  between LV  and a set minimum speed for slip transitions min .V   The slip 
transitions are illustrated in Figure 3 and are defined by jerk in the following table. 

Interval 0 1→  1 2→  2 3→  3 4→  4 5→  5 6→  6 7→  7 8→  

Jerk 
cJ−  cJ−  0 

cJ  0 
cJ  0 

cJ−  
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The purpose of this section is to derive the equations needed to calculate the time history of the 
motion throughout a slip transition.  To do so, we must understand all aspects of the time history 
for any value of slip. 

5.2 The Boundaries 

In the upper diagram of Figure 3, we indicate four boundaries. 1bndS  is the value of slip for which 

the speed 4 min 45and 0,V V dt= =  in which 45dt  is the time interval between points 4 and 5.  If 

slip 1bndS S>  then  

     1
45

min

.bnd

L

S Sdt
V V
−

=
−

                (5-1) 

Since slip transitions occur near line speed, we assume the maximum magnitude of acceleration is 
.r cA A<  

2bndS  is the value of slip for which 2
23 2 4 10, while , / .r r cdt A A V V A J= = − = −  
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Figure 3.  Slip Transitions 

When  
30 0, bndA S≥  is the value of slip for which 1 4.V V=   When  0 0A <   point 1 is located left of 

t = 0 at the point where, extrapolating the time-distance curve at the same negative jerk as between 
points 0 and 2, acceleration reaches zero.  When 0 0A <  this boundary starts at point 0 and is the 

minimum possible slip, min ,S  thus when 
30 min0 .bndA S S< =   In both cases 1 0.A =  

When 0 0A ≥  we have 

2
0 0 0 0 0

01 1 0 01 01 01 0 01 0, ,
2 3 3c c c

A A A A Adt V V dt dx dt V dt V
J J J

  = = + = + = +  
   
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When 0 0A <  we have 

2
0 0 0 0 0

10 1 0 10 10 10 1 10 0, ,
2 6 3c c c

A A A A Adt V V dt dx dt V dt V
J J J

  = − = − = + = − +  
   

 

The slip either during the interval 0-1 or 1-0 is 

2
0 0

01 01 01 0 .
3L L

c c

A AS V dt dx V V
J J
 

= − = − − 
 

    (5-2) 

By using equation (5-2) in calculating slip for all values of 0A  we see that S01 is added if 0 0A >  

and subtracted if 0 0,A <  which is exactly what is needed.   

5.3 Formulae for Slip 

The formula for Slip in all but the case in which 
30 0 and bndA Slip S> < can now be expressed as 

( ) ( )01 14 14 58 58 01 1 4 14 4 58
1 1
2 2L L L L LSlip S V dt dx V dt dx S V V V dt V V V dt   = + − + − = + − + + − +      

 

(5-3) 

in which 

2
1 4 1 4

1 4 14 14

2
4 4

4 58 58

if then  else 2

if then  else 2

r r

c r c c

r L r L
L

c r c c

A V V A V VV V dt dt
J A J J

A V V A V VV V dt dt
J A J J

− −
− ≥ = + =

− −
− ≥ = + =

 

To calculate 
1 4 min substitute bndS V V= in equation (5-3). 

To calculate 
2

2

4 1 substitute r
bnd

c

AS V V
J

= − in equation (5-3). 

To calculate 
3 4 1 substitute bndS V V= in equation (5-3). 

4bndS will be calculated in a later paragraph. 

If 1bndS S≥    

    ( ) ( ) ( )1
01 1 min 14 min 58 in 452 2 .L L L mS S V V V dt V V dt V V dt= + − − + − + −       (5-4) 
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2 1
If bnd bndS Slip S< <  

( ) ( )1 4 4
01 1 4 4

1 12
2 2

r L r
L L

r c r c

V V A V V ASlip S V V V V V
A J A J

   − −
= + − − + + − +   

   
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

01 1 4 1 4 4 4

2
4 1 1 4 1 1

2
01 4 4 4

1 1

4

1 12
2 2

1 12 2 2
2 2

2
1 1, 2
2 2

Note that ' 2 2 . So when 

r L r L L r

L r L r L r L L r

r

L r L r L L r

A Slip S V V V V V dV V V V V dV

V V V V dV V dV V V V V dV V V dV

A Slip S f V V bV c

b V dV c V V V dV V V dV

f V b f

− = − − − + + − − +

= − − + + + + + − + + +  

− = = − +

= + = − + + +  

= − 4 4' 0 . But .L LV b V V V= = > <

 

( )2
4 01Therefore rV b b c A Slip S= − − + −      (5-5) 

   

3 2
If  thenbnd bndS Slip S< <  

                       ( ) ( )1 4
01 1 4 4 58

1 12
2 2L L L

c

V VSlip S V V V V V V dt
J
−   − = − + + − +      

      (5-6) 

in which 

4 4
4 58 58if then  else 2L r L

L r
r c c

V V A V VV V dV dt dt
A J J
− −

− ≥ = + = . 

Equation (5-6) is a quartic equation if 4LV V−  is large, and 6th order if small.  The former can be 
solved exactly but not the second so it must be solved numerically.   

5.4 A Numerical Solution 

Since we know that  

2 34 1 4 1when and whenbnd r bndS S V V dV S S V V= = − = =  

the solution for 4V is simplified. 
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Figure 4. Numerical Solution for 4.V  

Consider Figure 4, which is a graphical representation of the solution process. The two curves 
represent possible solution, which can have either positive or negative curvature.  As a first guess, 
draw a straight line between the points 

3 21 1, and , .bnd bnd rS V S V dV−  Then, let the first guess for 4V  
be 

3

1

2 3

4 1
bnd

r
bnd bnd

Slip S
V V dV

S S
 −

= −   − 
 

Then, from equation (5-7), calculate the corresponding slip 1.S   If 1S Slip> draw line from point 

1 31 4 1, to point , .bndS V S V  
24V  is the value of 4V that intersects the horizontal line at Slip.  Thus  

( ) 3

2 1

3

4 1 1 4
1

bnd

bnd

Slip S
V V V V

S S
 −

= − −   − 
 

Simarly 

( ) 3

3 2

3

4 1 1 4
2

bnd

bnd

Slip S
V V V V

S S
 −

= − −   − 
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If 1S S< draw line from point 
1 2 21 4 1 4, to point , .bnd rS V S V dV V+  is the value of 4V that intersects 

the horizontal line at Slip.  Thus  

( ) 2

2 1

2

4 1 4 1
1

bnd
r r

bnd

S Slip
V V dV V V dV

S S
 −

= − + − +   − 
 

etc.  Double differentiation of equation (5-6) shows that the curvature at a specific point may be 
either positive or negative, thus it is necessary to consider the two cases.  This iternative process 
can be repeated in a do-loop until a value of 4V is found such that the corresponding Slip is 
sufficiently close to the given value of ,Slip say within 0.001 m. 

If the sequence of estimated values of Si alternate from above and below the line from point 

2 31 1,  to point ,bnd r bndS V dV S V−  then the formula for calculating V4 must be changed.  In the space 

4,V Slip a straight line between points 
14 1 4,  and ,

ii i iS V S V
++ is represented by 

( )1

1

1
4 4

4 4i i

i i
i

S SSlip S V V
V V

+

+
 −

= − −  − 
 

Solving for V4 we get 

( ) ( ) ( )( )

( ) ( )

1 1

1 1

1 1

4 1 4 4
4 4 4 4

1 1

4 1 4

1

i i

i i

i

i i ii

i i i i

i i

i i

V S S V V S SlipS SlipV V V V
S S S S

S Slip V Slip S V
S S

+

+

+

+

+ +

+

+

− + − − −
= + − = − − 

− + −
=

−

 (5-7) 

So if say 1 and i iS Slip S Slip+> < equation (5-7) gives the best new estimate for V4.  This method 
converges quickly.  

5.5 The Special Case 0 0, 0.LV V A= =  

In this case 58 14dt dt= .  If 1bndSlip S>=  then 

( )

( )

1

1

1

min
min

min 45 45
min

,

L r
bnd L

r c

bnd
bnd L

L

V V AS V V
A J

S S
Slip S V V dt dt

V V

 −
= − + 

 
−

= + − =
−

   (5-8) 

If 
2

3

122 r
bnd bnd

c

AS Slip S
J

= < <  then   
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    ( ) 4
4

L r
L

r c

V V ASlip V V
A J

 −
= − + 

 
             (5-9) 

which is a quadratic equation for 4.V   Its standard form and solution are 

         

( )

( )

2
4 4

2

4

2

12 0
2

1 1
2 2

1 1
2 4

L r L L r r

L r L r r L L r

L r r r

V V dV V V V dV A Slip

V V dV V dV A Slip V V dV

V dV dV A Slip

 − + + + − = 
 

 = + − + + − + 
 

= + − +

        

     (5-10)       

The minus sign is correct because V4 must decrease when Slip increases.  V4 is positive when 

( )
2

21 1 or when .
2 4L r r r L L r rV dV dV A Slip V V dV A Slip + > + + > 

 
 

In this case Slip is minimum when 
2

3

22 r
bnd

c

AS
J

= .  Thus, the condition of positive V4 is 

( ) 22L L r rV V dV dV+ >  

This inequality is satisfied if ( )22 0.25 0.75
0.141 1.38 / ,

0.25
r

L r
c

gAV dV g m s
J g

> = = = =  which will 

always be true.        

If 
2bndS S<  

           

( ) ( )3/2 1 1/24
4 4 2

1/32

4

2 or

4

L
L L c

c

c
L

V VSlip V V V V SlipJ
J

J SlipV V

−
= − − =

 
= −  

 

           (5-11) 

5.6 Details of solution if 
3
.bndSlip S≥  

With 0 0andV A  given we have been able to calculate time, speed and distance up to point 1, and 

note that in all cases for which 
3 1that 0.bndSlip S A≥ =   With 4V  known we have been able to 
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calculate 01 01 1, ,  and .dt dx V  and 6A .  For 
3bndSlip S≥ we can now calculate the values of time, 

speed, and distance at each of the points 1 through 8 as follows: 

  

( )
( )

( ) ( )
( ) ( )

( )

12 2 2 1 12 2 12 12 1 12 2

34 12 3 4 34 2 34 34 3 34 2

23 3 2 2 23 23 2 23 2

45 1 min

56 6 6 4 56 6 56 56 4 56 6

78 5

/ , / 2, / 6

, / 2, / 3

/ , / 2

/

/ , / 2, / 6

c

bnd L

c

dt A J V V dt A dx dt V dt A

dt dt V V dt A dx dt V dt A

dt V V A dx dt V dt A

dt S S V V

dt A J V V dt A dx dt V dt A

dt dt

= − = + = +

= = − = +

= − = +

= − −

= = + = +

= ( )
( ) ( )

6 7 78 6 78 78 7 78 6

67 7 6 6 67 67 6 67 6

, / 2, / 3

/ , / 2
LV V dt A dx dt V dt A

dt V V A dx dt V dt A

= − = +

= − = +

           (5-12) 

1 0 01 2 1 12 3 2 23 4 3 34

5 4 45 6 5 56 7 6 67 8 7 78

1 0 01 2 1 12 3 2 23 4 3 34

5 4 45 6 5 56 7 6 67 8 7 78

, , ,
, , ,

, , ,
, , ,

t t dt t t dt t t dt t t dt
t t dt t t dt t t dt t t dt
x x dx x x dx x x dx x x dx
x x dx x x dx x x dx x x dx

= + = + = + = +
= + = + = + = +
= + = + = + = +
= + = + = + = +

 

5.7 The case 
4min 3.bnd bndS S S S= ≤ <  

In Figure 5, we show a close-up of the region between 
3 4min and bnd bndS S S=   and show a slip-

curve at an intermediate location intersecting the 
3bndS curve at a point labeled “1” at which the 

acceleration is 1 0A >  where 1A takes any value between zero and 0.A   The point where 

acceleration is zero in the  
3bndS  curve is also labeled “1” indicating that point “1” moves from 

1 0A =  to 1 0.A A=  If 0 0A >  there will be cases in which Slip will lie between these boundaries.  
The curve of speed vs. time in these cases can be divided into four parts, which in terms of the 
general notation for slip transitions we separate by points 1, 6, 7, and 8.  Points 1, 2, 3, 4, 5 
coincide, therefore 

 12 23 34 45 0.dt dt dt dt= = = =  
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Figure 5. Slip between 
3 4 min and .bnd bndS S S=  

 
In the interval from point 0 to point 1, jerk is negative for all cases.  From point 1 to point 6 jerk 
is positive, from point 6 to point 7 jerk is zero, and from point 7 to point 8 at line speed jerk is 
negative.  Thus, for any value of Slip between the two boundaries   

              1 0 1 0 0 1
01 1 0 01 01 01 0 01

2, ,
2 6c

A A A A A Adt V V dt dx dt V dt
J
− + +    = = + = +    −     

 (5-13) 

minS occurs when 
31 0  and  occursbndA A S= 1when 0.A =   From Figure 5 

 

( ) ( )min 1 18 10 10
1 S
2 L LV V T V dt dx− − − −= − − −  

in which 
 

2
0 0 0 0

1 10 1 0 10 0 10 10 1 100, , ,
2 2 6c c

A A A AA dt V V dt V dx dt V dt
J J− − − − − − − −

 = = = − = − = + 
 

 

Thus 

          
2 2
0 0 0

min 0 18 0
1
2 2 3L L

c c c

A A AS V V T V V
J J J−

   
= − + − − +   

   
  (5-14) 

in which with 
2
0

0 2L
c

AV V V
J

∆ = − +  
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18 18if  then  else 2 .r
r

r c c

V A VV dV T T
A J J− −
∆ ∆

∆ ≥ = + =  

 
From Figure 5 with 1 0A =  

( )
3 1 18 01 01

1
2bnd L LS V V T V dt dx= − + −  

For the interval from 0 to 1with 1 0A =  we have 
 

2
0 0 0 0

01 1 0 01 0 01 01 0 01, ,
2 2 3c c

A A A Adt V V dt V dx dt V dt
J J

−  = = + = + = + −  
 

 
Thus 

 
3

2 2
0 0 0

0 18 0
1
2 2 3bnd L L

c c c

A A AS V V T V V
J J J

   
= − − + − −   

   
               (5-15) 

 

in which with 
2
0

0 2L
c

AV V V
J

∆ = − −  

18 18if  then  else 2 .r
r

r c c

V A VV dV T T
A J J
∆ ∆

∆ ≥ = + =  

If min 3bndS Slip S< <  

( ) ( ) ( )1 8 0 0 1 1
1
2 L a a L a a a aSlip A V V T V dt dx dx dx+ −= − + − + −  

in which 

0 01 1
2 2

1 0 0 1 0 1
01 1 0 01 0

2 2 2
1 1 1 0 1

1 1 1 1 0

,
2 2

,
2 2 2

a a

c c

a a a
c c c c

dt dt dt
A A A A A Adt V V dt V

J J
A A A A Adt V V dt V V
J J J J

= −

− + − = = + = + −  

= = − = − = + −
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0 1 1 0 1
0

2 2 2 2 2 2
1 1 1 0 1 1 1 0 1

1 0 0

2
0 0

0 0 0 0 0 0 1 0 0 0

0 1
0

2

5
6 2 6 2 6

2 , 2 ,
6 2

2

a
c c c

a a
c c c c c c c c c

a a
a a a a a c a a c

a

A A A A Adt
J J J

A A A A A A A A Adx V V V
J J J J J J J J J

A A dtdx dt V dt A A dt J A V V A dt J

A Adx

+

−
− −

− −
= − =

     
= + = + − + = + −     

     
  +

= + = − = = + −  
  

−
=

2 2
0 1 0 1 0 1 0 1 0 1

0 0

2
1 1 0 1 1 1

1 1 1 0 0 0

1 0 1
0 0 0

2 2 2
3 3

2 4
6 2 6

2 2 2
2

c c c c

a a
a a a a a c

c c

c c

A A A A A A A A A AV V
J J J J

A A A dt A A Adx dt V dt V A dt J
J J

A A AV A A A
J J

−
− −

       − + − − − + = +        
        

    + + = + = + − +           

 −
= + − + 

 
( )

2
1

1

2 2 2 2 2 2
1 0 1 0 1 1 1 1

1 1 0 0

5
6

5 4 5
2 6 2 6 3

c

a a
c c c c c c c

A
J

A A A A A A A Adx dx V V
J J J J J J J

+ −

 
+ 

 
    −

− = + − − − − =    
      

Therefore 
 

( ) ( )

( ) ( )

( )

4

2 2 3
0 1 0 1 0 1 1

1 8 0 2

2 2
0 1

0

2 3
0 0 0

0 min 8 0 2

2
0 0

8 0

1 2 2 (6.5-16)
2 3 3

in which  .
2

1 2
2 3 3

1
2 3

i

L a a L
c c c

a
c c

bnd L a a L
c c c

L a a L
c c

A A A A A A ASlip A V V T V V
J J J

A AV V
J J

A A ASlip A S S V V T V V
J J J

A AV V T V V
J J

  − − −
= − + − − +  

  

= + −

 
= = = − − − + + 

 
 

= − − − + 
 

2
0

0n which  .
2a

c

AV V
J

= −

 

 

( ) ( )
3

2
0 0

8 0

2
0

0

10
2 3

in which  .
2

bnd L a a L
c c

a
c

A ASlip S V V T V V
J J

AV V
J

 
= = − + − − 

 

= +

 

In the equation for  ( )1Slip A  with L aV V V∆ = −  

8 8if  then  else 2 .r
r a a

r c c

V A VV dV T T
A J J
∆ ∆

∆ ≥ = + =  
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( )1Slip A , Equation (5-16), is either a quartic in A1 6th order.  It will be solved numerically in a 

manner like that used with Figure 4.  We need to find the value of 1A that corresponds to a given 

value of slip.  We know that 1 0A =  gives the boundary 
3bndS and the value 1 0A A=  gives the 

boundary 
4
.bndS   Let the first guess to the correct value of 1A be 

3

1

3 4

1 0 1
bnd

bnd bnd

S Slip
A A Slip

S S
 −

= →  − 
 

Using this value of 1A calculate Slip1 from equation (5-16).  If Slip1 is less than the required slip 

Slip, draw a line from the point 
1 31 1,  to 0, bndA Slip S and calculate a new guess from the equation: 

3

2 1

3

1 1 2
1

bnd

bnd

S Slip
A A Slip

S Slip
 −

= →  − 
 

and repeat in a Do-Loop until the error is sufficiently small.  If Slip1 is greater than the required 
slip S draw a line from the point 

1 41 1 0,  to , bndA Slip A S  and calculate a new guess from the equation 

( ) 4

2 1

4

1 0 0 1 2
1

bnd

bnd

Slip S
A A A A Slip

Slip S
 −

= − − →  − 
 

Again, in a Do-Loop, convergence is rapid.  In only a few cycles the error is reduced to less than 
one millimeter.  

 
5.8 Slip Remaining 
 

In merge control, to command vehicles to slip the least amount needed to avoid violating the 
headway criterion, it is necessary to take into account that vehicles reaching the merge command 
point may be slipping.  To command further slip without reducing throughput any more than 
necessary we must know the amount of slip each vehicle has remaining.   To calculate slip 
remaining (SR), consider Figure 3.  The slip remaining at 7t t=  is the same as the distance traveled 

in moving at constant jerk J from rest to a time 8 7 78 .t t dt− ≡   Consider then that at constant jerk 
we have  

    
2 3

, ,
2 6 3
t t VtA Jt V J X J= = = =  

Thus, from the geometry of Figure 3 we have 
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( )
( )

( )
( )

( )
( )

( )
( )

7 7 78

6 7 6 7 67

5 6 5 6 5 56

4 5 4 45

3 4 4 3 4 34

2 3 2 3 23

1 2 1 1 2 12

0 1 1 1 0 02

/ 3

/ 2

/ 3

/ 3

/ 2

/ 3

/ 3

L

L

L

L

L

L

L

L

SR V V dt

SR SR V V V dt

SR SR V V V V dt

SR SR V V dt

SR SR V V V V dt

SR SR V V V dt

SR SR V V V V dt

SR SR V V V V dt

= −

= + − +  
= + − − −  
= + −

= + − − −  
= + − +  
= + − + −  
= + − + −  

 

If 
3 5 0 and bndSlip S SR SR< must be modified because A1 > 0.  In this case 

12 23 34 45 0dt dt dt dt= = = =  

With A1 > 0 and both 1 6 and A A  already calculated we have 

1 0 1 0 0 1
01 1 0 01 01 01 0 01

0 1 01 01

6 1 1 6
16 16 16 1 16

5 6 16 16

2, ,
2 6

2,
6

c

L

c

L

A A A A A Adt V V dt dx dt V dt
J

SR SR V dt dx

A A A Adt dx dt V dt
J

SR SR V dt dx

− + +    = = + = +    −     
= + −

− +  = = +     
= + −

 

Then the following code will calculate the slip remaining at any time 0t t t∆ = − , in which the 

, 1,...,8it i =  are measured from 0 ,t the start of the slip transition. 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

[ ]( )

1

1 1 1 1

2

1 1 1 1

3

3 3 3

4

4 4 4 4

5

5 5 5

if then

/ 3

elseif then

/ 3

elseif then

/ 2

elseif then

/ 3

elseif then

els

L

L

L

L

L

t t

SR SR V V V V t t

t t

SR SR V V V V t t

t t

SR SR V V V t t

t t

SR SR V V V V t t

t t
SR SR V V t t

∆ <

= + − + − − ∆  
∆ <

= − − + − ∆ −  
∆ <

= + − + − ∆  
∆ <

= + − − − − ∆  
∆ <

= + − − ∆

( ) ( )

( ) ( )

( ) ( )

6

5 5 5 5

7

7 7 7

8

8

eif then

/ 3

elseif then

/ 2

elseif then
/ 3

end if

L

L

L

t t

SR SR V V V V t t

t t

SR SR V V V t t

t t
SR V V t t

∆ <

= − − − − ∆ −  
∆ <

= + − + − ∆  
∆ <

= − − ∆
  

6. Speed-Change Transitions 

The speed-change transitions start at a speed 0V  and acceleration 0A and end at a speed f LV V≤  

and acceleration 0.fA =   They take into account, as derived in Section 3, that above a speed LVα  

the maximum acceleration is reduced from the value cA  at LVα  to cAβ at ,L bV V− where 
2( ) / 2 .b c cV A Jβ=    

The Relationship between V and A above LVα . 

We can assume this relationship is linear.  Thus let 

    (1 )L
c c

L b L

V VA A A
V V V

α β
α

 −
= − − − − 

     

which meets the stipulated end conditions.  A  means the absolute value of A , which means that 
the above equation applies for decreasing as well as increasing speed.  Solving for ,V  we have  
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    ( )1
1 .

1
L b

L
c

AV V
V V

A
α

α
β

 − − 
= + −  −   

    (6-1) 

The Cases 

We need to consider six cases, which are defined in the following table.  To follow these cases in 
detail, the reader must draw diagrams of each one. 

Case 
0fV V>  

1 2
0 0 / 2 ,c L f LV A J V V Vα α− ≤ >  

2 2
0 0 / 2 ,c L f LV A J V V Vα α− > >  

3 2
0 0 / 2 ,c L f LV A J V V Vα α− ≤ ≤  

 
0fV V<  

4 2
0 0 / 2 ,c L f LV A J V V Vα α+ > ≤  

5 2
0 0 / 2 ,c L f LV A J V V Vα α+ > >  

6 2
0 0 / 2 ,c L f LV A J V V Vα α+ ≤ ≤  

 

First, however, note that if 2 2
0 0 / 2 /f c c cdV V V A J A J≡ − + ≤  we can bypass these cases and 

compute 1 1,A V  as follows: 

  
2 2
0 1

1 0 1 0 0( ) , ( )
2f c f

c

A AA SGN V V J dV V V SGN V V
J
−

= − = − −  

Case 1 

In this case, positive jerk cJ  is applied during interval 0-1 until either the acceleration reaches cA  

or the speed reaches .LVα   If the former case, constant acceleration cA  is applied during interval 

1-2 until the speed reaches .LVα   In the later case there is no interval 1-2 and acceleration 

1 2 cA A A= < .  At point 2 negative jerk nJ  is applied (interval 2-3) until point 3 is reached, at which 

time maximum negative jerk cJ  is applied (interval 3-4) until the speed and acceleration 
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simultaneously reach fV  and zero, respectively.  However, if f LV Vα− is too small, speed 2V must 

be reduced from LVα as shown below. 

Unlike the derivation of equations (3-1) at this point we don’t know either 3A  or 3V .  It is best first 
to list the generic equations for Case 1.  They are   

 

1 0 1 0 0 1
01 1 0 01 01 01 0 01

2 1
2 1 12 12 12 1 12 2 1

2, ,
2 6

, , , ; ?
2

c

c
L

c

A A A A A Adt V V dt dx dt V dt
J

AV VA A dt dx dt V dt V V A
A

α

− +  +    = = + = +        
−  = = = + ≤ =  

             (6-2) 

3 3 3
34 3 34 34 34 3 34 3 3

2 2
3 2 2 3 2 3 2 3

23 23 23 2 231
2 3 3 22

, , ; , ?
2 3

2, ,
( ) 2( ) 6

f
c

n
n

A A Adt V V dt dx dt V dt A V
J

V V A A A A A Adt J dx dt V dt
A A J V V

 = = − = + = 
 

− − −  +  = = = = +   + −   

 

If 2 2
0 0 / 2 / 2c c c LV A J A J Vα− + ≤ then, using the first two of the first line of equations (6-2), 

    
1 2

2 2
0

1 0 2,
2 2

c

c
L

c c

A A A
A AV V V V
J J

α

= =

= − + =
      (6-3) 

If 2 2
0 0 / 2 / 2c c c LV A J A J Vα− + > then 

   ( )

1 2
2 2

21 0
0 1 2 0 0, 2

2

L

L c L
c

V V V
A AV V A A J V V A

J

α

α α

= =

−
= + = = − +

    (6-4) 

Now consider 3.A   If 
2
2

2f L
c

AV V
J

α− ≥ then, using equation (1),  

 

( )

( )

2 22
3 3

3

2
3 3

1 11 ,
2 1 1 1 2

2 0, , 2

L b c
f L L

c c c

c
f f c L f

c

V VA A AV V V Q Q V
J A J

JA bA c b Q c J V Q V
A

α α βα
β β β

α

− −   −
= − = + − = = −   − − −  

− + = = = + −

 (6-5) 
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min

2
2 3 3

3 3
3

2

3
3

, ,
2

10
1 1 2

f
f f L

c c c c

f c c c
L

c c

VA AQ QA b b c V A V Q
J A A J A

V J J AA Q V
A A A

α

α β
β β

∂
= ± − = − + + = −

∂

∂  −
= → = = − ∂ − − 

   (6-6) 

The quantity fV can, as shown in equations (6-6), be expressed as a parabolic function of 3A , 

which  has a single minimum point at the value of 
min3A given in equations (6-6).  If we assume, as 

we do in the system that 1/ 2 and 0.25 , 0.25 /c cA g J g sα β= = = = then 

     
min3

1
16LA V g= −  

The maximum value of 
min3A is 0.25g.   

min3A reaches this value if 5 3.07 m/s,
16LV g= = which is 

substantially lower than any practical line speed.  Thus, of the two solutions for 3,A  only the 
lower one has physical meaning.  Thus 

     2
3 fA b b c= − −       (6-7) 

Can the quantity 2
fb c− ever be negative?  We see from equation (6-5) that 

   ( )2 2 2c
f c c f L

c c

J Qb c J Q J V V
A A

α
 

− = − + − 
 

 

The smallest value fV can have in Case 1 is .LVα   Assuming this value, we see that the radical is 
certainly positive if  

    
2 221 2 .

1 1 2
c c

L
c c

A AQ V
J J

α β
β β

 −
= − ≥ − − 

 

Using the values given after equation (6-6), we see that the radical is always positive if 

     9 5.52 m/s.
16LV g> =  

Since this value of line speed is less than practical values, the radical in equation (6-7) is always 
positive. 

Now, if 
2
2

2f L
c

AV V
J

α− < there are two cases: 
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If 
2 2
0

0 2
c

f
c c

A AV V
J J

− + ≥  

    
2

2 3 2 3,
2

c
c f

c

AA A A V V V
J

= = = = −     (6-8) 

If 
2 2
0

0 2
c

f
c c

A AV V
J J

− + <  

  

2 22
0 02

0 2 3 1 0

2
0

1 2 3 0

,
2 2

1
2 2

f c f
c c c

f
c

A AAV V A A A J V V
J J J

AV V V V V
J

 
− + = = = = − + 

 

 
= = = + − 

 

    (6-9) 

Case 2 

From point 0 to point 1 positive jerk cJ is applied up to an acceleration 1A  that will be calculated 
using equation (6-1).  Points 1 and 2 are at the same location.  From point 2 to point 3 negative 
jerk nJ  is applied until at point 3 maximum negative jerk cJ  must be applied until at point 4 the 

speed reaches fV  just as the acceleration vanishes.  The acceleration and speed at point 3 are 
calculated from equations (6-7) and (6-5) respectively.  The equation set is as follows. 

           

1 0 1 0 0 1
01 1 0 01 01 01 0 01

12 1 2

3 3 3
34 3 34 34 34 3 34 3 3

2 2
3 2 2 3 2 3 2 3

23 23 23 2 231
2 3 3 22

2, ,
2 6

0,

, , , , ?
2 3

2, ,
( ) 2( ) 6

c

f
c

n
n

A A A A A Adt V V dt dx dt V dt
J

dt A A
A A Adt V V dt dx dt V dt A V
J

V V A A A A A Adt J dx dt V dt
A A J V V

− + + = = + = + 
 

= =

 = = − = + = 
 

− − − += = = = +
+ − 


 



(6-10) 

To find the values of 1 1andA V  note from the first row of equation set (6-10) that 

     
2 2

1 0
1 0 .

2 c

A AV V
J
−

= +                (6-11) 

By substituting equation (6-11) into equation (6-1) and letting 1A A=  we get 

          
2 2
0 1 1

0 1
2 2 L

c c c

A A AV V Q
J J A

α
 

− + = + − 
 

              (6-12) 
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which can be written in the form 

     2
1 1 02 0pA bA c+ − =               (6-13) 

where b  is given in the equation set (6-5) and ( )2
0 0 02 / 2p c L cc J V Q V A Jα= + − + .   Equation (6-

10) has one positive solution: 

     2
1 0 pA b b c= − + +               (6-14) 

If 
2 2
0

0 2
c

f
c c

A AV V
J J

− + ≥ then  

  1 2A A= from (6-14), 1 2V V= from (6-11); 3A from (6-7), 3V from (6-5). 

If 
2 2
0

0 2
c

f
c c

A AV V
J J

− + < then 

  

2 2
0

0

2 2
0 0

1 2 3 0 1 2 3 0

2

1,
2 2 2

c
f

c c

c f f
c c

A AV V
J J

A AA A A J V V V V V V V
J J

− + <

   
= = = − + = = = + −   

   

 

Case 3 

From point 0 to point 1 positive jerk cJ  is applied to 1.A   if 1 cA A= acceleration is constant from 

point 1 to point 2, which is the same as point 3.  Finally maximum negative jerk cJ−  is applied 

until the speed reaches fV  while acceleration vanishes.  The equation set is as follows: 

 

1 0 1 0 0 1
01 1 0 01 01 01 0 01

3 3 3
34 3 34 34 34 3 34 2 3 3 2 1

23

2, ,
2 6

, , , ,
2 3

0

c

f
c

A A A A A Adt V V dt dx dt V dt
J

A A Adt V V dt dx dt V dt V V A A A
J

dt

− + + = = + = + 
 

 = = − = + = = = 
 

=

     (6-15) 

2 1 1
12 12 12 1 12

1

,
2

V V Adt dx dt V dt
A
−  = = + 

 
 

If 
2 2
0

0 2
c

f
c c

A AV V
J J

− + ≥ then 
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1 2 3

2 2 2
0

1 0 2 3,
2 2 2

c

c c
f

c c c

A A A A
A A AV V V V V
J J J

= = =

= − + = = −
 

If 
2 2
0

0 2
c

f
c c

A AV V
J J

− + < then 

    

2
0

1 2 3 0

2
0

1 2 3 1 0

2

1
2 2

c f
c

c

AA A A J V V
J

AV V V V V
J

 
= = = − + 

 

 
= = = + − 

 

 

Case 4 

From point 0 to point 1 negative jerk cJ  is applied until the negative acceleration at point 1 satisfies 

equation (6-1).  Then a small negative jerk nJ is applied between points 1 and 2 until the 

acceleration reaches cA−  at point 2, where the speed is .LVα   Negative acceleration cA− is 

continued from point 2 to point 3 and then positive jerk cJ is applied from point 3 to point 4, at 

which speed reaches fV just as acceleration vanishes.   The equation set is as follows: 

                   
1 0 1 0 0 1

01 1 0 01 01 01 0 01 1 1

2 2
2 1 2 1 2 1 1 2

12 12 12 1 12 21
1 2 1 22

3 3 3
34 3 34 34 34 3 34

2, , , , ?
2 6

2, , ,
( ) 2( ) 6

, ,
2 3

c

n L
n

f
c

A A A A A Adt V V dt dx dt V dt A V
J

V V A A A A A Adt J dx dt V dt V V
A A J V V

A A Adt V V dt dx dt V dt
J

α

− + + = = + = + = −  
− − − + = = = = + = + − −  

−  = = − = +


3 2

3 2 2
23 23 23 2 23

2

,

,
2

A A

V V Adt dx dt V dt
A

=


−  = = + 
 

    (6-16) 

We need first to consider the portion of the curve below .LVα   Then 

If 
2

2
c

L f
c

AV V
J

α − ≥  

    
3

2

3 2

c

c
f

c

A A
AV V
J

=

= +
                 (6-17) 



77 
 

If 
2

2
c

L f
c

AV V
J

α − <  

    ( )3

3

2 c L f

L

A J V V

V V

α

α

= −

=
                

(6-18) 

In both of these cases 2 2 3and .LV V A Aα= =  

To compute 1 1andA V  we need to consider two cases.   

Case 1: 
2 2
0

0 .
2 2

c
L

c c

A AV V
J J

α+ − >  

In this case, set 1V  from the first row of equation set (6-16) equal to V in equation (6-1).  Thus 

    
2 2

10 1
1 0 1

2 L
c c

AA AV V V Q
J A

α
 −

= + = + − 
 

            (6-19) 

which gives the following quadratic equation for 1.A  

     2
1 1 02 0mA b A c− + =               (6-20) 

in which b  is found from equation set (6-5) and  

    
2
0

0 02
2m c L

c

Ac J V Q V
J

α
 

= + − − 
 

.                (6-211) 

Thus 

     

2
1 0

2 2
0 1

1 0 2 2

m

c c

A b b c

A AV V
J J

= − + −

= + −
              (6-21) 

which takes into account that 1 0.A <    

Case 2:  
2 2
0

0 .
2 2

c
L

c c

A AV V
J J

α+ − ≤  

Now there are two subcases: 
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Case 2.1:  
2 2
0

0 2
c

f
c c

A AV V
J J

+ − ≥  

     
1 2 3

2 2
0

1 2 0 2 2

c

c

c c

A A A A
A AV V V
J J

= = =

= = + −
              (6-23) 

Case 2.2:  
2 2
0

0 2
c

f
c c

A AV V
J J

+ − <  

    

2
0

1 2 3 0

2
0

1 2 3 0

2

1
2 2

c f
c

f
c

AA A A J V V
J

AV V V V V
J

 
= = = − + − 

 

 
= = = + + 

 

              (6-24) 

Case 5 

Negative jerk is applied from point 0 to point 1, at which point 1 1andA V  are determined exactly as 

in Case 4.  Negative jerk nJ  is then applied from point 1 to point 2 (points 2 and 3 are coincident) 

until at point 3 maximum positive jerk cJ is applied until the speed reaches fV just as acceleration 
vanishes.   The determining equation set is as follows: 

      

1 0 1 0 0 1
01 1 0 01 01 01 0 01 1 1

2 2
2 1 2 1 2 1 1 2

12 12 12 1 121
2 1 1 22

23 2 3

3 3
34 3 34

2, , ; , ?
2 6

2, ,
( ) 2( ) 6

0,

, ,
2

c

n
n

f
c

A A A A A Adt V V dt dx dt V dt A V
J

V V A A A A A Adt J dx dt V dt
A A J V V

dt A A
A Adt V V dt

J

− +  +    = = + = + =    −     
− − −  +  = = = = +   + − −   

= =

−
= = − 3

34 34 3 34 3 3; , ?
3
Adx dt V dt A V = + = 

 

   (6-25) 

To determine 3 3,A V  note that 

      
( )

2
3 23

3 3 3

2 2
3 3 3

1 2 2 0
2 /

2 0

f L c L f
c c c c

f f

AA QV V V Q A A J V Q V
J A A J

A b A c A b b c

α α
 

= + = + − → + − + − = 
 

+ − = → = − +

    (6-26) 
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Case 6 

Maximum negative jerk cJ is applied from point 0 to point 1, where 1 cA A= − .  Points 1 and 2 are 

coincident.  Maximum negative acceleration cA−  is applied from point 2 to point 3 and at point 3 

maximum positive jerk cJ is applied until the speed reaches fV  just as acceleration vanishes.  The 
governing equation set is as follows:  

 

1 0 1 0 0 1
01 1 0 01 01 01 0 01

12 1 2 3 2 1

3 3 3
34 3 34 34 34 3 34

2 3 2
23 23 23 2 23

2

2, ,
2 6

0, ,

, ,
2 3

,
2

c

f
c

A A A A A Adt V V dt dx dt V dt
J

dt A A A V V
A A Adt V V dt dx dt V dt

J
V V Adt dx dt V dt

A

− +  +    = = + = +    −     
= = = =

−  = = − = + 
 

−  = = + −  

           (6-27) 

7.  Headway Needed to Delay Speed Reduction 

Consider a vehicle 0 that is commanded to reduce speed from a line speed 
1LV to a speed 

2LV at 

time 0.t =   The slow-down transition takes an amount of time mT and occurs over a distance 

.mD   Assume vehicle 1 is a distance 1dP behind vehicle 0 and traveling at speed 
1LV is close 

enough that it must be commanded to slow down to speed 
2LV as close to immediately as possible.  

Taking into account a computational interval t∆ vehicle 1 may not start slowing down until a 
time t∆ later.  Thus, once it has reached speed 

2LV its distance-time curve is given by the equation 

   ( )
1 21 1 L m L mx dP V t D V t t T= − + ∆ + + −∆ −              (7.1) 

We need to know how far behind vehicle 0 vehicle 2 must be so that it can delay slowing down 
until it reaches the speed-change command point, i.e., the point along the guideway at which 
vehicle 0 started to slow down.  Assume this is the case.  Then vehicle 2 doesn’t reach speed 

2LV
until it reaches the position ahead of the position vehicle 0 began to slow down by an amount 

1
.L mV t D∆ +   Once vehicle 2 has reached speed 

2LV its distance-time curve is given by the 
equation 
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Figure 6. The Kinematics of a Speed Reduction. 

   
1 2

1

2
2 L m L m

L

dPx V t D V t t T
V

 
= ∆ + + − −∆ −  

 
             (7.2) 

Substituting the time 
1

2
m

L

dPt t T
V

= + ∆ + into equation (1.1) we see that the separation between 

vehicle 1 and vehicle 2 at this time is 

   

( )

1 2 1

1

2

2

1

2
1 2 1

1 2

L m L L m
L

L
L h

L

dPx x dP V t D V V t D
V

V
dP dP V T t

V

 
− = − + ∆ + + − ∆ −  

 

= − + ≥ + ∆

              (7.3)  

Thus, the desired result is                                                                                                                

                                   (7.4) 

 

 

 

( ) 1

1

2

2 1
L

L h
L

V
dP V T t dP

V
≥ + ∆ +  
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8. Emergency Stop 

An emergency stop starts with arbitrary initial acceleration 0A  and initial speed 0V .  The vehicle 

is subjected to a maximum negative jerk maxJ  up to a point 1 at which the deceleration is the 

emergency value eA− and then decelerates at that maximum rate until a point 2, where positive 

jerk maxJ is applied until the vehicle stops at a point 3.  Using the basic transition equations (1-2), 
the emergency-stop transition is set up with the following equations: 

 

( )
( )

( ) ( )

01 0 max 1 0 01 0 01 01 0 01 0

23 max 2 23 23 23 2 23

12 1 2 12 12 1 12

1 01 2 1 12 3 2 23

1 01 2 1 12 3 2

( ) / , ( ) / 2, 2 / 6

/ , / 2, / 3

/ , / 2
, ,
, ,

e e e

e e e

e e

dt A A J V V dt A A dx dt V dt A A

dt A J V dt A dx dt V dt A

dt V V A dx dt V dt A
t dt t t dt t t dt
x dx x x dx x x d

= + = − − = + −  
= = = −

= − = −

= = + = +
= = + = + 23x

 

The transition is then run using the following code: 

    

0

1

max

0 0 0

2

1 1 1

3

max

2 2 2

Jerk
State ( t, Jerk, A , V , x , A, V, x)

0
State ( t, Jerk, A , V , x , A, V, x)

State ( t, Jerk, A , V , x , A, V, x)

0

t t t
if t t then

J

elseif t t then
Jerk

elseif t t then
Jerk J

else
Jerk

end if

∆ = −
<

= −
∆
<
=
∆
<
= +
∆

=

 

9.  Distance to Reach Station Speed 

When a vehicle is ready to leave a station it may be advancing in the station at any speed 0V below 

station speed sV and at any acceleration 0A within the comfort range.  It must not be permitted to 

accelerate to line speed if at that moment it would exceed sV  its nose would not have reached the 

downstream end of the station.  The criterion to leave is thus that the distance to reach sV is greater 
than the distance to the downstream end of the station.  Using the notation of Section 3, let the 
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distance from initiation of the acceleration transition to the speed sV be 0 .sdx   Then, following the 
notation of Section 3, we must consider two cases:   

2sV V≤  

( )0 01 1 / .s s cdx dx V V A= + −  

2sV V>  

( )0 01 12 2 2 2 2 / 6s s s c sdx dx dx dt V dt A A= + + + +    

in which 

( )

( )

2

2 2
2 2 2 2 2 2

2
2 2

0 01 12 2 2 2 2

or 0
2 2

1or 2

3 / 6

s c n s

n n
s c s s s c s s

s c c n s
n

s s s c n s

A A J dt
J JV V A dt dt dt A dt V V

dt A A J V V
J

dx dx dx dt V dt A J dt

= −

= + − − + − =

 = − − − 

= + + + −  

 

in which the minus sign before the square root is taken because we know that when 

2 2, 0.s sV V dt→ →  

10.  The Distance to Slip a Given Amount 

Assume a series of slip transitions which begin and end at line speed.  Assume that the minimum 
speed in the transition, mV  is low enough so that the cruising time at mV is zero.  Then if LV is the 

line speed, if 2
1 1/ then else .m c c c L cV A J A J V A A< = =  The transition time is 

    1

1

2 L m
m

c

V V A
T

A J
 −

= + 
 

. 

The slip S  is 

     ( ) / 2L m mS V V T= −  

and the distance traveled to slip S  is 

     Distance = .L mV T S−  

These quantities are calculated and plotted in the following table for 16LV = m/s. 
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Table 1 

Distance Traveled During Slip Transition 

g = 9.807 m/s^2   

Ac = 2.452 m/s^2   

Jc = 2.452 m/s^3   

VL = 16 m/s   

Vmin A1 Tm Slip Dist 

m/s m/s^2 sec m m 

16.0 0.00 0.00 0.00 0.00 

15.8 0.70 1.14 0.11 18.17 

15.6 0.99 1.62 0.32 25.53 

15.4 1.21 1.98 0.59 31.07 

15.2 1.40 2.28 0.91 35.65 

15.0 1.57 2.55 1.28 39.60 

14.8 1.72 2.80 1.68 43.10 

14.6 1.85 3.02 2.12 425 

14.4 1.98 3.23 2.59 49.12 

14.2 2.10 3.43 3.08 51.75 

14.0 2.21 3.61 3.61 54.19 

13.8 2.32 3.79 4.17 546 

13.6 2.43 3.96 4.75 58.57 

13.4 2.45 4.12 5.36 60.58 

13.2 2.45 4.28 6.00 62.55 

13.0 2.45 4.45 67 64.49 

12.8 2.45 4.61 7.38 639 

12.6 2.45 4.77 8.12 68.26 

12.4 2.45 4.94 8.89 70.10 

12.2 2.45 5.10 9.69 71.91 
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12.0 2.45 5.26 10.53 73.68 

11.8 2.45 5.43 11.40 75.42 

11.6 2.45 5.59 12.30 77.13 

11.4 2.45 5.75 13.23 78.81 

11.2 2.45 5.92 14.20 80.45 

11.0 2.45 6.08 15.20 82.06 

10.8 2.45 24 123 83.64 

10.6 2.45 41 17.29 85.19 

10.4 2.45 57 18.39 86.70 

10.2 2.45 6.73 19.52 88.18 

10.0 2.45 6.89 20.68 89.63 
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Potential Headway Violation upon Decelerating into a Station 

 

 

 

 

 

 

 

 

 

 

Figure 1. The velocity profiles of a pair of vehicles entering a station. 

Consider a vehicle #1 decelerating into a station to station speed staV , followed by a vehicle #2 a 
time Line Headway behind undergoing the same maneuver.  Let the position of vehicle #1 at 
time zero be (0) 0.x =   The times, accelerations, speeds, and positions of vehicle #1 at the points 
1, 2, 3 in Figure 110 are as follows: 

01 1 01 01 01 01

23 2 23 23 23 2 23

1 2
12 12 12 1 12

1 01 2 1 12 3 2 23

1 01 2 1 12 3 2 23

, ,
2 6

, ,
2 3

,
2

, ,
, ,

c c c
L L

c

c c c
sta

c

c

c

A A Adt V V dt dx dt V dt
J
A A Adt V V dt dx dt V dt
J

AV Vdt dx dt V dt
A

t dt t t dt t t dt
x dx x x dx x x dx

 = = − = − 
 

 = = + = − 
 

−  = = − 
 

= = + = +
= = + = +

   (1) 

From equations (1) we find 

2 2

03 01 23 12
12

2 2
c c c L sta c

L sta
c c c c c c

A A A V V Adt dt dt dt V V
J A J J A J

  −
= + + = + − − − = + 

 
  (2) 

 

 
10 For the methodology, see the internal paper “Speed and Position vs. Time” 

2 

V 

t 

0 1 3 

Line Headway 

VL 

1 

2 

Vstation 
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Thus, the maneuver time from line speed to station speed is 

L sta c
m

c c

V V AT
A J
−

= +       (3) 

From equations (1) we also find 

( )

( ) ( )( ) ( ) ( )

( ) ( )

2 2 2
1 2

03 01 23 12 1 2

2

1 2 1 2

03

2 6 3 2

1 1
2 2

2 2

c c c c
L sta

c c c c c

c c c
L sta L sta L sta L sta

c c c c c

L sta L staL sta c

c c

A A A A V Vdx dx dx dx V V V V
J J J J A

A A AV V V V V V V V V V V V
J A J A J

V V V VV V A dt
A J

   −
= + + = + + − − + +   

   
 

= + + − + = + + − − + 
 

+ + −
= + = 

 

(4) 

Thus, the distance traveled from line speed to station speed is 

( )
2

L sta
m m

V V
D T

+
=           (5) 

Using the above canonical formulation, the acceleration, speed, and position of vehicle 1 at any 
value of t are as follows: 

    

( )

1

1 2 1 1 1 1

2 3 2 2 2 2

0 : , , ,
2 6

: , , ,
2

: , , ,
2 3

c L L

c

c
c c

A At t t t A J t V V t x t V t

At t t t t t A A V V tA x x t V t

A A At t t t t t A A J t V V t x x t V t

 ≤ ≤ ∆ = = − ∆ = + ∆ = ∆ + ∆ 
 

 ≤ ≤ ∆ = − = − = + ∆ = + ∆ + ∆ 
 

− +  ≤ ≤ ∆ = − = − + ∆ = + ∆ = + ∆ + ∆ 
 

(6)

 

For vehicle #2 up to time t LineHeadway= the speed stays constant at LV and the distance 
traveled is  

Lx V t= .  For t LineHeadway> we can obtain the acceleration, speed, and position as functions 
of time by making the following substitutions in equations (5): t t LineHeadway→ −  
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( )

1

1 2 1 1 1 1

0 : 0, ,

: , , ,
2 6

: , , ,
2

h

h L L h

h h h c L L

h h c

T LineHeadway
t T A V V x V t T

A AT t t T t t T A J t V V t x t V t

AT t t T t t t t A A V V tA x x t V t

=

≤ ≤ = = = −

 ≤ ≤ + ∆ = − = − ∆ = + ∆ = ∆ + ∆ 
 

 + ≤ ≤ + ∆ = − = − = + ∆ = + ∆ + ∆ 
 

 

( )
2 3 2 2 2 2: , , ,

2 3
c

h h c c

A A AT t t T t t t t A A J t V V t x x t V t
− +  + ≤ ≤ + ∆ = − = − + ∆ = + ∆ = + ∆ + ∆ 

 

            

(7) 

The Minimum Headway 

 

 

 

 

 

 

Figure 2. A pair of vehicles moving to the right. 

Assume vehicle #1 stops due to a failure at deceleration fA and jerk .fJ   From equation (5), the 
stopping distance of vehicle #1 is 

1 1
1 2

f

f f

AV VD
A J

 
= +  

 
     (8) 

After a control time delay ,ct  vehicle #2 stops at the emergency deceleration rate eA  and 

emergency jerk .eJ  Its stopping distance is therefore  

2 2
2 2 2

e
c

e e

AV VD V t
A J

 
= + + 

 
    (9) 

Assuming the length of each of the two vehicles is L , the minimum allowable separation 
between them is 

min 2 1H L D D= + −      (10) 

 

#1 #2 

D1 

L D2 

Hmin 

V1 V2 
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The minimum permissible time headway is therefore 

min

2

HMinHeadway
V

=     

 (11) 

A program to calculate the acceleration, speed, positions profiles and the minimum headway is 
given in the Appendix.  Some results are given in Figures 3 and 4. 

 

Figure 3.  Kinematics of motion of a pair of vehicles decelerating to station speed. 

 

Figure 4. Separation and minimum allowable separation between two vehicles entering a station. 
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The parameters used in Figures 3 and 4 are those given at the beginning of the program shown in 
the Appendix.  Many runs can be made for different accelerations and jerks.  For the set shown 
in the program, runs were made with different line headways and control time constants to obtain 
the maximum negative separations as shown in Table 1 and as calculated by the program. 

Table 1. Maximum headway violations for the cases shown. 

\ct LineHeadway →  0.5 1.0 1.3 1.5 

0.05 -3.25 -1.03 0 0 
0.10 -3.80 -1.59 -0.03 0 
0.15 -4.36 -2.15 -0.60 0 
0.20 -4.92 -2.71 -1.17 -0.01 

 

It is seen that if the line headway between two vehicles sequentially entering a station is to be as 
low as one second, the control time constant must be quite small, but not particularly small using 
contemporary technology.  Note from Figure 4 that in the case shown the small headway 
violation increases from zero back to zero in about one second.   

In this work, we considered only the portion of the maneuver from line speed to station speed. 
Further development of the program included in the Appendix shows that, since the second of 
the pair of vehicles will be stopping at least one berth behind the first, there is no headway 
violation in the maneuvers from station speed to rest. 

Appendix 
 
'This program MINHEAD.BAS calculates the minimum headway permissible 
'between a pair of vehicles decelerating into a station 
'Units are MKS 
 
DEFDBL A-Z 
DIM Counter AS INTEGER 
DIM A(1 TO 2) AS DOUBLE    'acceleration of vehicles 1 & 2 
DIM V(1 TO 2) AS DOUBLE    'speed of vehicles 1 & 2 
DIM X(1 TO 2) AS DOUBLE    'position of vehicles 1 & 2 
DIM t4(1 TO 2) AS DOUBLE   'time at end of station-speed section 
DIM t5(1 TO 2) AS DOUBLE   'time at command to constant deceleration 
DIM t6(1 TO 2) AS DOUBLE   'time at command to constant jerk 
DIM t7(1 TO 2) AS DOUBLE   'time at maneuver end, total maneuver time 
 
DIM X1(1 TO 2) AS DOUBLE   'position of command to constant deceleration 
DIM X2(1 TO 2) AS DOUBLE   'position of command to constant jerk 
DIM X3(1 TO 2) AS DOUBLE   'position at beginning of station-speed section 
DIM X4(1 TO 2) AS DOUBLE   'position at end of station-speed section 
DIM X5(1 TO 2) AS DOUBLE   'position of command to constant deceleration 
DIM X6(1 TO 2) AS DOUBLE   'position of command to constant jerk 
DIM X7(1 TO 2) AS DOUBLE   'position at maneuver end,total maneuver distance 
 
DIM D(1 TO 2) AS DOUBLE    'stopping distances of vehicles 1 & 2 
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g = 9.80665     'acceleration of gravity 
Ac = .25 * g    'comfort deceleration 
Jc = .25 * g    'comfort jerk 
tJ = Ac / Jc    'jerk time constant 
Af = .4 * g     'maximum failure deceleration 
Jf = .4 * g     'maximum failure jerk 
Ae = .4 * g     'emergency deceleration 
Je = .8 * g     'emergency jerk 
VL = 12         'line speed 
Vsta = 8        'station speed 
tc = .15         'time constant 
Lveh = 2.743    'vehicle length 
B = 3.048       'berth length 
LineHeadway = .5 'time headway between vehicles while at line speed 
t = 0           'start time 
dt = .01        'computational time interval 
 
'Calculation of the maneuver increments and transition speeds 
dt01 = tJ 
V1 = VL - dt01 * Ac / 2 
dx01 = dt01 * (VL - Ac * dt01 / 6) 
dt23 = tJ 
V2 = Vsta + dt23 * Ac / 2 
dx23 = dt23 * (V2 - dt23 * Ac / 3) 
dt12 = (V1 - V2) / Ac 
dx12 = dt12 * (V1 - dt12 * Ac / 2) 
dx34 = 10      'distance vehicle 1 travels at station speed 
dt34 = dx34 / Vsta          'time of veh 1 at station speed 
dt45 = tJ 
V5 = Vsta - dt45 * Ac / 2 
dx45 = dt45 * (Vsta - dt45 * Ac / 6) 
dt67 = tJ 
V6 = dt67 * Ac / 2 
dx67 = dt67 * (V6 - dt67 * Ac / 3) 
dt56 = (V5 - V6) / Ac 
dx56 = dt56 * (V5 - dt56 * Ac / 2) 
 
'Times and position increments at the transition points 
t1 = dt01 
t2 = t1 + dt12 
t3 = t2 + dt23 
t4(1) = t3 + dt34            'this and following times for veh 1 
t5(1) = t4(1) + dt45 
t6(1) = t5(1) + dt56 
t7(1) = t6(1) + dt67            'maneuver time 
t4(2) = t3 + dt34 - B / Vsta 'this and following times for veh 2 
t5(2) = t4(2) + dt45 
t6(2) = t5(2) + dt56 
t7(2) = t6(2) + dt67            'maneuver time 
 
 
X1(1) = dx01 
X2(1) = X1(1) + dx12 
X3(1) = X2(1) + dx23 
X4(1) = X3(1) + dx34 
X5(1) = X4(1) + dx45 
X6(1) = X5(1) + dx56 
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X7(1) = X6(1) + dx67 
 
X1(2) = dx01 
X2(2) = X1(2) + dx12 
X3(2) = X2(2) + dx23 
X4(2) = X3(2) + dx34 - B        'veh 2 stops one berth short of veh 1 
X5(2) = X4(2) + dx45 
X6(2) = X5(2) + dx56 
X7(1) = X6(1) + dx67            'total maneuver distance 
 
CLS 
SCREEN 9 
COLOR 7, 8 
scaleT = 600 / t7(2) 
scaleA = 10 
scaleV = 10 
scaleX = 4 
scaleS = 40 
T0 = 10 
Y0 = 280 
LINE (T0, Y0)-(640, Y0) 
LINE (T0, Y0)-(T0, 0) 
 
OPEN "KINEMAT.ASC" FOR OUTPUT AS #1 
OPEN "SEPRATN.ASC" FOR OUTPUT AS #2 
 
DO 
  'Motion of first vehicle 
  IF t <= t1 THEN 
     DelT = t 
     A(1) = -Jc * DelT 
     V(1) = VL + DelT * A(1) / 2 
     X(1) = DelT * (VL + DelT * A(1) / 6) 
  ELSEIF t <= t2 THEN 
     DelT = t - t1 
     A(1) = -Ac 
     V(1) = V1 + DelT * A(1) 
     X(1) = X1(1) + DelT * (V1 + DelT * A(1) / 2) 
  ELSEIF t <= t3 THEN 
     DelT = t - t2 
     A(1) = -Ac + Jc * DelT 
     V(1) = V2 + DelT * (-Ac + A(1)) / 2 
     X(1) = X2(1) + DelT * (V2 + DelT * (-2 * Ac + A(1)) / 6) 
  ELSEIF t <= t4(1) THEN 
     DelT = t - t3 
     A(1) = 0 
     V(1) = Vsta 
     X(1) = X3(1) + Vsta * DelT 
  ELSEIF t <= t5(1) THEN 
     DelT = t - t4(1) 
     A(1) = -Jc * DelT 
     V(1) = Vsta + DelT * A(1) / 2 
     X(1) = X4(1) + DelT * (Vsta + DelT * A(1) / 6) 
  ELSEIF t <= t6(1) THEN 
     DelT = t - t5(1) 
     A(1) = -Ac 
     V(1) = V5 + DelT * A(1) 



92 
 

     X(1) = X5(1) + DelT * (V5 + DelT * A(1) / 2) 
  ELSEIF t < t7(1) THEN 
     DelT = t - t6(1) 
     A(1) = -Ac + Jc * DelT 
     V(1) = V6 + DelT * (-Ac + A(1)) / 2 
     X(1) = X6(1) + DelT * (V6 + DelT * (-2 * Ac + A(1)) / 6) 
  ELSE 
     A(1) = 0 
     V(1) = 0 
     X(1) = X7(1) 
  END IF 
 
  'Motion of second vehicle 
  tsec = t - LineHeadway 
  IF tsec <= 0 THEN 
     DelT = tsec 
     A(2) = 0 
     V(2) = VL 
     X(2) = DelT * VL 
  ELSEIF tsec <= t1 THEN 
     DelT = tsec 
     A(2) = -Jc * DelT 
     V(2) = VL + DelT * A(2) / 2 
     X(2) = DelT * (VL + DelT * A(2) / 6) 
  ELSEIF tsec <= t2 THEN 
     DelT = tsec - t1 
     A(2) = -Ac 
     V(2) = V1 + DelT * A(2) 
     X(2) = X1(2) + DelT * (V1 + DelT * A(2) / 2) 
  ELSEIF tsec <= t3 THEN 
     DelT = tsec - t2 
     A(2) = -Ac + DelT * Jc 
     V(2) = V2 + DelT * (-Ac + A(2)) / 2 
     X(2) = X2(2) + DelT * (V2 + DelT * (-2 * Ac + A(2)) / 6) 
  ELSEIF tsec <= t4(2) THEN 
     DelT = tsec - t3 
     A(2) = 0 
     V(2) = Vsta 
     X(2) = X3(2) + Vsta * DelT 
  ELSEIF tsec <= t5(2) THEN 
     DelT = tsec - t4(2) 
     A(2) = -Jc * DelT 
     V(2) = Vsta + DelT * A(2) / 2 
     X(2) = X4(2) + DelT * (Vsta + DelT * A(2) / 6) 
  ELSEIF tsec <= t6(2) THEN 
     DelT = tsec - t5(2) 
     A(2) = -Ac 
     V(2) = V5 + DelT * A(2) 
     X(2) = X5(2) + DelT * (V5 + DelT * A(2) / 2) 
  ELSEIF tsec < t7(2) THEN 
     DelT = tsec - t6(2) 
     A(2) = -Ac + Jc * DelT 
     V(2) = V6 + DelT * (-Ac + A(1)) / 2 
     X(2) = X6(2) + DelT * (V6 + DelT * (-2 * Ac + A(1)) / 6) 
  ELSE 
     A(2) = 0 
     V(2) = 0 
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     X(2) = X7(2) 
  END IF 
 
  D(1) = .5 * V(1) * (V(1) / Af + Af / Jf)  'stopping distance of veh #1 
  D(2) = .5 * V(2) * (V(2) / Ae + Ae / Je)  'stopping distance of veh #2 
    
  Separation = X(1) - X(2) 
  IF Separation < Lveh + V(2) * tc THEN SLEEP 
  IF V(2) > 0 THEN Headway = Separation / V(2) 
  MinSeparation = Lveh + V(2) * tc + D(2) - D(1) 
  IF V(2) > 0 THEN MinHeadway = MinSeparation / V(2) 
  dSep = Separation - MinSeparation 
  IF dSep < MaxNegSep THEN MaxNegSep = dSep 
 
  PSET (T0 + scaleT * t, Y0 - scaleA * A(1)), 14 
  PSET (T0 + scaleT * t, Y0 - scaleV * V(1)), 13 
  PSET (T0 + scaleT * t, Y0 - scaleX * X(1)), 12 
  PSET (T0 + scaleT * t, Y0 - scaleA * A(2)), 11 
  PSET (T0 + scaleT * t, Y0 - scaleV * V(2)), 10 
  PSET (T0 + scaleT * t, Y0 - scaleX * X(2)), 9 
 
  PSET (T0 + scaleT * t, Y0 - scaleS * Separation), 5 
  PSET (T0 + scaleT * t, Y0 - scaleS * MinSeparation), 6 
 
  'PRINT USING "#####.##"; t; A(1); V(1); X(1) ; A(2); V(2); X(2); 
Separation; MinSeparation 
  'PRINT USING "#####.##"; t; V(2); Separation; Separation - Lveh - V(2) * 
tc; MinSeparation; dSep; Headway; MinHeadway 
  IF Counter = 20 THEN 
     Counter = 0 
     'SLEEP 
  END IF 
  Counter = Counter + 1 
  'WRITE #1, t, A(1), V(1), X(1), A(2), V(2), X(2) 
  'WRITE #2, t, Separation, MinSeparation 
  t = t + dt 
LOOP UNTIL t > t7(2) + 1 
PRINT "    MaxNegSep = "; 
PRINT USING "###.##"; MaxNegSep 
CLOSE #1 
CLOSE #2 
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Headway Needed to Delay Speed Reduction 

 

Figure 1. The Kinematics of a Speed Reduction. 

Consider a vehicle 0 that is commanded to reduce speed from a line speed 
1LV to a speed 

2LV at 

time 0.t =   The slow-down maneuver takes an amount of time mT and occurs over a distance 

.mD   Assume vehicle 1 is a distance 1dP behind vehicle 0 and traveling at speed 
1LV .  Assume 

that it is close enough to vehicle 0 that it must be commanded to slow down to speed 
2LV as close 

to immediately as possible.  Taking into account a computational interval t∆ vehicle 1 may not 
start slowing down until a time t∆ later.  Thus, once it has reached speed 

2LV its distance-time 
curve is given by the equation 
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   ( )
1 21 1 L m L mx dP V t D V t t T= − + ∆ + + −∆ −      (1) 

We need to know how far behind vehicle 0 vehicle 2 must be so that it can delay slowing down 
until it reaches the speed-change command point, i.e., the point along the guideway at which 
vehicle 0 started to slow down.  Assume this is the case.  Then vehicle 2 doesn’t reach speed 

2LV
until it reaches the position ahead of the position vehicle 0 began to slow down by an amount 

1
.L mV t D∆ +   Once vehicle 2 has reached speed 

2LV its distance-time curve is given by the 
equation 

   
1 2

1

2
2 L m L m

L

dPx V t D V t t T
V

 
= ∆ + + − −∆ −  

 
    (2) 

Substituting the time 
1

2
m

L

dPt t T
V

= + ∆ + into equation (1) we see that the separation between 

vehicle 1 and vehicle 2 at this time is 

   

( )

1 2 1

1

2

2

1

2
1 2 1

1 2

L m L L m
L

L
L h

L

dPx x dP V t D V V t D
V

V
dP dP V T t

V

 
− = − + ∆ + + − ∆ −  

 

= − + ≥ + ∆

   (3)  

in which Th is the minimum permissible time headway.  Thus, the desired result is  

                                                                                                                   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

( ) 1

1

2

2 1
L

L h
L

V
dP V T t dP

V
≥ + ∆ +  
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On-Line Deceleration 

 

 

Figure 1. Speed profile of vehicle decelerating. 

1. Introduction 

To reduce the required length of off-line guideway in a PRT system, it is possible to initiate 
deceleration before a vehicle is clear of mainline traffic.  The question that this memo answers is 
this: What is the relationship between the distance traveled by a decelerating vehicle while still 
on-line and the reduction in on-line headway?   This memo shows that by sacrificing a small 
amount of on-line headway, the length of the by-pass guideway can be reduced substantially. 

2. Deceleration at constant negative jerk.  

Figure 1 is a plot of speed V  vs. time t   and illustrates the speed profile of a vehicle 
decelerating from a line speed LV  into a station.   At first negative jerk cJ is applied until at a 

point 1, the deceleration reaches the comfort value .cA   The vehicle then decelerates at the 

comfort value until it either stops or assumes the station speed.  For the time interval 10 t t≤ ≤  
the equations of motion are 

    
2 3

, ,
2 6c L c L c
t tx J t x V J x V t J= − = − = −&& &    (1) 

At time 1t      1 1
c

c c
c

Ax A J t t
J

= − = − ∴ =&&     (2) 

Then 
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2 2

1

2

01

1
2 2

6

c c
L c L

c c

c c
L

c c

A AV V J V
J J

A Ax V
J J

 
= − = − 

 
 

= − 
 

   (3) 

The distance the vehicle moves backwards relative to or closes up to a vehicle behind it traveling 
at constant speed LV  is called the slip distance, which if the vehicle slows down a time t1 is 

     
3

01 1 01 26
c

L
c

AS V t x
J

= − =      (4) 

3. Headway sacrificed during constant-jerk motion 

Headway ht  is defined as the time interval between the passage of the nose of one vehicle and the 
passage of the next relative to a stationary point.  The distance traveled by a vehicle moving at 
speed VL during this time interval is L hV t .  Thus, the headway lost to point 1 if a vehicle begins 
to decelerate while still on the main line is  

     
3

01
2 .

6
c

h
L c L

S At
V J V

∆ = =      (5) 

For times less than 1t  substitute cJ t  for cA from equations (1).  Then we have 

     
1/3

3 6,
6

c L h
L h

c

J V tt V t t
J

 ∆
= ∆ =  

 
    (6) 

Substituting t  into the third of equations (1), we see that for 1t t<  the distance traveled while 

losing a headway of ht∆  is 

       
1/3

6 L h
L h

c

V tx V t
J

  ∆
 = − ∆ 
   

     (7) 

For longitudinal motion the comfort values are 0.25 , 0.25 /c cA g J g s= = .  Therefore, 

assuming g = 9.80665 m/s2 we have from equation (5) 0.4086 /h Lt V∆ = .  Assuming a minimum 

speed of say 10 m/s, we find that up to point 1 0.041ht∆ =  sec.   
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4. Headway sacrificed during constant-deceleration phase 

Assuming that we can permit a greater loss of headway as a result of on-line deceleration, let the 
vehicle proceed to a point 2 at constant deceleration cA−  where 2 12 2 1, and .t t t t t= ∆ = −   The 

constant deceleration region pertains until 2
2 / 2 .c cV A J≤   The speed and distance traveled during 

this interval in which 2
1 2 / 2c cV V A J> >  are  

      
2 1 12

22
12

12 1 12 12 122 2 2

c

c c
c L

c

V V A t

A Atx V t A t V t
J

= − ∆

 ∆
= ∆ − = ∆ − − ∆ 

 

   (8) 

The slip distance in traveling from point 1 to point 2 is 

             12 12 12 12 122
c c

L
c

A AS V t x t t
J

 
= ∆ − = + ∆ ∆ 

 
    (9) 

Thus the total slip distance up to point 2 is 

   
02

2

02 01 12 12 1222 3
c c c

L h
c c

A A AS S S t t V t
J J

  
= + = + + ∆ ∆ = ∆  

  
 (10) 

where 
02ht∆ is the headway lost in slowing down to point 2.   Equation (10) can be rearranged into 

the form 

    02

2
2
12 12 2

2
2 0

2 3
L hc c

c c c

V tA At t
J A J

∆  
∆ + ∆ − − =  

   
   (11) 

the positive root of which is 

       02 02

2 22

12 2

2 8 1 1
2 2 3 2 3

L h L hc c c c c

c c c c c c c

V t V tA A A A Jt
J J A J J A A

 ∆ ∆    ∆ = − + + − = − −        
 (12) 

5. Total headway sacrificed 

The distance traveled in the time period 02t∆  is 

      
2 2

02 01 12 12 126 2 2
c c c c

L L
c c c

A A A Ax x x V t V t
J J J
   

= + = − + ∆ − − ∆   
   

   (13) 

Substitute for 2
12t∆  from equation (11).  Then equation (13) becomes 
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02

02

2 2
2

02 12 12

2 2 2

12 12 2

12

6 2 2

2
6 2 2 3

c c c c
L L

c c c

c c c c c cL
L L h

c c c c c c

c
L h

c

A A A Ax V t V t
J J J

A A A A A AVV t V t t
J J J J A J

AV t t
J

   
= − + ∆ − − ∆   

   
     

= − + ∆ − + ∆ − ∆ +     
     
 

= + ∆ −∆ 
 

  (14) 

Substituting for 12t∆  from equation (12) we get 

                     
02 02 02

2 3

02 3 2
8 11 if

2 3 6
c L c c

L h h h
c c c L

A V J Ax V t t t
J A J V

   = + ∆ − − ∆ ∆ ≥  
    

                 (15)  

If 
02

3

26
c

h
c L

At
J V

∆ <  the distance traveled while losing a headway of 
02h ht t∆ = ∆  is given by equation 

(7).  The reader can verify that at 
02

3

26
c

h
c L

At
J V

∆ =  both equations (7) and (15) give the same result.    

6. Range of Validity of equation (15) 

As mentioned in Section 4, equation (15) is valid if 2
2 / 2 .c cV A J>   From equations (3) and (8) 

this condition becomes 

   
2 2

2 12 12or t
2 2

c c cL
L c

c c c c

A A AVV V A t
J J A J

= − − ∆ > ∆ < −         (16) 

Substituting for 12t∆  from equation (12) and reducing, we get 

    

02

02

02

02

2

2

2 2 2

2 2

2

2

8 1
2 3 2

8 1 2 1
3

8 1 4 4 1
3

1
2 3

L hc c L c

c c c c c

L h c L c

c c c c

L h c L c L c

c c c c c c

L c c c
h

c c c L

V tA J V A
J A A A J

V t J V J
A A A A

V t J V J V J
A A A A A A

V A A At
A J J V

 ∆   − < −    

∆  
− < − 

 

∆  
− < − + 

 
 

∆ < − + 
 

   (17) 
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Using the above values we find for 10LV =  
02

1.6 sec, and for 20h Lt V∆ = =  meters per second 

02
3.6 sec.ht∆ =   These values are much longer than would be of interest for this problem, 

therefore equation (12) gives correct values for 12.t∆                                                                                                           

7. The maximum on-line distance traveled. 

We can now plot a curve of distance traveled while losing a headway of ht∆ .  Note, from 

equation (7) that at 0ht∆ =  the rate of change of x  with ht∆  is infinite.  The form of equation 

(15) shows that as a function of ht∆  x increases to a maximum and then at a certain point falls to 
zero and below.  The maximum value of distance traveled can be found by setting to zero the 
derivate of 02x  with respect to ht∆ .  The result is  

    

02

2

2

2 2

2
2

22

h

82 1
3

8 2 1or
3

1 1 1or t
2 3 2

L hL c c

c c c

L h c L c

c c c

c
L

c c L

V tV J J
A A A

V t J V J
A A A

AV
A J V

∆  
= − 

 

   ∆
= +   

   
  

∆ = +  
   

    (18) 

To obtain the maximum on-line deceleration distance, substitute equation (18) into equation (15).  
This is not done here because ht∆  at the maximum distance is much too large to be of interest in 
short-headway PRT systems. 

8. Solving equation (15) for 
02ht∆  

In the numerical solution for the transition, we calculate 02x  and need to calculate the 

corresponding value of 
02

.ht∆   To do so, rewrite equation (15) in the form 
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02

02 02

02 02

2
02

23

2 2 2
202 02

22 3

2
2 02 02 02

2

8 1
2 2 3

8 12
2 2 4 3

2 0
2 3

The rad

c c L c
h h

L c c c

c c c L c
h h h

L c L c c c

L c c c
h h

c c L L L c c

x A A V Jt t
V J J A

x A x A A V Jt t t
V J V J J A

V A x x x A At t
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Therefore 
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in which stopD  is the stopping distance from speed .LV   Since stopD  must be substantially longer 

than 02 ,x  the term under the square-root sign is always positive in practical cases.  The minus 

sign before the radical is the correct one because equation (20) then reduces to equation (5) if 01x  

is substituted for 02x from equation (3).  Equation (20) is used in the program developed for the 
numerical solution for the transition to an off-line station. 

 
9. Speed at End of on-line deceleration. 
 

From equations (8), (3), and (12) the speed at the end of the period of on-line deceleration is 
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J J A

= − − ∆ = − ∆ −     (21) 

in which 
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Equation (21) is calculated in the following Excel spreadsheet. 

  Speed at End of On-Line Deceleration, m/s     

g =  9.80665 m/s^2 
     

Jc = 2.45166 m/s^3 
     

Ac = 2.45166 
      

Ac^2/2Jc = 1.22583 m/s 
     

8Jc^2/Ac^3 = 3.26309 1/sec 
     

   
VL, m/s 

    
Headway Lost, 

sec 10 11 12 13 14 15 16 

0.02 9.31 10.24 11.18 12.12 13.07 14.02 14.97 

0.03 9.02 9.94 10.88 11.81 12.75 13.69 14.64 

0.04 8.79 9.71 10.64 11.57 12.50 13.44 14.38 

0.05 8.60 9.52 10.44 11.36 12.29 13.22 14.15 

0.06 8.44 9.35 10.26 11.18 12.10 13.02 13.95 

0.07 8.29 9.19 10.10 11.01 11.93 12.84 13.77 

0.08 8.15 9.05 9.95 10.86 11.77 12.68 13.60 

0.09 8.02 8.91 9.81 10.71 11.62 12.53 13.44 

0.1 7.90 8.79 9.68 10.58 11.48 12.38 13.29 

0.11 7.79 8.67 9.56 10.45 11.34 12.25 13.15 

0.12 7.68 8.56 9.44 10.33 11.22 12.11 13.01 

 
 

10. On-Line Deceleration distance as a function of end speed. 
 

We need to know the distance during on-line deceleration as a function of the speed V2 at the 
clearance point following which the vehicle is offline.  This distance is given by equation (13), in 
which, from equations (8) and (3) 
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Substituting this value into equation (13), we get 
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    (22) 

Numerical values from Equation (22) are shown in the following Excel Spreadsheet. 

On-Line Deceleration Length as function of End 
Speed V2 

  
g = 9.80665 m/s^2       

  
Jc = 2.45166 m/s^3 

     
Ac = 2.45166 m/s^2 

     
Ac^3/24/Jc^2 = 0.10215 m 

     

    
V2 

   
VL 10 11 12 13 14 15 16 

10 4.90 
      

11 9.68 5.40 
     

12 14.87 10.59 5.90 
    

13 20.47 16.19 11.50 6.40 
   

14 26.48 22.19 17.50 12.40 6.90 
  

15 32.89 28.61 23.92 18.82 13.31 7.40 
 

16 39.71 35.43 30.74 25.64 20.13 14.22 7.90 
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11. The declining speed as a function of distance along the transition into an off-line station. 

Speed declines along the transition into an off-line station at content deceleration Ac.  Thus, 
along the transition 

( ) ( )

( ) ( )

2
2

2

2 2

2

Thus or 2 2 0
2

Thus 2 .

2Thus 1 , or 2
2 2

o c

o c c o c c

c o o c

oc o
o o o

o c c

dsV V A t
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ts V t A A t V A t A s

A t V V A s

V VA s V VV V s V V V
V A A

= = −

= − − + =

= − −

− −
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12. Curves of on-line deceleration as a function of speed and headway sacrificed. 

Equations (7) and (15) are plotted in Figure 2 for a useful range of line speeds.  For a small 
sacrifice of on-line headway of say 0.1 sec, the savings in off-line guideway that would have to 
be provided if all of the deceleration were offline is seen to be substantial.  Figure 3 shows the 
on-line distance traveled as a function of line speed for 0.1ht∆ =  sec. 

 

Figure 2 
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Figure 3 
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Encoder Calibration 

When using encoders on the wheels of our ITNS vehicles to measure distance and speed, the 
distance traveled per pulse is 

   Distance per Pulse 
/ Re
wD

Pulses v
π

=  

in which wD is the diameter of the wheel, which with compliant tires is dependent on the weight 
on the wheel, and / RePulses v  is the number of distance steps sensed by the digital encoder per 
revolution of the wheel, currently 4096. 

By measuring the gross weight of the vehicle, the correct wheel diameter can be recorded in the 
on-board computer, but we must assume that there will be a residual error to be corrected.  It can 
be corrected by sensing a fixed distance as the vehicle leaves the station by means of wayside 
Hall detectors.   

A sudden step in the distance parameter also occurs at each line-to-line branch point.  Distance in 
a network is taken as a negative number that reaches zero at the branch point, and at that point is 
set to the negative distance to the next line-to-line branch point.   

The correction in these two cases is suddenly applied the control system by the code shown in 
red in the following program, in which the procedure has been tested. 

Public Class VehicleControl 
    'This program VehicleControl simulates the operation of the ITNS vehicle 
controller 
    'Units are MKS 
    'Steps in program: 
    '  Start with given speed V0 and acceleration A0 
    '  Command Ac(t) and Vc(t) for a maneuver from given A0 and V0 
    '    Maneuver 0 => Maintain command speed 
    '    Maneuver 1 => Decelerate to stop in x meters 
    '    Maneuver 2 => Change speed to x meters/sec in minimum time 
    '    Maneuver 3 => Slip x meters while going to line speed VL 
    '  Obtain actual distance X(t) and speed V(t) via encoders and subtract 
to give 
    '    dX = Xc - Xe, dV = Vc - Ve 
    '  Form thrust command Tc = Gp * dX + Gv * dV 
    '    where Gp = mc * Omega.n^2 * (1 - Beta) 
    '          Gv = mc * Omega.n * (.5 * Beta / Zeta + 2 * Zeta * (1 - Beta)) 
    '            mc = best estimate of vehicle mass 
    '          Zeta = damping ratio 
    '          Beta = dimensionless factor between 0 and 1 
    '           Tau = motor time constant 
    '       Omega.n = .5 * Beta / (Zeta * Tau) = radial frequency of 
controller 
    ' 
    '  Model motor as Tau * dTh/dt + Thrust = Tc 
    '  Model vehicle as   m * dV/dt = Thrust - Drag 
    '  Model Drag = c.air * V^2 + m * g * (aRoad + bRoad * V) 
    '------------------------ 
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    'System constants 
 
    Public g As Double = 9.80665              'acceleration of gravity, m/s^2 
    Public Jcomfort As Double = 0.25 * g      'comfort jerk, m/s^2 
    Public Acomfort As Double = 0.2 * g       'comfort acceleration, m/s^2 
    Public Ar As Double = 0.75 * Acomfort     'reduced acceleration for slip 
maneuvers, m/s^2 
    Public dVr As Double = Ar ^ 2 / Jcomfort  'speed increment, m/s 
    Public tJ As Double = Acomfort / Jcomfort 'jerk time constant, s 
    Public VL As Single = 15                  'line speed, m/s 
    Public Vs As Double = 7                   'station speed, m/s 
    Public Vmin As Double = VL / 2            'minimum speed for slip 
maneuvers, m/s 
    Public dt As Double = 0.00001             'computation-time interval, s 
    Public t As Double                        'running time, s 
    Public Tm, Dm As Double                   'maneuver time, distance 
 
    'Vehicle parameters 
    Public m As Double = 700                'actual vehicle mass, kg 
    Public aRoad As Double = 0.005          'road resistance per unit weight 
    Public bRoad As Double = 0.0005         'road resistance per unit 
weight/speed 
    Public Rho As Double = 1.2              'air density, kg/m^3 
    Public CdA As Double = 8                'effective frontal area, m^2 
    Public cAir As Double = 0.5 * Rho * CdA 'air drag per unit speed^2 
 
    'Controller parameters 
    Public dtc As Double = 0.005            'time interval between control 
updates, s 
    Public dVe As Double = 0.0001           'for brake control 
    Public Tau As Double = 0.1              'thruster lag time, s 
    Public mc As Double = 900               'vehicle mass used in control 
system, kg 
    Public Zeta As Double = 0.6             'dimensionless damping constant 
    Public Beta As Double = 0.65            'dimensionless constant between 0 
and 1 
    Public OmegaN As Double = Beta / (2 * Zeta * Tau)  'controller radial 
frequency, rad/s 
    Public Gp As Double = mc * OmegaN ^ 2 * (1 - Beta)       'position gain 
    Public Gv As Double = mc * OmegaN * (0.5 * Beta / Zeta + 2 * Zeta * (1 - 
Beta)) 'speed gain 
    Public Dw As Double = 13.25 / 12 * 0.3048      'encoder wheel diameter, m 
    Public PulsesPerRev As Integer = 4096   'pulses per revolution of the 
wheel 
    Public dXenc As Double = Math.PI * Dw / PulsesPerRev   'encoder step, m 
    Public Bm As Double = 0.2 * m * g       'initial braking rate, N 
    Public V0 As Double     'speed at t = 0 
    Public A0 As Double     'acceleration at t = 0 
 
    Public t1, t2, t3, t4, t5, t6, t7, t8 As Double 
    Public A1, A2, A3, A4, A5, A6, dV0 As Double 
    Public Jerk01, Jerk12, Jerk23, Jerk34 As Double 
    Public V1, V2, V3, V4, V5, V6, V7 As Double 
    Public x1, x2, x3, x4, X5, X6, X7, X8 As Double 
    Public Ac, Vc, Xc As Double 'command acceleration, speed, distance 
 
    Public Vfinal, Dstop, Slip As Double  'input parameter for maneuver 2,3,4 
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    Public ManeuverNo As Integer 
    Public Ne As Long = 0  'encoder counter 
    Public Xjump As Double = 0          'Occures at line-to-line branch point 
in Maneuver 0 
 
    'Screen parameters 
    Public Y0 As Single = 720 
    Public T0 As Single = 300 
    Public tScale As Single = 80 
    Public aScale As Single = 400 
    Public vScale As Single = 30 
    Public xScale As Single = 5 
    Public Thscale As Single = 0.5 
    Public pScale As Single = 20 
 
    Dim objGraphics As System.Drawing.Graphics 
    Dim objFont As Font 
 
    Sub Control() 
        Dim tStart, tCount As Double                                  'time 
parameters 
        Dim Thrust, Tc, dThdtOld, dThdt As Double                     'thrust 
parameters 
        Dim dVdt, dVdtOld, Jerk As Double                             
'acceleration and jerk parameters 
        Dim V, Ve, Vold, dV, VeOld As Double                          'speed 
parameters 
        Dim Xstart, X, Xe, XeOld, dX As Double                        
'distance parameters 
        Dim Xend As Double = 0 
        Dim xGraph, yGraph As Single 
 
        Select Case ManeuverNo 
            Case 0 
                Tm = 5 
                Ac = 0 
                Vc = V0 
            Case 1 
                setManeuver1()  'Stops vehicle in distance Dstop, meters. 
            Case 2 
                setManeuver2()  'Changes vehicle speed to Vfinal, m/s 
            Case 3 
                setManeuver3()  'Causes vehicle to slip Slip meters. 
        End Select 
 
        'Set values at starting point, t = tStart 
        tStart = -2.5                               'allow time for system to 
settle 
        t = tStart                                  'running time 
        tCount = tStart                             'tcount increases in 
increments of dtc 
        V = V0 + A0 * tStart                        'actual speed 
        Ve = V0 
        dVdt = A0                                   'actual acceleration 
        dVdtOld = A0 
        Thrust = A0 * m + Drag(V)                   'actual thrust 
        dThdtOld = 0                                'change in thrust 
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        Xstart = tStart * (V0 + 0.5 * A0 * tStart)  'distance, so X = 0 when 
t = 0 
        X = Xstart                                  'actual distance at start 
        XeOld = Xstart - V0 * dtc                   'previous measured 
distance 
        Jerk = 0 
 
        objFont = New System.Drawing.Font("Arial", 40) 
 
        objGraphics = Me.CreateGraphics 
        objGraphics.DrawLine(Pens.White, T0, Y0, T0, 0) 
        objGraphics.DrawLine(Pens.White, T0, Y0, 1500, Y0) 
        objGraphics.DrawLine(Pens.Red, T0, Y0 - vScale * VL, 1500, Y0 - 
vScale * VL) 
        For i As Integer = 1 To 30 
            objGraphics.DrawLine(Pens.White, T0 + tScale * i, Y0, T0 + tScale 
* i, Y0 - 10) 
        Next 
        objGraphics.DrawString(" Command Acceleration ", Me.Font, 
System.Drawing.Brushes.White, 500, 30) 
        objGraphics.DrawString(" Command Speed ", Me.Font, 
System.Drawing.Brushes.Pink, 500, 50) 
        objGraphics.DrawString(" Command Distance ", Me.Font, 
System.Drawing.Brushes.Fuchsia, 500, 70) 
        objGraphics.DrawString(" Acceleration ", Me.Font, 
System.Drawing.Brushes.Yellow, 500, 90) 
        objGraphics.DrawString(" Speed ", Me.Font, 
System.Drawing.Brushes.Red, 500, 110) 
        objGraphics.DrawString(" Distance ", Me.Font, 
System.Drawing.Brushes.Turquoise, 500, 130) 
        objGraphics.DrawString(" Thrust ", Me.Font, 
System.Drawing.Brushes.Gray, 500, 150) 
        objGraphics.DrawString(" Acceleration Power ", Me.Font, 
System.Drawing.Brushes.GreenYellow, 500, 170) 
        objGraphics.DrawString(" Jerk ", Me.Font, 
System.Drawing.Brushes.Goldenrod, 500, 190) 
 
        Do 
            xGraph = T0 + tScale * t 
            yGraph = Y0 - aScale * Ac 
            objGraphics.FillEllipse(Brushes.White, xGraph, yGraph, 2, 2) 
            yGraph = Y0 - vScale * Vc 
            objGraphics.FillEllipse(Brushes.Pink, xGraph, yGraph, 2, 2) 
            yGraph = Y0 - xScale * Xc 
            objGraphics.FillEllipse(Brushes.Fuchsia, xGraph, yGraph, 2, 2) 
            yGraph = Y0 - aScale * dVdt 
            objGraphics.FillEllipse(Brushes.Yellow, xGraph, yGraph, 2, 2) 
            yGraph = Y0 - vScale * V 
            objGraphics.FillEllipse(Brushes.Red, xGraph, yGraph, 2, 2) 
            yGraph = Y0 - xScale * X 
            objGraphics.FillEllipse(Brushes.Turquoise, xGraph, yGraph, 2, 2) 
            yGraph = Y0 - Thscale * (Thrust - 500) 
            objGraphics.FillEllipse(Brushes.Gray, xGraph, yGraph, 2, 2) 
            yGraph = Y0 - pScale * dVdt * V    'acceleration power 
            objGraphics.FillEllipse(Brushes.GreenYellow, xGraph, yGraph, 2, 
2) 
            yGraph = Y0 - 0.01 * aScale * Jerk 
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            'objGraphics.FillEllipse(Brushes.Goldenrod, xGraph, yGraph, 2, 2) 
 
            'Simulate digital encoder 
            Xe = Encoder(X, Xstart)       'measured position 
 
            'Enter the on-board computer 
            If t >= tCount Then 
                tCount = tCount + dtc 
                If t < 0 Then 
                    Ac = A0 
                    Vc = V0 + A0 * t 
                    Xc = t * (V0 + A0 * t / 2) 
                End If 
                Select Case ManeuverNo 
                    Case 0 
                        If t >= 0 Then 
                            Xjump = -500 
                            Xc = Xjump + V0 * t 
                            If t < dtc Then 
                                Xstart = Xstart + Xjump 
                                Xe = Xe + Xjump 
                                XeOld = XeOld + Xjump 
                                X = X + Xjump 
                            End If 
                        End If 
                    Case 1 
                        If t > 0 Then 
                            runManeuver1()  'output Ac, Vc, Xc 
                        End If 
                    Case 2 
                        If t > 0 Then 
                            runManeuver2()  'output Ac, Vc, Xc 
                        End If 
                    Case 3 
                        If t > 0 Then 
                            runManeuver3()  'output Ac, Vc, Xc 
                        End If 
                End Select 
 
                Ve = (Xe - XeOld) / dtc       'differentiate to measure speed 
                VeOld = Ve 
                XeOld = Xe 
 
                dX = Xc - Xe            'command position - measured position 
                dV = Vc - Ve            'command speed - measured speed 
                Tc = Gp * dX + Gv * dV  'command thrust 
 
                If Vfinal < 0.01 And Ve < dVe Then Tc = 0 
            End If 
 
            'Simulate thruster as first-order lag 
            dThdt = (Tc - Thrust) / Tau             'time rate of change of 
thrust 
            Thrust = Thrust + 0.5 * dt * (3 * dThdt - dThdtOld)   'actual 
thrust 
            dThdtOld = dThdt 
            'If ManeuverNo = 1 And (t >= Tm Or V < 0) Then Thrust = 0 
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            'Simulate vehicle dynamics 
            dVdt = (Thrust - Drag(V)) / m    'acceleration 
            Jerk = (dVdt - dVdtOld) / dt 
            If Vfinal < 0.01 And Ve < dVe Then 
                dVdt = dVdt - Brake(V) / m 
            End If 
 
            Vold = V 
            V = V + 0.5 * dt * (3 * dVdt - dVdtOld)    'speed 
            dVdtOld = dVdt 
            X = X + 0.5 * dt * (V + Vold)              'position 
 
            If t >= Tm And Xend = 0 Then 
                Xend = X 
            End If 
 
            t = t + dt 
            Application.DoEvents() 
        Loop Until t > 1.1 * Tm 
 
        objGraphics.DrawString(" The Maneuver Time is " & 
FormatNumber(CSng(Tm), 2) & " sec", Me.Font, _ 
                               System.Drawing.Brushes.White, 900, 200) 
        If ManeuverNo = 1 Then 'Stop in given distance Dstop 
            objGraphics.DrawString(" The commanded Maneuver Distance is " & 
FormatNumber(CSng(Dstop), 2) & " meters", Me.Font, _ 
                               System.Drawing.Brushes.White, 900, 220) 
            objGraphics.DrawString(" The actual distance at maneuver end is " 
& FormatNumber(CSng(Xend), 2) & " meters", Me.Font, _ 
                                   System.Drawing.Brushes.White, 900, 240) 
        ElseIf ManeuverNo = 2 Then  'Change speed to Vfinal 
            objGraphics.DrawString(" The commanded Final Speed is " & 
FormatNumber(CSng(Vfinal), 2) & " m/s", Me.Font, _ 
                               System.Drawing.Brushes.White, 900, 220) 
            objGraphics.DrawString(" The actual Final Speed is " & 
FormatNumber(CSng(V), 2) & " m/s", Me.Font, _ 
                                   System.Drawing.Brushes.White, 900, 240) 
        ElseIf ManeuverNo = 3 Then 
            objGraphics.DrawString(" The commanded Slip Distance is " & 
FormatNumber(CSng(Slip), 2) & " meters", Me.Font, _ 
                               System.Drawing.Brushes.White, 900, 220) 
            objGraphics.DrawString(" The actual slip Distance is " & 
FormatNumber(CSng(VL * Tm - Dm), 2) & " meters", Me.Font, _ 
                                   System.Drawing.Brushes.White, 900, 240) 
        End If 
         
        objGraphics.Dispose() 
        objFont.Dispose() 
    End Sub 
 
    Function Brake(ByVal V As Double) As Double 
        Dim dBm As Double 
        dBm = 0.002 * m * g 
        If ManeuverNo = 1 Then 
            If t >= Tm Or V < 0 Then 
                Bm = Bm - dBm 
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                If Bm < 0 Then Bm = 0 
                If V > 0 Then 
                    Brake = Bm 
                ElseIf V < 0 Then 
                    Brake = -Bm 
                Else 
                    Brake = 0 
                End If 
            Else 
                Brake = 0 
            End If 
        Else 
            Brake = 0 
        End If 
    End Function 
 
    Function Drag(ByVal V As Double) As Double 
        Dim D As Double 
        D = Math.Sign(V) * cAir * V ^ 2 + m * g * (bRoad * V + Math.Sign(V) * 
aRoad) 
        If ManeuverNo = 1 And V < 0.1 Then D = 0 
        Drag = D 
    End Function 
 
    Function Encoder(ByVal X As Double, ByVal Xstart As Double) As Double 
'STATIC 
        If X >= Xstart + (Ne + 0.5) * dXenc Then Ne = Ne + 1 
        Encoder = Ne * dXenc + Xstart 
    End Function 
 
    Sub runManeuver1() 
        Dim Jerk As Double 
        If t < t2 Then 
            Jerk = -Math.Sign(dV0) * Jcomfort 
            State(t, Jerk, A0, V0, 0)       'Ac = command acceleration 
        ElseIf t < t3 Then                  'Vc = command speed 
            Jerk = 0                        'Xc = command distance travelled 
            State(t - t2, Jerk, A2, V2, x2) 
        ElseIf t < t4 Then 
            Jerk = Math.Sign(dV0) * Jcomfort 
            State(t - t3, Jerk, A2, V3, x3) 
        ElseIf t < t5 Then 
            Jerk = 0 
            State(t - t4, Jerk, 0, V4, x4) 
        ElseIf t < t6 Then 
            Jerk = -Jcomfort 
            State(t - t5, Jerk, 0, V4, X5) 
        ElseIf t < t7 Then 
            Jerk = 0 
            State(t - t6, Jerk, A6, V6, X6) 
        ElseIf t < t8 Then 
            Jerk = Jcomfort 
            State(t - t7, Jerk, A6, V7, X7) 
        ElseIf t >= t8 Then 
            Jerk = 0 
            State(t - t8, Jerk, 0, 0, X8) 
        End If 



113 
 

    End Sub 
 
    Sub runManeuver2() 
        Dim AcOld As Double 
        AcOld = Ac 
        If t < t1 Then 
            State(t, Jerk01, A0, V0, 0)   'Ac is command acceleration 
        ElseIf t < t2 Then                'Vc is command speed 
            State(t - t1, Jerk12, A1, V1, x1) 
        ElseIf t < t3 Then 
            State(t - t2, Jerk23, A2, V2, x2) 
        ElseIf t < t4 Then 
            State(t - t3, Jerk34, A3, V3, x3) 
        Else 
            State(t - t4, 0, 0, Vfinal, x4) 
        End If 
    End Sub 
 
    Sub runManeuver3() 
        Dim Jerk, A1a, V1a As Double 
        If t < t1 Then 
            Jerk = -Jcomfort 
            State(t, Jerk, A0, V0, 0) 
        ElseIf t < t2 Then 
            Jerk = -Jcomfort 
            If A0 >= 0 Then 
                A1a = A1 
                V1a = V1 
            Else 
                A1a = A0 
                V1a = V0 
            End If 
            State(t - t1, Jerk, A1a, V1a, x1) 
        ElseIf t < t3 Then                      'Vc is command speed 
            Jerk = 0                            'Xc is command distance 
            State(t - t2, Jerk, A2, V2, x2) 
        ElseIf t < t4 Then 
            Jerk = Jcomfort 
            State(t - t3, Jerk, A2, V3, x3) 
        ElseIf t < t5 Then 
            Jerk = 0 
            State(t - t4, Jerk, A4, V4, x4) 
        ElseIf t < t6 Then 
            Jerk = Jcomfort 
            State(t - t5, Jerk, A5, V5, X5) 
        ElseIf t < t7 Then 
            Jerk = 0 
            State(t - t6, Jerk, A6, V6, X6) 
        ElseIf t < t8 Then 
            Jerk = -Jcomfort 
            State(t - t7, Jerk, A6, V7, X7) 
        Else 
            Jerk = 0 
            State(t - t8, Jerk, 0, VL, X8) 
        End If 
    End Sub 
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    'This maneuver stops a vehicle in a given distance 
    Sub setManeuver1() 
        Dim Tmin, Dmin As Double 
        Dim dt01, dt12, dt23, dt34, dt45, dt56, dt67, dt78 As Double 
        Dim dx01, dx12, dx23, dx34, dx45, dx56, dx67, dx78, dx14, dx58 As 
Double 
        Dim Dbnd, b, dV, Dold, V5 As Double 
 
        Vfinal = 0 
        If Math.Abs(A0) > Acomfort Then A0 = Math.Sign(A0) * Acomfort 'can't 
exceed Acomfort 
        'Condition of negative V not operational on deceleration to stop 
        If A0 < 0 And V0 < A0 ^ 2 / Jcomfort Then V0 = A0 ^ 2 / Jcomfort 
        dV0 = V0 + A0 ^ 2 / 2 / Jcomfort - Vs     'indicator 
 
        'Calculate minimum stopping time and distance 
        V1 = V0 + A0 ^ 2 / 2 / Jcomfort 
        If V1 >= A0 ^ 2 / Jcomfort Then 
            Tmin = V1 / Acomfort + Acomfort / Jcomfort 
        ElseIf V1 >= 0 Then 
            Tmin = 2 * Math.Sqrt(V1 / Jcomfort) 
        Else 
            Tmin = 0 
        End If 
        Dmin = 0.5 * V1 * Tmin + (A0 / Jcomfort) * (V0 + A0 ^ 2 / 3 / 
Jcomfort) 
 
        dt01 = Math.Sign(dV0) * A0 / Jcomfort 
        V1 = V0 + Math.Sign(dV0) * A0 ^ 2 / 2 / Jcomfort 
        dx01 = (A0 / Jcomfort) * (Math.Sign(dV0) * V0 + A0 ^ 2 / 3 / 
Jcomfort) 
 
        If Dstop < Dmin Then 
            objGraphics.DrawString(" The Minimum Maneuver Distance is " & 
FormatNumber(Dmin, 2) & " meters", Me.Font, _ 
                               System.Drawing.Brushes.White, 900, 220) 
        End If 
 
 
        V4 = Vs   'if V0 < Vs V4 may later be reduced below Vs 
 
        If Math.Abs(V4 - V1) >= Acomfort * tJ Then 
            A2 = -Math.Sign(dV0) * Acomfort 
        ElseIf Math.Abs(V4 - V1) > 0 Then 
            A2 = -Math.Sign(dV0) * Math.Sqrt(Jcomfort * Math.Abs(V4 - V1)) 
        Else 
            A2 = 0 
        End If 
 
        If V4 >= Acomfort * tJ Then 
            A6 = -Acomfort 
        ElseIf V4 > 0 Then 
            A6 = -Math.Sqrt(Jcomfort * V4)      'V4 > 0 if there is any 
maneuver at all 
        Else 
            A6 = 0 
        End If 
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        'Calculate boundry stopping distance if dx45 = 0 and V4 = Vs 
        If A2 <> 0 Then 
            dx14 = 0.5 * (V4 + V1) * ((V4 - V1) / A2 - Math.Sign(dV0) * A2 / 
Jcomfort) 
        Else 
            dx14 = 0 
        End If 
        If A6 <> 0 Then dx58 = -0.5 * V4 * (V4 / A6 + A6 / Jcomfort) Else 
dx58 = 0 
        Dbnd = dx14 + dx58 + dx01 
 
        A4 = 0    'true always 
        A5 = A4   'true always 
        If Dstop >= Dbnd Then 
            dx45 = Dstop - Dbnd 
        Else 
            dx45 = 0 
            If dV0 > 0 And Dstop < Dbnd Then 'in these cases don't slow down 
near Vs 
                b = (Jcomfort / V1) * (Dstop - (A0 / Jcomfort) * (V0 + A0 ^ 2 
/ 3 / Jcomfort)) 
                A2 = -b + Math.Sqrt(b ^ 2 - V1 * Jcomfort)        'reduced 
deceleration 
            Else 
                dV = 0.005     'increment in which V4 is reduced if need be 
                Do 
                    Dold = Dbnd 'used in Newtonian intepolation after do-loop 
                    'distance from point 1 to 4: 
                    If A2 <> 0 Then 
                        dx14 = 0.5 * (V4 + V1) * ((V4 - V1) / A2 - 
Math.Sign(dV0) * A2 / Jcomfort) 
                    Else 
                        dx14 = 0 
                    End If 
                    'distance from point 5 to 8: 
                    If A6 <> 0 Then 
                        dx58 = -0.5 * V4 * (V4 / A6 + A6 / Jcomfort) 
                    Else 
                        dx58 = 0 
                    End If 
                    'boundry distance above which dx45 > 0 
                    Dbnd = dx14 + dx58 + dx01 
 
                    If Dbnd < Dstop Then    'if true do-loop is finished 
                        Exit Do 
                    Else 
                        V4 = V4 - dV       'step V4 down until Dbnd = Dstop 
                        If V4 < dV Then    'this condition should never occur 
                            V4 = dV 
                            Exit Do 
                        End If 
                    End If 
 
                    If Math.Abs(V4 - V1) >= Acomfort * tJ Then   'recalculate 
A2 with lower V4 
                        A2 = -Math.Sign(dV0) * Acomfort 
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                    ElseIf Math.Abs(V4 - V1) > 0 Then 
                        A2 = -Math.Sign(dV0) * Math.Sqrt(Jcomfort * 
Math.Abs(V4 - V1)) 
                    Else 
                        A2 = 0 
                    End If 
 
                    If V4 > Acomfort * tJ Then 
                        A6 = -Acomfort 
                    ElseIf V4 > 0 Then 
                        A6 = -Math.Sqrt(Jcomfort * V4) 
                    Else 
                        A6 = 0 
                    End If 
                Loop 
 
                V4 = V4 + dV * (Dstop - Dbnd) / (Dold - Dbnd) 'Newtonian 
interpolation 
                If V4 < dV Then V4 = dV 
 
                If Math.Abs(V4 - V1) >= Acomfort * tJ Then  'recalculation of 
A2 with final V4 
                    A2 = Math.Sign(Vs - V0) * Acomfort 
                ElseIf Math.Abs(V4 - V1) > 0 Then 
                    A2 = Math.Sign(Vs - V0) * Math.Sqrt(Jcomfort * 
Math.Abs(V4 - V1)) 
                Else 
                    A2 = 0 
                End If 
 
                If V4 > Acomfort * tJ Then 
                    A6 = -Acomfort 
                ElseIf V4 > 0 Then 
                    A6 = -Math.Sqrt(Jcomfort * V4) 
                Else 
                    A6 = 0 
                End If 
            End If 
        End If 
 
        dt12 = Math.Abs(A2) / Jcomfort 
        V2 = V1 + dt12 * A2 / 2 
        dx12 = dt12 * (V1 + dt12 * A2 / 6) 
 
        If dV0 >= 0 And Dstop < Dbnd Then    'special case of no slowdown at 
Vs 
            dt34 = -A2 / Jcomfort 
            V3 = -dt34 * A2 / 2 
            dx34 = dt34 * (V3 + dt34 * A2 / 3) 
            If A2 <> 0 Then dt23 = (V3 - V2) / A2 Else dt23 = 0 
            dx23 = dt23 * (V2 + dt23 * A2 / 2) 
 
            dt45 = 0 
            dx45 = 0 
            dt56 = 0 
            dx56 = 0 
            dt67 = 0 
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            dx67 = 0 
            dt78 = 0 
            dx78 = 0 
        Else              'all other cases 
            dt34 = -Math.Sign(dV0) * A2 / Jcomfort 
            V3 = V4 - dt34 * A2 / 2 
            dx34 = dt34 * (V3 + dt34 * A2 / 3) 
 
            If A2 <> 0 Then dt23 = (V3 - V2) / A2 Else dt23 = 0 
            dx23 = dt23 * (V2 + dt23 * A2 / 2) 
 
            dt45 = dx45 / Vs 
            V5 = V4 
 
            dt56 = -A6 / Jcomfort 
            V6 = V5 + dt56 * A6 / 2 
            dx56 = dt56 * (V5 + dt56 * A6 / 6) 
 
            dt78 = -A6 / Jcomfort 
            V7 = -dt78 * A6 / 2 
            dx78 = dt78 * (V7 + dt78 * A6 / 3) 
 
            If A6 <> 0 Then dt67 = (V7 - V6) / A6 Else dt67 = 0 
            dx67 = dt67 * (V6 + dt67 * A6 / 2) 
        End If 
 
        t1 = dt01         'record all times where jerk change 
        t2 = t1 + dt12 
        t3 = t2 + dt23 
        t4 = t3 + dt34 
        t5 = t4 + dt45 
        t6 = t5 + dt56 
        t7 = t6 + dt67 
        t8 = t7 + dt78 
        Tm = t8           'maneuver time 
 
        x1 = dx01         'record all distances where jerk changes 
        x2 = x1 + dx12 
        x3 = x2 + dx23 
        x4 = x3 + dx34 
        X5 = x4 + dx45 
        X6 = X5 + dx56 
        X7 = X6 + dx67 
        X8 = X7 + dx78 
        Dm = X8           'maneuver distance 
    End Sub 
 
    'This maneuver changes speed to speed Vfinal 
    Sub setManeuver2() 
        'This maneuver changes speed to Vfinal 
        Dim Alpha, Beta, dVc, dVo As Double 
        Dim Jc, Jn As Double 
        Dim Vb, Va As Double 
        Dim dt01, dt12, dt23, dt34, dx01, dx12, dx23, dx34, Dm As Double 
        Dim Flag1, Flag2 As Integer 
 
        Alpha = 0.5 
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        Beta = 0.5 
        dVc = Acomfort ^ 2 / 2 / Jcomfort 
        dVo = A0 ^ 2 / 2 / Jcomfort 
 
        Jc = Jcomfort 
        Vb = CSng(Beta ^ 2) * dVc 
        Va = Alpha * VL    'boundary speed, above which A < Acomfort 
 
        Jn = CSng((1 - Beta ^ 2) * Acomfort ^ 2 / 2 / (VL - Va - Beta ^ 2 * 
dVc)) 
 
        'Treat small changes in speed separately: 
        Flag1 = 0 
        If Math.Abs(Vfinal - V0) + dVo <= 2 * dVc Then 
            If V0 + Math.Sign(A0) * dVo >= Vfinal Then 
                Jerk01 = -Jc 
                Jerk34 = Jc 
                A1 = -CSng(Math.Sqrt(Jc * (V0 + dVo - Vfinal))) 
                V1 = (V0 + dVo + Vfinal) / 2 
                Flag1 = 1 
            Else 
                Jerk01 = Jc 
                Jerk34 = -Jc 
                A1 = CSng(Math.Sqrt(Jc * (Vfinal - V0 + dVo))) 
                V1 = (Vfinal + V0 - dVo) / 2 
                Flag1 = 2 
            End If 
            A2 = A1 
            A3 = A1 
            V2 = V1 
            V3 = V1 
        End If 
 
        Flag2 = 0 
        If Flag1 = 0 Then 
            If Vfinal > Va Then 
                If V0 + Math.Sign(A0) * dVo > Vfinal Then 
                    Jerk01 = -Jc 
                    Jerk12 = 0    'dt12 = 0 
                    Jerk23 = -Jn 
                    Jerk34 = Jc 
                    V1 = (V0 + dVo - dVc - Va * Jn / Jc) / (1 - Jn / Jc) 
                    A1 = -CSng(Math.Sqrt(Acomfort ^ 2 - 2 * Jn * (V1 - Va))) 
                    A2 = A1 
                    V2 = V1 
                    V3 = (Vfinal + dVc + Va * Jn / Jc) / (1 + Jn / Jc) 
                    A3 = -CSng(Math.Sqrt(Acomfort ^ 2 - 2 * Jn * (V3 - Va))) 
                    If A0 < 0 And V1 > V0 Then 
                        A1 = A0 
                        V1 = V0 
                        A2 = A1 
                        V2 = V1 
                        Jerk23 = -CSng(A3 ^ 2 - A2 ^ 2) / 2 / (V2 - V3) 
                    End If 
                    Flag2 = 1 
                Else    'V0 + Math.Sign(A0) * dVo <= Vfinal 
                    If V0 - dVo + dVc > Va Then 
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                        Jerk01 = Jc 
                        Jerk12 = 0 
                        Jerk23 = -Jn 
                        Jerk34 = -Jc 
                        V1 = (V0 - dVo + dVc + Va * Jn / Jc) / (1 + Jn / Jc) 
                        A1 = CSng(Math.Sqrt(Acomfort ^ 2 - 2 * Jn * (V1 - 
Va))) 
                        A2 = A1 
                        V2 = V1 
                        V3 = (Vfinal - dVc - Va * Jn / Jc) / (1 - Jn / Jc) 
                        A3 = CSng(Math.Sqrt(Acomfort ^ 2 - 2 * Jn * (V3 - 
Va))) 
                        If A1 < A0 Then 
                            A1 = A0 
                            V1 = V0 
                            A2 = A1 
                            V2 = V1 
                            Jerk23 = -CSng(A2 ^ 2 - A3 ^ 2) / 2 / (V3 - V2) 
                        End If 
                        Flag2 = 2 
                    Else    'V0 - dVo + dVc <= Va 
                        Jerk01 = Jc 
                        Jerk12 = 0 
                        Jerk23 = -Jn 
                        Jerk34 = -Jc 
                        A1 = Acomfort 
                        A2 = Acomfort 
                        V1 = V0 - dVo + dVc 
                        V2 = Va 
                        V3 = (Vfinal - dVc - Va * Jn / Jc) / (1 - Jn / Jc) 
                        A3 = CSng(Math.Sqrt(Acomfort ^ 2 - 2 * Jn * (V3 - 
Va))) 
                        If V3 < Va Then 
                            A3 = Acomfort 
                            V3 = Vfinal - CSng(A3 ^ 2) / 2 / Jc 
                            V2 = V3 
                        End If 
                        If V1 > V2 Then 
                            V2 = V1 
                            Jerk23 = -CSng(A2 ^ 2 - A3 ^ 2) / 2 / (V3 - V2) 
                        End If 
                        Flag2 = 3 
                    End If 
                End If 
            Else  'Vfinal <= Va) 
                If V0 + Math.Sign(A0) * dVo > Vfinal Then 
                    If V0 + dVo - dVc > Va Then 
                        Jerk01 = -Jc 
                        Jerk12 = -Jn    'dt12 = 0 
                        Jerk23 = 0 
                        Jerk34 = Jc 
                        V1 = (V0 + dVo - dVc - Va * Jn / Jc) / (1 - Jn / Jc) 
                        A1 = -CSng(Math.Sqrt(Acomfort ^ 2 - 2 * Jn * (V1 - 
Va))) 
                        A2 = -Acomfort 
                        A3 = -Acomfort 
                        V2 = Va 
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                        If A1 > A0 Then 
                            A1 = A0 
                            V1 = V0 
                            Jerk12 = -CSng(A2 ^ 2 - A1 ^ 2) / 2 / (V1 - V2) 
                        End If 
                        V3 = Vfinal + dVc 
                        If V3 > V2 Then 
                            V2 = V3 
                            Jerk12 = -CSng(Acomfort ^ 2 - A1 ^ 2) / 2 / (V1 - 
V2) 
                        End If 
                        Flag2 = 4 
                    Else  'V0 + dVo - dVc<= Va 
                        Jerk01 = -Jc 
                        Jerk12 = 0    'dt12 = 0 
                        Jerk23 = 0 
                        Jerk34 = Jc 
                        A1 = -Acomfort 
                        A2 = -Acomfort 
                        A3 = -Acomfort 
                        V1 = V0 + dVo - dVc 
                        V2 = V1 
                        V3 = Vfinal + dVc 
                        Flag2 = 5 
                    End If 
                Else   'V0 + Math.Sign(A0) * dVo < Vfinal 
                    Jerk01 = Jc 
                    Jerk12 = 0 
                    Jerk23 = 0 
                    Jerk34 = -Jc 
                    A1 = Acomfort 
                    A2 = Acomfort 
                    A3 = Acomfort 
                    V1 = V0 - dVo + dVc 
                    V2 = V1 
                    V3 = Vfinal - dVc 
                    Flag2 = 6 
                End If 
            End If 
        End If 
 
        dt01 = (A1 - A0) / Jerk01 
        If Math.Abs(Jerk12) > 0 Then 
            dt12 = (A2 - A1) / Jerk12 
        Else 
            If Math.Abs(A2) > 0 Or Math.Abs(A1) > 0 Then 
                dt12 = 2 * (V2 - V1) / (A2 + A1) 
            Else 
                dt12 = 0 
            End If 
        End If 
        If Math.Abs(Jerk23) > 0 Then 
            dt23 = (A3 - A2) / Jerk23 
        Else 
            If Math.Abs(A3) > 0 Or Math.Abs(A2) > 0 Then 
                dt23 = 2 * (V3 - V2) / (A3 + A2) 
            Else 
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                dt23 = 0 
            End If 
        End If 
        dt34 = -A3 / Jerk34 
 
        dx01 = dt01 * (V0 + dt01 * (2 * A0 + A1) / 6) 
        dx12 = dt12 * (V1 + dt12 * (2 * A1 + A2) / 6) 
        dx23 = dt23 * (V2 + dt23 * (2 * A2 + A3) / 6) 
        dx34 = dt34 * (V3 + dt34 * A3 / 3) 
 
        t1 = dt01 
        t2 = t1 + dt12 
        t3 = t2 + dt23 
        t4 = t3 + dt34      'Maneuver time 
        Tm = t4 
 
        x1 = dx01 
        x2 = x1 + dx12 
        x3 = x2 + dx23 
        x4 = x3 + dx34 
        Dm = dx01 + dx12 + dx23 + dx34       'Maneuver distance 
    End Sub 
 
    'This maneuver causes vehicle to slip amount Slip before reaching VL 
    Sub setManeuver3() 
        Dim Smin, S01, DV, V1r As Double 
        Dim dt01, dt12, dt23, dt34, dt45, dt56, dt67, dt78 As Double 
        Dim dx01, dx12, dx23, dx34, dx45, dx56, dx67, dx78 As Double 
        Dim Sbnd1, Sbnd2, Sbnd3, Sbnd4, b, c, slp, SlipError, Va, V4a As 
Double 
        Dim dV0, V4previous, Sprevious, V4p, Sp As Double 
        Dim i, Flag As Integer 
 
        'Calculate point 1 at which A1 = 0 for the purpose of calculating 
boundaries 
        dt01 = A0 / Jcomfort    '< 0 if A0 < 0, which subtracts S01 
        V1 = V0 + dt01 * A0 / 2 
        dx01 = dt01 * (V0 + dt01 * A0 / 3) 
        S01 = VL * dt01 - dx01  'slip during interval 0-1, > 0 if A0 > 0, < 0 
if A0 < 0 
 
        'Calculate V4 in all cases except between Sbnd3 and Sbnd4, where 
calculate A1 
        dx45 = 0    'cases when not zero will be calculated 
        A1 = 0 
        A5 = 0 
        dV0 = A0 ^ 2 / Jcomfort 
        If V0 = VL And A0 = 0 Then 
            DV = VL - Vmin 
            Sbnd1 = DV * (DV / Ar + Ar / Jcomfort) 'DV > dVr always 
            Sbnd2 = 2 * dVr * Ar / Jcomfort 
            Sbnd3 = 0 
            If Slip >= Sbnd1 Then 
                dx45 = (Slip - Sbnd1) * Vmin / (VL - Vmin) 
                V4 = Vmin 
            ElseIf Slip > 0 Then 
                dx45 = 0 
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                If Slip >= Sbnd2 Then 
                    V4 = VL + 0.5F * dVr - Math.Sqrt(Ar * Slip + 0.25 * dVr ^ 
2) 
                Else 
                    V4 = VL - (Jcomfort * Slip ^ 2 / 4) ^ (1 / 3) 
                End If 
            Else 
                V4 = VL 
            End If 
            V5 = V4 
        Else 
            Sbnd1 = S01 + SlipV4(Vmin)       'boundary when V4=Vmin and 
dx45=0 
            If V1 - dVr > Vmin Then 
                Sbnd2 = S01 + SlipV4(V1 - dVr)   'boundary when V4=V1-dVr 
            Else 
                Sbnd2 = Sbnd1 
            End If 
 
            If A0 >= 0 Then 
                Sbnd3 = S01 + SlipV4(V1)         'boundary when V4 = V1 
                Sbnd4 = SlipA1(A0, A6) 
                Smin = Sbnd4 
            Else 
                Sbnd3 = S01 + SlipV4(V1 - dV0)         'boundary when V4 = V1 
                Sbnd4 = Sbnd3 
                Smin = Sbnd3 
            End If 
            If Slip < Smin Then Slip = Smin 'can't go lower than Smin 
 
            'Calculate V4: 
            If Slip >= Sbnd1 Then 
                dx45 = (Slip - Sbnd1) * Vmin / (VL - Vmin) 
                V4 = Vmin 
            ElseIf Slip >= Sbnd2 Then      'increase V4 above Vmin 
                b = VL + 0.5F * dVr 
                c = (VL - 0.5 * V1) * (V1 + dVr) + 0.5 * VL * (VL + dVr) 
                V4 = b - Math.Sqrt(b ^ 2 - c + Ar * (Slip - S01)) 
            ElseIf Slip >= Sbnd3 Then 
                'Find V4 by iteration 
                V1r = V1 - dVr 
                If A0 >= 0 Then 
                    V4 = V1 - dVr * (Slip - Sbnd3) / (Sbnd2 - Sbnd3) 
                    slp = S01 + SlipV4(V4) 
                    i = 0 
                    Flag = 0 
                    Do 
                        V4previous = V4 
                        Sprevious = slp 
                        If slp >= Slip Then 
                            If Slip > Sbnd3 Then 
                                V4 = V1 + (V1 - V4) * (Slip - Sbnd3) / (slp - 
Sbnd3) 
                            Else 
                                V4 = V1 
                                Exit Do 
                            End If 
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                        Else 
                            V4 = V1r + (V4 - V1r) * (Sbnd2 - Slip) / (Sbnd2 - 
slp) 
                        End If 
                        slp = S01 + SlipV4(V4) 
                        If Math.Sign(Slip - slp) + Math.Sign(Slip - 
Sprevious) = 0 Then Exit Do 
                        i = i + 1 
                        If Math.Abs(slp - Slip) < 0.001 Then 
                            Flag = 1 
                            Exit Do 
                        End If 
                    Loop 
 
                    If Flag = 0 And Math.Sign(Slip - slp) + Math.Sign(Slip - 
Sprevious) = 0 Then 
                        Do 
                            V4p = V4 
                            Sp = slp 
                            V4 = ((Slip - Sprevious) * V4 + (slp - Slip) * 
V4previous) / (slp - Sprevious) 
                            slp = S01 + SlipV4(V4) 
                            V4previous = V4p 
                            Sprevious = Sp 
                        Loop Until Math.Abs(slp - Slip) < 0.001 
                    End If 
                Else    'A0 < 0 
                    V4 = V1r + (dVr - dV0) * (Sbnd2 - Slip) / (Sbnd2 - Sbnd3) 
                    slp = S01 + SlipV4(V4) 
                    i = 0 
                    If Math.Abs(slp - Slip) > 0.001 Then 
                        Do 
                            If slp >= Slip Then 
                                V4 = V4 + (V1 - dV0 - V4) * (slp - Slip) / 
(slp - Sbnd3) 
                            Else 
                                V4 = V1r + (V4 - V1 + dVr) * (Sbnd2 - Slip) / 
(Sbnd2 - slp) 
                            End If 
                            slp = S01 + SlipV4(V4) 
                            i = i + 1 
                        Loop Until Math.Abs(slp - Slip) < 0.001 
                    End If 
                End If 
            ElseIf Slip >= Sbnd4 Then  'In these cases A0 > 0 and points 
1,2,3,4,5 coincide   
                'Calculate A1 
                A1 = A0 * (Sbnd3 - Slip) / (Sbnd3 - Sbnd4)  'first guess for 
A1 
                slp = SlipA1(A1, A6) 
                i = 0 
                Do 
                    If slp >= Slip Then 
                        A1 = A0 - (A0 - A1) * (Slip - Sbnd4) / (slp - Sbnd4) 
                    Else 
                        A1 = A1 * (Sbnd3 - Slip) / (Sbnd3 - slp) 
                    End If 
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                    slp = SlipA1(A1, A6) 
                    i = i + 1 
                    SlipError = Slip - slp 
                Loop Until Math.Abs(SlipError) < 0.001 
            End If 
        End If 
 
        'Having V4 we now can compute A2,V2,V3,A4,A5: 
        If Slip >= Sbnd3 Then 
            If V1 - V4 >= dVr Then 
                A2 = -Ar 
            ElseIf V1 - V4 > 0 Then 
                A2 = -Math.Sqrt(Jcomfort * (V1 - V4)) 
                If A0 < 0 And Math.Abs(V1 - V4 - dV0) < 0.000001 Then 
                    A2 = A0 
                End If 
            Else 
                A2 = 0 
            End If 
 
            If A0 >= 0 Then 
                dt12 = -(A2 - A1) / Jcomfort 
                V2 = V1 + dt12 * (A2 + A1) / 2 
                dx12 = dt12 * (V1 + dt12 * (2 * A1 + A2) / 6) 
            Else 
                dt12 = -(A2 - A0) / Jcomfort 
                V2 = V0 + dt12 * (A2 + A0) / 2 
                dx12 = dt12 * (V0 + dt12 * (2 * A0 + A2) / 6) 
                dt01 = 0 
                dx01 = 0 
            End If 
 
            dt34 = -A2 / Jcomfort 
            V3 = V4 - dt34 * A2 / 2 
            dx34 = dt34 * (V3 + dt34 * A2 / 3) 
 
            If A2 <> 0 Then 
                dt23 = (V3 - V2) / A2 
            Else 
                dt23 = 0 
            End If 
            dx23 = dt23 * (V2 + dt23 * A2 / 2) 
 
            A4 = 0 
            A5 = 0 
            V5 = V4 
        ElseIf Slip >= Sbnd4 Then    'A0 > 0  in this case 
            dt01 = -(A1 - A0) / Jcomfort    'here A1 <= A0, jerk is negative 
            V1 = V0 + dt01 * (A0 + A1) / 2 
            dx01 = dt01 * (V0 + dt01 * (2 * A0 + A1) / 6) 
 
            'points 1, 2, 3, 4, 5 coincide 
 
            Va = V0 + A0 ^ 2 / 2 / Jcomfort - A1 ^ 2 / Jcomfort 
 
            dt12 = 0 
            V2 = V1 
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            dx12 = 0 
 
            dt34 = 0 
            V3 = V1 
            dx34 = 0 
 
            dt23 = 0 
            dx23 = 0 
 
            A2 = A1 
            A3 = A1 
            A4 = A1 
            A5 = A1 
            V4 = V1 
            V5 = V1 
        End If 
 
        If Slip >= Sbnd3 Then 
            V4a = V4 
        Else 
            V4a = Va 
        End If 
 
        DV = VL - V4a 
        If DV >= dVr Then 
            A6 = Ar 
        ElseIf DV > 0 Then 
            A6 = Math.Sqrt(Jcomfort * DV) 
        Else 
            A6 = 0 
        End If 
 
        dt45 = dx45 / Vmin 
 
        V5 = V4 
        dt56 = (A6 - A5) / Jcomfort 
        V6 = V5 + dt56 * (A5 + A6) / 2 
        dx56 = dt56 * (V5 + dt56 * (2 * A5 + A6) / 6) 
 
        dt78 = A6 / Jcomfort 
        V7 = VL - dt78 * A6 / 2 
        dx78 = dt78 * (V7 + dt78 * A6 / 3) 
 
        If A6 > 0 Then 
            dt67 = (V7 - V6) / A6 
        Else 
            dt67 = 0 
        End If 
        dx67 = dt67 * (V6 + dt67 * A6 / 2) 
 
        'Now compute the times at the eight points 
        t1 = dt01 
        t2 = t1 + dt12 
        t3 = t2 + dt23 
        t4 = t3 + dt34 
        t5 = t4 + dt45 
        t6 = t5 + dt56 
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        t7 = t6 + dt67 
        t8 = t7 + dt78      'Maneuver time 
        Tm = t8 
 
        'Now compute the travel distances at the eight points 
        x1 = dx01 
        x2 = x1 + dx12 
        x3 = x2 + dx23 
        x4 = x3 + dx34 
        X5 = x4 + dx45 
        X6 = X5 + dx56 
        X7 = X6 + dx67 
        X8 = X7 + dx78      'Maneuver distance 
        Dm = X8 
    End Sub 
 
    Function SlipV4(ByVal V4a As Double) As Double 
        'this routine calculats slip boundaries 
        Dim dt14, dt58, DV As Double 
 
        DV = V1 - V4a 
        If DV >= dVr Then 
            dt14 = DV / Ar + Ar / Jcomfort      'time from point 1 to point 4 
        ElseIf DV > 0 Then 
            dt14 = 2 * CSng(Math.Sqrt(DV / Jcomfort)) 
        Else 
            dt14 = 0 
        End If 
 
        DV = VL - V4a 
        If DV >= dVr Then 
            dt58 = DV / Ar + Ar / Jcomfort      'time from point 5 to point 8 
        ElseIf DV > 0 Then 
            dt58 = 2 * CSng(Math.Sqrt(DV / Jcomfort)) 
        Else 
            dt58 = 0 
        End If 
 
        SlipV4 = (VL - 0.5F * (V1 + V4a)) * dt14 + 0.5F * DV * dt58 
        Return SlipV4 
    End Function 
 
    Function SlipA1(ByVal A1a As Double, ByRef A6r As Double) As Double 
        'Calculates slip for maneuvers between Sbnd3 and Sbnd4 
        'For these cases, points 1,2,3,4,5 coincide.  In all other maneuvers 
A1=0. 
        Dim Va, dt0a, DV, dta8, Term As Double 
 
        Va = V0 + A0 ^ 2 / 2 / Jcomfort - A1a ^ 2 / Jcomfort 
        DV = VL - Va 
 
        If DV >= dVr Then 
            dta8 = DV / Ar + Ar / Jcomfort 
            A6r = Ar 
        Else 
            dta8 = 2 * Math.Sqrt(DV / Jcomfort) 
            A6r = Math.Sqrt(Jcomfort * DV) 
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        End If 
 
        dt0a = (2 * A1a - A0) / Jcomfort 
        Term = VL - V0 - (A0 ^ 2 - 2 * A0 * A1a - 2 * A1a ^ 2) / 3 / Jcomfort 
        SlipA1 = 0.5 * DV * dta8 - dt0a * Term + A1a * (A1a / Jcomfort) ^ 2 / 
3 
    End Function 
 
    Function SlipBoundary(ByVal V1 As Double, ByVal V4 As Double, ByVal S01 
As Double) As Double 
        Dim Ar, Vb, T14, T58, Term1, Term2 As Double 
 
        Ar = 0.75 * Acomfort   'reduced maximum acceleration near line speed 
        Vb = Ar ^ 2 / Jcomfort 
 
        If V1 - V4 >= Vb Then 
            T14 = (V1 - V4) / Ar + Ar / Jcomfort      'time from point 1 to 
point 4 
        ElseIf V1 - V4 > 0 Then 
            T14 = 2 * Math.Sqrt((V1 - V4) / Jcomfort) 
        Else 
            T14 = 0 
        End If 
        If VL - V4 >= Vb Then 
            T58 = (VL - V4) / Ar + Ar / Jcomfort      'time from point 5 to 
point 8 
        ElseIf VL - V4 > 0 Then 
            T58 = 2 * Math.Sqrt((VL - V4) / Jcomfort) 
        Else 
            T58 = 0 
        End If 
        Term1 = 0.5 * (2 * VL - V1 - V4) * T14 
        Term2 = 0.5 * (VL - V4) * T58 
        SlipBoundary = S01 + Term1 + Term2 
    End Function 
 
    Sub State(ByVal Delt, ByVal J, ByVal Ao, ByVal Vo, ByVal Xo) 
        Dim Delt2 As Double 
        Delt2 = Delt * Delt / 2 
        Ac = Ao + J * Delt 
        Vc = Vo + Ao * Delt + J * Delt2 
        Xc = Xo + Vo * Delt + Ao * Delt2 + J * Delt2 * Delt / 3 
    End Sub 
     
    Private Sub lblSpeed_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) 
        V0 = CDbl(txtSpeed.Text) 
    End Sub 
 
    Private Sub lblAcceleration_Click(ByVal sender As System.Object, ByVal e 
As System.EventArgs) 
        A0 = CDbl(txtAcceleration.Text) 
    End Sub 
 
    Private Sub lblManeuverNo_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) 
        ManeuverNo = CInt(txtManeuver.Text) 
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    End Sub 
 
    Private Sub lblCase_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) 
        Select Case ManeuverNo 
            Case 0 
                Vfinal = V0 
            Case 1 
                Dstop = CDbl(txtCase.Text) 
            Case 2 
                Vfinal = CDbl(txtCase.Text) 
            Case 3 
                Slip = CDbl(txtCase.Text) 
        End Select 
    End Sub 
 
    Private Sub btnRun_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles btnRun.Click 
        Control() 
    End Sub 
 
    Private Sub btnQuit_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles btnQuit.Click 
        Me.Close() 
    End Sub 
 
    Private Sub txtManeuver_TextChanged(ByVal sender As System.Object, ByVal 
e As System.EventArgs) Handles txtManeuver.TextChanged 
 
    End Sub 
 
    Private Sub txtSpeed_TextChanged(ByVal sender As System.Object, ByVal e 
As System.EventArgs) Handles txtSpeed.TextChanged 
 
    End Sub 
 
    Private Sub btnSpeed_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles btnSpeed.Click 
        V0 = CDbl(txtSpeed.Text) 
    End Sub 
 
    Private Sub Acceleration_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles btnAcceleration.Click 
        A0 = CDbl(txtAcceleration.Text) 
    End Sub 
 
    Private Sub Maneuver_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles BtnMvrNo.Click 
        ManeuverNo = CInt(txtManeuver.Text) 
    End Sub 
 
    Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles btnManeuver.Click 
        Select Case ManeuverNo 
            Case 0 
                Vfinal = V0 
            Case 1 
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                Dstop = CDbl(txtCase.Text) 
            Case 2 
                Vfinal = CDbl(txtCase.Text) 
            Case 3 
                Slip = CDbl(txtCase.Text) 
        End Select 
    End Sub 
 
    Private Sub txtCase_TextChanged(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles txtCase.TextChanged 
 
    End Sub 
 
    Private Sub txtAcceleration_TextChanged(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles txtAcceleration.TextChanged 
 
    End Sub 
End Class 
 
 
 
 
The Event-Driven Simulation Summary 

1. Define a computational time interval dt = say 0.1 sec. 
2. The maneuvers. 

a. Change speed 
b. Slip 
c. Stop in given distance 
d. Emergency stop 

3. Passenger movement. 
a. Generation at random times with random loading times. 

i. For each I (origin) and j (destination) generate random number 0 < R < 1. 
ii. If Dijdt/3600 > R introduce a passenger. 

iii. Passenger properties 
1. Passenger ID 
2. Destination j 
3. Loading time = Mean + Variance * ln[R/(1-R)] 
4. Set Mean, Variance, Min, Max times in advance. 
5. Set Mean, Variance, Min, Max masses in advance. 
6. With new R, Passenger mass = Mean + Variance * ln[R/(1-R)] 
7. Status “Waiting” 
8. Arrival time, now t 
9. Wait time, now 0 
10. Trip time, now 0 
11. Increase number waiting by 1. 
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b. Loading on vehicles. 
i. Create array for each station and each berth. 

ii. Let a value be number of vehicle present or zero if none. 
iii. Check each berth in each passenger station.   
iv. If empty vehicle present and available, load passenger; 
v. In vehicle array store 

1. Passenger number 
2. Passenger destination 
3. Trip origin station 
4. Vehicle gross mass 
5. Loading time 
6. Departure time 
7. Passenger wait time 
8. Passenger status now “Riding” 
9. Time to go now is the loading time 
10. . . . 
11.  

c. Disembarking. 
i. Passenger status “Disembarked” 

ii. Gather statistics on trip 
 

4. Commands: 
a. Station Zone 

i. Switch at station switch point. 
1. Determine of vehicle should switch in and if space is available. 
2. If so switch and assign berth. 

ii. Decelerate to a given berth. 
1. Update berth assignment  
2. Command deceleration to given berth 

iii. Advance in station. 
1. For vehicles at rest advance when possible. 

iv. Command line speed. 
1. Create for each station an array giving the number of the vehicles 

bypassing the station in the order in which they entered station 
zone. 

2. For vehicle in or assigned to the first berth check vehicles 
bypassing to determine if a space is available. 

3. Check to see if the vehicle ahead is far enough ahead. 
4. Command line speed and assign vehicle to position in bypass 

array. 
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v. Reset on station exit. 
1. Set parameters to new situation 
2. Command vehicle to slip if it would violate headway requirement. 

b. Merge Zone 
i. Slip vehicles to space vehicles at minimum headway. 

ii. When slipping a vehicle slip vehicles behind if necessary. 
iii. To do this with minimum delay, take into account slip remaining for each 

vehicle. 
iv. Switch.  
v. Reset to next link including assignment to a new station array. 

c. Diverge Zone 
i. Switch at command point 

ii. Reset to next link including assignment to a new station array. 
d. Change line speed at specific points. 

i. If vehicle is to slow down, vehicles behind may have to slow down. 
e. Reduce line speed due to high wind and later restore. 
f. Call an empty vehicle. 

i. Create an array for each station of vehicle commanded to storage. 
ii. When there is an empty vehicle in the first birth and there is an occupied 

vehicle in a waiting position, command that empty vehicle to the nearest 
storage station and place in array i. 

iii. Set a criterion for each station for when to call an empty vehicle. 
g. Emergency stop. 

5. Calculate each vehicle’s x-y coordinates for plotting. 
6. Calculate power and energy. 
7. Check for negative speeds. 
8. Check for headway violations. 
9. Up-date all times. 
10. Terminate the run when all vehicles have stopped. 
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I. Overview of the Setup of a Network 

The first step in a program intended to deploy ITNS is to simulate it as accurately as possible.  
Only in this way can one determine where the lines should go, how big the stations should be, and 
how many vehicles will be required.   

1.1 Network Setup.   
 

On a map of the network area, draw lines in the direction the guideway is to go.  Figure 1 is an 
example of a network big enough but not too big for practice for the first time the reader develops 
a simulation. 
 
 

 
 
 
 
 
 
 
 

Figure 1.  Example test network. 
 

The arrows indicate the direction of flow of vehicles, which could be as shown or the reverse.  The 
flow will be along the lines shown until a change in direction is approached.  Then, given the 
accepted ride comfort in terms of lateral acceleration and rate of change of lateral acceleration 
(called jerk), there will be curves to make the transitions from one direction to the next.  The 
intersections of the tangents to the curves, called apexes, are the points of intersection of the 
straight lines in the above figure.   
 
The coordinates of the apexes are measured from the map on which the layout of guideways is 
made and stored in a convenient set of orthogonal rectangular coordinates, say x, y, z, where 
typically x could increase to the east, y to the north, and z upward.  The location of each apex is 
defined by these three coordinates.  The origin of the coordinates is selected most conventionally 
in the lower left-hand corner of the map.  Number the apexes in any order, usually but not 
necessarily starting at #0 in the lower left-hand corner and then increasing in the direction of flow, 
which is not always possible because there will generally be branches such as the two diverging 
branches shown in the above diagram.  Where there are branches, select two apex numbers, one 
for each guideway leaving or entering the branch.  Note that in the above diagram the lower left 
and upper right branch points are points where the traffic diverges in two directions.  These are 
called “diverge points,” whereas the branches in the upper left and the lower right are called 
“merge points.”  In addition to numbering the apexes, of which there are 12 in the above diagram, 
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number the merges and diverges, collectively called “branch points,” of which there are 4 in the 
above diagram.  It is convenient to number the diverges first. With this system of notation, the 
network can be expanded in any direction to any extent.   
 
For each apex number, tabulate the number of the next apex ahead, or if there are two apexes 
ahead, tabulate both of these numbers one in each of two columns.  Tabulate also the number of 
the station ahead of each apex if there is one before the next branch point.   Also tabulate the 
desired speed through each curve at its apex and in the straight section that follows. 
 
Define “link” as the piece of guideway between a pair of line-to-line branch points.  In the above 
diagram there are six links.  Any new section of guideway can be added by adding one or more 
links.  For each branch point, tabulate the number of the next branch point ahead or in the case of 
diverges the next two branch points ahead.  Also, tabulate the number of the branch point behind, 
or in the case of merges the two branch points behind.  For each branch point, tabulate the number 
of the first station on each link ahead and on each link behind.  All of this information and more 
will be needed to specify the exact location of any vehicle.    
 
Next, the ten lines shown in the above diagram roughly parallel to the main guideway indicate the 
location of off-line stations.  At this point number them in any desired order and tabulate the 
distance from the beginning of each off-line guideway upstream to the nearest apex.  The longer 
off-line guideways illustrated in Figure 1 could represent storage stations. 
 
As mentioned, there must be a curve at each apex.  The paper “Curved Guideways” derives the 
equations for the curves.  The differential equation for a curve is integrated to give position 
coordinates to any accuracy desired.  This reduces the subsequent curve calculations to algebraic 
equations, which vastly simplifies the process of calculating a whole network.  Each curve consists 
of first a section of constant rate of change of lateral acceleration (jerk), then a section of constant 
lateral acceleration, and finally a section of constant rate of change of acceleration of the opposite 
sign back to zero lateral acceleration.  In making these calculations, the distance from the starting 
point of the curve to the apex, which is also the distance from the apex to the end point of the 
curve, is calculated and stored for later use in finding the system coordinates of the starting point 
of each curve.  These equations are derived for a given speed and for comfort values of jerk and 
acceleration in a set of local coordinates in which the local x-axis is in the direction of motion 
starting at x = 0, y is transverse to the left for a person facing in the direction of motion and starts 
at y = 0, and z is upward starting at z = 0.  Each point of the curve is then transformed to a set of 
system coordinates, i.e., x, y coordinates common to the whole system that form a plane parallel 
to the earth’s surface.  After the x, y coordinates in the horizontal projection of the curve are 
calculated; the z-coordinate at each point is calculated using the same form of the curve equations.  
Having understood how to calculate curves, we can calculate the guideway coordinates step by 
step along the direction of the curve in steps of size ds, where s is the arc length along the curve.  
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The step size ds is taken small enough to give an accurate representation of the curve.  Even a 
decade or two ago one had to worry about exceeding the computer’s memory if the step size was 
too small, but since memory has been doubling about every 18 months, or by about a factor of 100 
per decade, memory is no longer a concern.  Every point along the guideway is defined by a unique 
value of s, which carries with it a set of x, y, z system coordinates.   So the process starts at a point 

0s = at the beginning of the first curve, say the one in the lower left-hand corner.  Then the process 
advances by calculating first a curve then the following straight segment.  An entire network of 
any configuration is made up of a series of these curve-straight segments, where the length of the 
straight segment may be zero, and the curve may have zero length, meaning that there need not be 
a change in direction.  Apexes with zero change in direction are inserted at points where the speed 
must change.   
 
In the above example network, the calculation of the guideway coordinates could start in the lower 
left-hand corner and proceed around the periphery all the way to the starting point, then jump to 
the starting point of the left branch of the lower left hand diverge, continue up to the left-hand 
branch of the upper left-hand merge point, then jump to the starting point of the upper right-hand 
diverge, calculate its left branch and finish by calculating the left branch of the lower right-hand 
merge.  This is only one of several possible sequences in which the guideway could be calculated.  
Any sequence is as good as any other. 
 
Now assume that the entire mainline guideway has been calculated for a series of values of s spaced 
a distance ds apart, where for each s the x, y, z system coordinates have been recorded.  Next we 
add the calculation of the off-line guideways for each station.  We first have derived in advance 
the equations needed to calculate each off-line guideway in local coordinates in which x is in the 
direction of the mainline guideway at the start of the transition and 0x = at the start of the 
transition.  As before 0y = at the start of the transition and increases to the left perpendicular to 
the x axis.  Then, for each point along the transition into and out of the off-line station, we apply 
the above-mentioned transformation equations to calculate the corresponding x, y, z system 
coordinates. 
  
For each station, we tabulate the number of the station ahead and behind on the same link, the 
number of the branch point ahead and behind, the number of loading berths in each station, whether 
the station off-line guideway is to the left or right of the main guideway, and the spacing between 
the main and bypass guideway.  We have calculated and stored the x, y, z system coordinates of 
the entire guideway at each of a series of values of s spaced ds apart.  Next we identify and store 
the values of s at the merge and diverge points, which information is needed later to identify the 
locations of the vehicles so that they can be plotted.  The process for doing this is straightforward 
for any engineer with the background needed to carry the process this far.   
The next step is to calculate the switch table, i.e., a table of left or right switch commands that 
enable a vehicle from any diverge point to reach any station in the shortest time.  The means of 
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making these calculations is well known from Operations-Research theory.  In the above diagram 
the switch directions from each of the two diverge points are easily picked out, but in a very large 
network the calculations become quite complex. 
 
The next step in the set-up routines is to load the vehicles onto the network by placing them in 
passenger and storage stations.  Each vehicle carries with it quite a large number of parameters.  
These include the distance to the branch point ahead, the vehicle’s system x, y, z coordinates, the 
number of the station the vehicle is in or approaching, the number of the branch point ahead, the 
number of the branch point behind, the position of the vehicle’s switch (left or right), the number 
of the berth the vehicle is in or approaching, the vehicle’s speed and acceleration, the vehicle’s 
mass, the number of the passenger group aboard if any, the vehicle’s destination, the passenger 
group’s loading time taken from a normal distribution, the passenger’s mass also taken from a 
normal distribution, the distance of the next command point ahead to the next branch point ahead, 
etc.  When one begins the process of designing a network simulation program, it is impossible to 
know all the parameters that will be required.  Start with what is obvious, run the program, find as 
a result of errors missing parameters that must be added, and proceed in this way by trial and error 
until the program works without error. 
 
The final step in setting up the simulation is to specify the demand from every station to every 
other station, called the Demand Matrix.  We can start by assuming a reasonable demand matrix, 
which from a series of runs will give us trip times between all station pairs.  But for a real problem, 
we must obtain as accurate an estimate of the peak demand as possible because it affects the 
network layout, the location and number of stations required, the number of berths required in each 
passenger station, the number of storage berths required, the headway needed, and the line ot civic 
speed.  The demand depends on the trip time between stations, which can only be accurately 
determined by running the simulation, thus the process is iterative.  The demand also depends on 
factors such as walk time, wait time, and fare. 
 
The code developed thus far is the “Setup” code.  It calculates a set of values that must be stored 
as constants and arrays that can be loaded into the operating simulation program. 
 
1.2 The Simulation Program 
 
We now know the system coordinates of a series of closely spaced points on the network including 
the coordinates of closely spaced points that describe each off-line guideway.  The points are 
sufficiently closely spaced that we can calculate intermediate points by linear interpolation.  We 
also know the numbers of the branch points and stations ahead of and behind each branch point 
and all other information required to establish the connectedness of the network.  We have loaded 
the specified number of vehicles into passenger and storage stations.  
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The time history of motion of the vehicles will advance in predetermined steps dt, called 
“computational intervals,” so required changes will be calculated only at these time intervals.  In 
our simulation, the step size has usually been 0.5dt = sec.  The simulation is “event driven,” i.e., 
changes will be calculated as a result of certain events such as arrival of a passenger, loading of a 
passenger on a vehicle, permitting a passenger group to disembark, permission for a vehicle to 
leave a station, motion of a vehicle to avoid conflict at a merge point, determining the switch 
position of a vehicle that reaches a diverge command point, the decision to switch into or past a 
station when a vehicle reaches a station switch command point, the decision to initiate deceleration 
into a station to stop at a certain berth when a vehicle reaches a deceleration command point, the 
decision to advance a vehicle in a station when the berth ahead becomes available,  etc.   
 
The first step in the simulation is to generate passengers.  Details are given in the next section. 
Then the passenger group is loaded usually but not always in the forward-most empty vehicle in 
the origin station.  (If there are more passengers arriving from other stations than from the street, 
forward empty vehicles will need to be released, hence in such cases it is better to load passengers 
several berths back from the front so that vehicles in the forward berths can be released more 
quickly.)  When the passenger group is loaded, a clock is started at the loading time and reduced 
by dt every computational cycle.  When the clock reaches zero the vehicle is ready to be 
commanded to line speed.  The station zone controller (SZC) keeps track of the position and speed 
of each vehicle in and bypassing the station.  For the given acceleration, speed and position of the 
loaded vehicle, the SZC determines if there is a gap in the station-by-pass guideway of sufficient 
length and of the correct position that would permit the vehicle to arrive at line speed sufficiently 
far behind a vehicle ahead and sufficiently far ahead of a vehicle behind to meet the required 
minimum headway.  If this condition is met, the SZC determines if any vehicle ahead on the station 
bypass guideway is sufficiently far ahead so as to not violate the headway criterion when it arrives 
at line speed.  If this condition is met the vehicle is commanded to line speed.  The vehicle follows 
a profile of speeds and distances calculated in its computer at each of the series of dt intervals until 
it reaches line speed.  The calculation of acceleration, speed, and distance for each vehicle is given 
in the companion paper “Transitions.”  The events encountered by a vehicle are discussed in the 
paper “Asynchronous Point Follower.” 

II. Elements of the System to be Simulated  

A computer program that can simulate accurately the motion of vehicles in a network of guideways 
consists of ten elements, six of which are simulations of system elements and four are code that 
can operate a real system.  The system elements are 

• Guideway 
• Switch dynamics 
• Stations 
• Vehicles 
• Passengers 
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• Power and energy 
 
The system software elements are in 
 

• The Station Zone Controller (SZC) 
• The Merge Zone Controller (MZC) 
• The Diverge Zone Controller (DZC) 
• The Empty-Vehicle Movement 

 
2.1 The guideway 

1. Guideway Coordinates.  The distance from an arbitrarily selected zero point on the 
guideway along the guideway is called the ARC LENGTH and is denoted by s.  The 
coordinates of the guideway are inputs to the simulation as functions of s, i.e., x(s), y(s), 
z(s).  These coordinates include the coordinates of the station bypass guideways. 
 

2. Branch Points.  The line-to-line BP, i.e., the merges and diverges, are numbered, and the 
program is informed of the numbers of the BP ahead and behind each BP.  A setup program 
calculates and records the two values of s at each BP and specifies which s is continuous 
through the BP.   These values are used to calculate the distances between the BP. 

 
3. Stations.  The stations are numbered and the program is informed of the number of the BP 

ahead and behind each station, the distance of the input diverge point into each station to 
the BP ahead, the distance to the front edge of the station platform (the forward edge of the 
first unloading and loading berth), to the output diverge point out of each station, and the 
number of station berths and staging berths in each station.  

  
4. The Shortest Path.  A program must be written to calculate the shortest time between each 

station pair.  This serves two purposes: 1) to calculate for each diverge point the switch 
table, i.e., the switch command (left or right) to each downstream station, and 2) to permit 
each SZC to look upstream in the most efficient way for the nearest available empty 
vehicle. 

 
5. Minimum distance between branch points.  The wayside element of the switch is a pair of 

flared switch rails that receive the switch wheels. The length of the flare is determined from 
a dynamic simulation of the motion of the vehicle through the merge or diverge in the 
extreme cases of maximum side wind and maximum unbalanced passenger load.  The 
simulation determines the effect of flare length on ride comfort.11  

 

 
11 A Dynamic Analysis of the Switch Rail Entry Flare.docx 
    Lateral Dynamics of the ITNS Vehicle,docx 
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The minimum distance between branch points is determined by the distance traveled 
during throw of the switch and verification that it has been thrown plus the distance 
require to make an emergency stop before reaching the flared switch rails.  This 
minimum distance is computed from the formula 

2

min 2
L

L swx flare tolerance
e

VD V t D D
a

= + + +   

in which 

LV    = line speed 

swxt   = time to throw and verify throw of switch 

ea     = emergency deceleration rate, usually 0.4g 

flareD  = length of flared switch rail 

toleranceD = tolerance added to reflect worst cases 
 
2.2 Switch Dynamics 

The Vehicle Controller (VC) commands a voltage pulse to a rotary solenoid that throws the switch 
by overcoming switch arm inertia and bi-stability spring torque.  The switch is modeled as time 
delay of 0.5 sec.  More detailed modeling of the switch is unnecessary for a system simulation.  In 
a real system, the VC commands the switch to throw and simultaneously commands initiation of 
an emergency stop in half a second if the VC cannot verify from a proximity sensor that the switch 
is thrown.  The signal from the proximity sensor cancels the command to stop. 

2.3 Passengers 

The term ijD in the demand matrix represents the number of people per hour traveling from station 

i  to station .j   If t∆  is the computation interval in seconds, the quantity / 3600ij gD t p∆ , where 

gp  is the average number of persons per group, represents the average number of small groups of 
people traveling together by choice who wish to board vehicles in the time interval t∆ .  If this 
number were one, there would be an average of one group boarding during each t∆ .  If this number 
were one tenth, an average of one group every tenth TMI would board.  Therefore, generate a 
random number 0 1RND< < and introduce a passenger group into station i  if 

    / 3600 .ij gRND D t p< ∆ 12 

The value of t∆ must be small enough so that the above quantity never exceeds one.  This passenger 
group is assigned three numbers ijk  where i  is the boarding-station number, j  is the loading-berth 
number, and k indicates the number of the passenger group.  The group’s mass is picked from a 

 
12 A simulation was developed to simulate this procedure for an hour, and was found to give close to Dij  trips per hour 
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distribution and assigned to a memory location corresponding to the passenger group.  The group’s 
wait time at this point is set to zero.  Group ijk  is now ready to board a vehicle.  Berth j  is the 
forward-most berth having the shortest queue of passengers waiting.  The passenger-group waiting 
time is recorded.  When a vehicle enters berth j , stops, unloads, and is empty, it is ready for 
boarding.  When passenger group ijk  has reached the first position in its queue, it is caused to 
board by 1) placing its number, mass, wait time and destination in vehicle’s memory slots, 2) 
setting the corresponding riding time to zero, and 3) removing its number from the queue of 
waiting passengers.  When the vehicle arrives at the destination, stops, and is ready for unloading, 
the door is opened (simulated by door-opening time), and the passengers egress, indicated by 1) 
removing the passenger’s data from the vehicle’s computer by setting the corresponding memory 
positions to zero, and 2) assigning to one of the passenger’s memory locations the string 
“Disembarked.”  While waiting at the origin station, this memory location will state “Waiting”, 
and while riding, it will say “Riding.”  The trip’s wait time, ride time, trip length, and average 
speed are recorded in the system data bank for later analysis.  

The loading and unloading time depends on the door opening and closing time and varies 
according to the agility of the passenger group.  Thus we assume a Gaussian distribution of loading 
and unloading times with a given mean meanT  and variance .varT   Thus the probability P that the 

loading time is a time loadT  is 

     
2

var1
2

T Tload mean
T

eP
 −
−  
 =  

which assumes that the probability that loadT  is meanT  is one half.  Solving for loadT  and letting R be 
a random number between 0 and 1 we get 
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min min

max max

ln   
1

if  then 
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2.4. Power and Energy 

Equations for instantaneous power use and motor efficiency permit the electrical input power to 
the vehicle to be calculated and summed over the computational intervals to obtain energy use.  
Summing power and energy use over all the vehicles gives the system power requirement for 
vehicle operations.  Air drag is calculated from the formula 

   
( ) 2

1
2

coswind vehicle wind

D front

AirDrag AirDragCoeff V V

AirDragCoeff C A

ψ ψ

ρ

= + −  
=

       

in which 
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Vehicle speed
Assumed constant wind speed
Azimuthal direction of guideway at the vehicle
Assumed constant direction from which the wind is coming
Air density
Vehicle drag coeffi

wind

vehicle

wind

D

V
V

C

ψ
ψ
ρ

=
=
=
=
=
= cient

Vehicle frontal areafrontA =

 

  
Next the force on the vehicle is calculated from the equation 
 
   ( )Force m A g a bV G AirDrag= + + + +    

in which 
 

  

 Vehicle gross mass
 Vehicle acceleration

g =  Acceleration of gravity
 Vehicle dimensionless road resistance coefficient
 Vehicle road resistance coefficient in units sec/meter
 Local grade at ve

m
A

a
b
G

=
=

=
=
= hicle

 

 
Regenerative braking could capture a portion of the braking energy, i.e. the portion of the energy 
when the force is negative.  The energy saved by regenerative braking is less than the kinetic 
energy the vehicle has at the moment it starts decelerating.  Since there are no intermediate stops, 
most of the energy required goes into overcoming air drag and road resistance, thus the energy 
recoverable with regenerative braking is a small fraction of the total.  It is calculated separately to 
show how much energy could be saved if regenerative braking, which adds weight and cost, were 
used.   
 
Next we calculates the input electrical power and the potential regenerated power to each vehicle 
in kilowatts from the equation 
 

       

1 , 0.
1000

Re , 0.
1000regen

Force VInputPower Force

Force VgenPower Force

η

η

×
= >

×
= <
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in which η = propulsion efficiency, assumed to be 0.55 until detailed calculations with the specific 

motors can be made; and regenη  is the regeneration efficiency, assumed to be 0.5 until detailed 
calculations can improve on this number. 
Finally, the electrical energy used in kW-hr by all vehicles in a run is accumulated by summing 
the power multiplied by the computation interval dt over all vehicles and all computation intervals 
during a run.  In equation form 
 

         
,

3600
ReRe .

3600

TimeIntervals Vehicles

TimeIntervals Vehicles

InputPower dtTotalElectricalEnergyUsed

genPower dtTotalPotential genPower

×
=

×
=

∑ ∑

∑ ∑
 

 
III. Locating and Moving Vehicles 
 
3.1. The required number of vehicles in a network 

The required number of vehicles in a PRT network is given by the formula13 

     peak trip
op

v av

D l
N

p V
=      

in which 

 peakD  is the peak-period demand in people per unit of time 

 tripl  is the average trip length 

 vp  is the average number of people per vehicle, counting empty vehicles 

 avV  is the average speed 
3.2. Initial vehicle placement 

To accomplish vehicle placement and proper identification, the station zone controller (SZC) has 
within it the array staVehicleInBerth(i, j), which is the number of the vehicle in berth j of station 
i, 0 if none.  This assignment is needed so that the SZC will know where and which vehicles are 
in its berths, to assign incoming vehicles to the forward-most free berth, and to move vehicles 
forward in the station when possible.   

The vehicle array Vehicle (i, j), which is stored in the computer in vehicle i, must be loaded with 
the correct data for each property j.  Among other properties, one of them is the number of the BP 
ahead and the number of the BP behind vehicle i, if the BP ahead is a merge another property is 
the leg (0 or 1) vehicle i is on, and another gives the distance vehicle i is behind the BP ahead.  

 
13 “Calculation of Performance and Fleet Size in Transit Systems,” JAT, 16:3(1982)231-252, equation (50). 
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This information is necessary to determine the unique arc length (s) at the vehicle, and hence from 
stored values of x(s), y(s), and z(s) the coordinates of the vehicle, which, in the simulation, can 
then be plotted.  In the real system the coordinates can be compared with GPS coordinates for 
verification. 

The domain of a zone controller is defined in terms of a range of values of arc length s.  The ZC 
may maintain in its memory the values of x(s), y(s), and z(s) for its range of values of s.  The local 
line speed is also maintained in memory.  

3.3. Vehicle states 

The vehicles can be in any one of three states: rest, constant speed, or maneuvering.  If 
maneuvering, the command values of acceleration (A), speed (V) and position (X) from the start 
of the maneuver are calculated each time-multiplexing interval.  In the system, position is a 
negative number BPD  that goes to zero when the vehicle reaches the branch ahead.  The reason for 
this measure of distance is to make the stored distance ahead of the merge the same for vehicles 
on the two legs of a merge that are at the same distance from the merge junction.    Thus, during 
the maneuver 

     
0BP BPD D X= +  

where 
0BPD is the negative distance at the start of the maneuver.   

 If a vehicle is at rest, the acceleration and speed are set to zero, and the position is given in 
terms of the distance BPD .  If a vehicle is moving at constant speed V, distance is given by 

    ( ) ( )BP BPD t D t t V t= −∆ + ∆   

where t is time and t∆  is the time-multiplexing interval. 

 

IV.  Classification of Network Properties 

To plot the position of a vehicle correctly, it is necessary to identify positively the arc length, s, 
ahead of the vehicle.  To do this, it is necessary to identify four types of situations that relate one 
branch point to the branch point ahead. These types and the notation we use are the following: 

brAheadTypeR(Brn) = “Right”  if Brn is a merge point going to the right leg of a merge or to a 
diverge, or if Brn is a diverge with the right leg going to the right leg of a merge or to a diverge, 
as shown in the following diagram. 
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brAheadTypeR(Brn) = “Left” if Brn is a merge going to the left leg of a merge, or if Brn is a 
diverge with the right leg going to the left leg of a merge, as shown in the following diagram. 
 

 
 
brAheadTypeL(Brn) = “Right”  if Brn is a diverge with the left leg going either to the right leg of 
a merge or to a diverge, as shown in the following diagram. 
 

 
 
brAheadTypeL(Brn) = “Left”  if Brn is a diverge with the left leg going to the left leg of a merge, 
as shown in the following diagram. 
 

 
     
The above arrays permit positive identification of the value of arc length, s, ahead of the vehicle.  
All of these quantities are calculated in the setup program.  
 

V.  Discussion of the Simulation Program 

5.1. Introduction 

There are two objectives to the PRT Network Simulation Program:  
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 1) to develop and prove the code needed to operate a real three-dimensioal PRT network 
of any complexity, and  

 2) to provide a planning tool needed to simulate and hence design accurately any PRT 
system.   

Both of these objectives are met with the program described here.  The purpose of this section is 
to describe with some repition the program that will take as inputs raw data on a specific network 
and from it calculate and store in a set of files the information needed to run the simulation 
program.   

A specific application is laid out first in planform, i.e., in the projection onto a horizontal plane, 
the x-y plain.  Such a projection is defined by giving the x-y coordinates of the apexes (inter- 
section of tangents) to the curves, which is  practical if one takes into account that curved guide- 
way will be at least 50% more expensive than straight guideway, so one must keep as much 
guideway as possible straight. To the horizontal projection we specify the height, the z-
coordinates, of the apexes of vertical curves.   

We use the variable s to represent uniquely every point on the network.  I call s the “arc length” as 
it is called in analytic geometry.  Thus the rectangular coordinates of a point on the guideway are 
designated as ( ), ( ), ( ).x s y s z s   To specify the guideway to the manufacturer,  we specify it as a 
pair of curved lines the width of the main-wheel support angles.  Thus, we need also the angular 
coordinates, which we denote as ( ) ( ) ( ), , .azm s pitch s roll s  

5.2. Apex Data 
 
In the program, apexes (intersections of the tangents to a curve) can relate to curves of any radius 
down to zero, i.e., no change in direction.  Apexes with zero curve radius are defined at branch 
points where one guideway, usually the main guideway may stay straight while the other branches 
off in a new direction.  Apexes with zero radius are also defined at points along a straight guideway 
where the line speed is required to change. 
 
The calculations of the coordinates of the guideway are performed in “curve-straight” sets, i.e., the 
curve around the apex followed by the straight segment after the apex.  The program described 
herein calculates both the curve and the length of this straight segment, which may be of zero 
length. 
 
The apexes are numbered from a starting point usually but not necessarily sequentially in the 
direction of flow.  The following data related to each apex is needed: 
 

• The number of the next apex in the direction of flow.   
• At apexes at branch points, the number of the second next apex. 
• The x, y, and z coordinates at the apex 
• The intended line speed in the curve around the apex. 
• The intended line speed in the straight segment after the curve. 
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• The order in which the apexes are to be treated in the direction of flow.   
 
Giving this information permits branches to be added later without having to change the 
numbers of the previous apexs. 

 
5.3. Station Data 
 
The stations are numbered generally but not necessarily in the direction of the flow of vehicles.  
The following data related to each station is needed: 
 

• The number of the closest apex upstream of the station. 
• The number of the closest apex downstream of the station. 
• The distance of the entry diverge point into the station from the nearest upstream apex. 
• The side, right or left, of the main guideway the station is on. 
• The station type, passenger or storage. 
• The number of loading and unloading berths in a passenger station, or the total number of 

berths in a storage station. 
• The separation distance between the centerline of the main line and the centerline of the 

bypass line as it passes through the loading and unloading area. 
• The number of the branch point ahead of the station (branch point numbers are not the 

same as apex numbers.) 
• The number of the branch point behind the station. 
• The number of the station ahead before the next branch point ahead, zero if none. 
• The number of the station behind, zero if none before the branch point behind. 
• The number of the nearest downstream storage station. 
• The station “call criterion” in terms of the number of vehicles that must be present before 

an additional vehicle is called.  By increasing this number, vehicles will be called sooner 
to reduce the wait time. 

 
5.4. The Demand Matrix, ( , )D i j , where i  is the origin station and j is the destination. 
 
The demand between a pair of stations depends on the average trip time between them.  For the 
first calculation of the demand matrix the ridership analyst must estimate the average trip time.  
Runs are then made to determine the actual trip time, which is fed back into the demand model for 
a second iteration.  Such analysis is likely to result in recommendations for changing something 
about the network and the station sizes.  Further runs – likely a great many of them – must be 
performed to obtain satisfactory results. 
 
5.5. Branch Data 
 
The branches, i.e., line-to-line merges and diverges can be numbered in any order, but usually 
increasing in the direction of flow.  By using this notation, any network is an assembly of links, 
each treated the same.  The following data is needed: 
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• The number of the branch point ahead, i.e., in the direction of flow. 
• The number of the branch point behind. 
• The number of the first station ahead on the same link, zero if none. 
• The number of the first station behind on the same link, zero if none. 
• The strings (“R” or “L”) brnTypeAhR(i), brnTypeAhR(i), where i is a branch point.  The 

meaning of these terms is given in Section IV.  These terms are needed in the simulation 
program to determine from which side a merge is being approached. 

• The switch table brnSwitch ( , )i j .  It gives the direction to switch, “R” or “L”, at each 
diverge branch point.  The switch table will be computed in a program that determines the 
minimum time path from any station to any other station.   

5.6.  Compute Azimuth 
 
All of the above information except the switch table must be picked off manually from a layout of 
the specific network to be simulated.  To prepare to compute the curves, it is necessary first to 
compute the azimuth angle at each apex.  The azimuth angle is taken as zero in the +x-direction, 
which is usually east, and is taken to increase in the counterclockwise direction.  It is restrained to 
be less than or equal to 360 deg.  
 
5.7. Compute Direction Change 

 
Having the azimuth angles at all apexes, we next compute the direction change as a vehicle would 
move from one direction to the next.  The direction change will usually be between 0 and 180 deg. 
 
5.8. Compute Curve Properties 
 
We now have all of the information needed to compute the set-up parameters for each of the curve, 
which are derived in the paper “Curved Guideways.”  These are the projections of the curves in 
the horizontal plane. In “Curved Guideways” it is shown that the vertical curves can be 
superimposed to get the total three-dimensional curves. 
 
5.9. Calculate Straight Section 
 
Knowing the aX  values for each curve, i.e., the distances between the apex and the start or end of 
the curve, which are calculated in “Curved Guideways”, we now have the information needed to 
calculate the length of each straight section after each curve.  As mentioned, the length of the 
straight section may be zero, and generally is for curves that connect into a merge branch point. 
 
5.10. Calculate Start Coordinates 
      
Next we must calculate the x-y coordinates of the point where eacht curve begins, upstream of its 
apex.  We designate the arc length at the first point of the first curve as 0.s =  
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5.11. Calculate Station Properties 
        
The station properties that must be calculated and stored are the transition length, the length of the 
straight section in the station-bypass guideway, the total station guideway length, the coordinates 
of the starting point of the bypass guideway, and the number of berth positions counting waiting 
positions in each station. 
 
5.12. Calculate Guideway Coordinates 
 
We now have all of the information needed to calculate the x-y guideway coordinates.  We do so 
at discrete steps ,ds  which we take in the first program as one meter.  The end result are the 
coordinates ( ), ( ), ( ), ( ), ( ), ( )x s y s z s azm s pitch s roll s .  To calculate these quantities we use a 
subroutine called Curve() to calculate the coordinates through each curve and includes 
superelevated turns if elected.  A subroutine called Offline() calculates each offline guideway.  
There may be a case in which there is a change in direction of the main guideway in the region of 
a station, i.e., there may be an apex in the guideway in the region of a station.  This requires special 
handling that is accomplished by a routine called SpecialOffLine().  These calculations are 
performed in local coordinates and then a subroutine Transform() is used to convert local 
coordinates into system coordinates.  Subroutines GradeSetUp() and Grade() are used to add the 
z-coordinate and pitch angle or grade to the guideway. 
 
5.13. Find Jump Points 
 
To position a vehicle on the guideway in the simulation program – as opposed to a real operating 
system – we need to know the arc length s at the vehicle, which is needed to find its space 
coordinates, which are needed to plot its position.  In paragraph 5.12 we calculated the coordiates 
at discrete points ds apart.  In the simulation program, the position of each vehicle is calculated at 
each time step as a negative distance behind the branch point ahead.  This value goes positve when 
a vehicle passes a branch point, which indicates that it must be handed over to the next zone 
controller.  To determine the value of arc length s at the vehicle, we must know the arc length value 
at the branch point ahead.  To find it two steps are needed, the first is to find the coordinates and 
values of s at the points of arc length discontinuity, i.e., the jump points at all branch points 
including the station entry points.  Also, there will be an additional jump point that is neither at a 
branch point or a station entry point, i.e., at the point 0.s =   Calculation of all of these jump points 
is the task of this routine. 
 
5.14  Main-guideway arc length at the Jump Points. 
 
With the coordinates of the jump points calculated, we can and must calculate the values of arc 
length s on the main guideway at the jump points.  These values are needed to calculate the value 
of s at each vehicle, which as mentioned is needed to calculate the vehicle’s coordinates. 
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5.15. Find the Apex at each Branch Point corresponding to the curve there. 
 
At each branch point there are two apexs, with each corresponding to a different change in 
direction, often with one having no change in direction.  Resolution of this difference is needed in 
two routines, one in calculation of the merge command point, and the other in determining the 
speed through the curve used in calculating the distances between branch points.  In the later case, 
the two apexs must give the same curve speed, but in the former the largest change in direction 
will result in calculating the longest distance to the merge command point, which is the one 
required for safe merging.  The apex corresponding to the greatest change in direction is thus 
desired and is calculated in this routine. 
 
5.16. Calculate Distances between Branch Points and Branch Command Points 
 
This routine calculates for use in the simulation program the distance from one branch point to the 
branch point ahead in case of a merge, and from one branch point to the right and left branch points 
ahead in case of a diverge.  It also records the values of arc length at the junction point on the two 
legs of a merge or diverge, calculates the merge command distance from each merge point, and 
calculates the switch command distance from each diverge point. 
 
5.17. Calculate Negative Station Distances To the Branch Point ahead 
 
This routine calculates the following quantities; 
 

• The negative distance from the station entry point to the branch point ahead. 
• The distance from the station entry point to the front of the station. 
• The negative distance from the front of the station to the branch point ahead. 
• The negative distance from the middle of the vehicle in the first berth to the branch point 

ahead. 
• The negative distance from the command point after the station exit point to the branch 

point ahead. 
• The negative distance from the station switch-command point to the branch point ahead. 
• The negative distance from the station deceleration-command point to the branch point 

ahead. 
 
5.18. LoadVehicles 
 
This routine gives each vehicle a permanently assigned number and loads it into a passenger or 
storage station for the start of a simulated run by giving it the following information: 

 
• The number of the branch point ahead. 
• The number of the branch point behind. 
• The number of the station the vehicle is in. 



150 
 

• The vehicle’s switch position corresponding to the side of the main guideway the station 
bypass guideway is on. 

• The vehicle’s destination, which now is the station it is in. 
• The passenger number, which is now zero. 
• The number of the berth the vehicle is in. 
• The maneuver command, which is now “None.” 
• The negative distance of the vehicle to the branch point ahead 
• The vehicle’s speed, now zero. 
• The vehicle’s acceleration, now zero. 
• The mass of the passengers aboard the vehicle, now zero. 
• The distance the vehicle has travelled, now zero. 
• The negative distance of the vehicle from the next command point, which is the 

ResetOnStationExit command point. 
 

Simultaneously, this routine gives the station-zone controller two pieces of information; 
 

• The number of the vehicle in each berth. 
• The number of the vehicle in each position in the array “staVehOnStationGdwy,’ which 

enables the station zone controller to keep track of each vehicle on the station off-line 
guideway. 

 
5.19.  Distance To the Next Station 
         
This routine determines the distance of each station to the station ahead on the same link, or to the 
station ahead on either branch in the nearest link or the link after that.  The routine can be continued 
recursively until a station is found in either direction, but it will be unusual to have links with no 
stations.  This data will be used to calculate the switch table.  
 
5.20. The number of the next upstream station. 
 
This routine determines the number of the nearest upstream station on the same link or on the next 
upstream link past a merge or on either of the next upstream stations on a diverge.  This data is 
useful for dispatcihing empty vehicles. 
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VI. Summary of Setup 

1. 

 

 

 

2. 

 

 

 

 

 

 

 

3. 

4. 

 

 

 

 

 

 

 

 

 

 

Input following Apex Data for each apex, numbered in any convenient way, usually in the 
direction of motion, starting with 0.  At each branch point there will be an apex number for 
each direction.  Points at which there must be a speed change are given an apex number even 
though there may be no change in direction. 

1. X coordinate 
2. Y coordinate 
3. Z coordinate 
4. Number of next apex 
5. Number of second next apex if a diverge point ahead 
6. Super elevation angle in the curve around the apex 
7. Speed in the curve 
8. Speed in the straight segment after the curve 

Layout the best initial estimate of the network on a street map.  Because curved guideway is 
more expensive than straight guideway, use straight lines whenever possible.  Locate the 
stations where you want them.  Identify the line-to-line diverges and merges, and number 
them, diverges first.  There must be as many diverges as merges.  Establish an x-y reference 
frame and record the coordinates of each apex. 

Input the following Station Data for each station, numbering the stations in any convenient 
order: 

1. Number of the nearest upstream apex to the station off-line entry point. 
2. Distance of the station off-line entry point to the upstream apex. 
3. Designate passenger station “P”, storage station “S” 
4. Number of loading and unloading berths in a passenger station, total positions in 

storage station. 
5. Separation between the mainline and the station by-pass or off line. 
6. “L” if the station is on the left side of the main guideway while facing in the 

direction of motion, “R” if the station is on the right side. 
7. The number of the line-to-line diverge or merge (branch) point ahead of the station. 
8. The number of the line-to-line diverge or merge (branch) point behind the station. 
9. The number of the station ahead on the same link (length of guideway between 

branch points), 0 if none. 
10. For stations with a merge point ahead designate “L” if the station is on the left of 

the merge, “R” if on the right.  Designate “ ” if a diverge ahead. 

Perform a graphic check of the network without showing the curves. 
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5. 

 

6. 

 

 

7. 

 

8. 

 

 

 

 

9. 

 

 

10. 

 

 

11. 

 

 

12. 

 

 

 

13. 

 

Calculate the azimuth angle into each apex, assuming azimuth = 0 in the x-direction to the 
right.  From the x-axis the azimuth angle increases in the counterclockwise direction. 

Calculate the change in direction of the curve passing each apex; + counterclockwise, - 
clockwise. 

For the curve at each apex, calculate 

1. Length along the curve (arc length) of the constant jerk region of the curve. 
2. The distance along the curve to the end of its constant-curvature region. 
3. The local coordinates of the center of curvature of the constant-curvature region, 

where the local x-axis is in the direction the curve begins, y perpendicular to the left. 
4. The radius of curvature of the constant-curvature region. 
5. The local end coordinates of the curve 
6. The distance Xa from the curve’s apex (intersection of tangents) to the beginning of 

the curve. Calculate the length of the straight segment of guideway following each curve.  The straight 
segment may be of zero length and must be of zero length for a curve entering merge point.  
Every network of guideways is made up of segments consisting of a curve followed by a straight 
segment. 

Calculate the x-y start coordinates of each curve, and from 
them identify the coordinates of each line-to-line branch 

 

Calculate the x-y start coordinates of the entry off-line to each station. 

Calculate and record the x-y and Azimuthal coordinates of the mainline guideway 
in small steps ds.  This is done apex by apex for the sequence curve-straight for 
each apex.  These calculations make use of a routine that calculates each curve in 
local coordinates and a second routine that transforms the local curve followed 
by the straight section in local coordinates into system coordinates. 

Locate the main-guideway arc length at the entry point of each station.  This quantity 
is needed to transform the local off-line-station coordinates to system coordinates. 
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14. 

 

 

15. 

 

 

16. 

 

17. 

 

 

18. 

 

 

 

19. 

 

 

20. 

 

 

 

 

21. 

 

 

22. 

Locate the incremental arc length before and after each guideway jump point.  
The first of these will be the jump from the end of the first loop (sEnd) to the first 
diverge point, then to the jumps between successive branch points.  These values 
are needed to identify the values of arc length at each merge and diverge point. 

Calculate the coordinates of each off-line guideway and then transform them to 
system coordinates in a special way: that is in such a way that if the main line curves 
around an apex in the area of the off-line, the off-line guideway follows the curve. 

Prepare to calculate the elevation at each point along the horizontal projection of 
the guideway by calculating the grade angle between each pair of apexes. 

Calculate the elevation at the starting 
point of each curve-straight segment. 

Calculate the elevation changes at each point along the 
horizontal projection (the x-y plane) of the guideway. 

Using data from the previous routine, calculate the 
main-guideway arc lengths at each branch point. 

Correct the merge-point arc lengths or s-values by interpolation between the 
segments of length ds. This is necessary at merge points because the distance 
to vehicles on each of the two branches of a merge must be referenced 
accurately to the same point. 

Calculate the distance from each branch point to the next 
on each leg of a diverge or on the one leg of a merge. 

Calculate the negative distance from the input 
diverge into each station to the branch point ahead. 
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23. 

 

 

 

Requirements for ITNS Control 

1. Communication must be totally secure and not subject to interference from the outside, 
which means that the computers cannot be connected to any external source that may be 
disruptive, such as the Internet. This requirement has led to the use of leaky cables within 
a shielded guideway, a scheme that was tested in the Raytheon test track and was first 
used in the Boeing AGRT program and described in publicly available papers. 
 

2. Minimum headway.  Even though early applications will not require close headways, the 
design of the control system must take into account the need to achieve fractional second 
headways safely and reliability as the system expands.  Offline stations must be designed to 
meet expected input and output flows, and the system must be designed to prevent excessive 
congestion at merge points and destination stations. 
 

3. Safety.  A PRT system must provide a level of safety in terms of injuries per billion miles at least as 
good as a modern rapid rail system, and preferably better—better because the improvements provided 
by PRT in all areas must be good enough to justify the development cost. To achieve this level of 
safety, the on-board and wayside computers must be dual duplex.   Safety must not depend on one set of 
computers, i.e., vehicle flow must be monitored by wayside zone-control computers, which requires 
wayside measurement of position and speed. 
 

4. Ride Comfort.  Longitudinal maneuvers must be performed in such a way that International 
Standards Organization ride comfort standards on acceleration as a function of frequency are met.  In 
maneuvers, longitudinal acceleration must be limited to 0.25 g, lateral acceleration to 0.2 g and jerk to 
0.25 g/s in normal operation. The maximum emergency-braking deceleration depends on 
whether or not passenger constraints are provided.  If not, the requirement must be that the 
passenger must not slide off the seat in an emergency stop.  With passenger constraints, twice the 
normal values are permitted.  The control system must not be a factor in causing motion sickness. 
 

5. Changing Conditions.  The control system must be able to reduce cruising speed in high winds, 
restore speed smoothly when the wind dies down, and must be able to cope with any unusual 

Calculate the positions of the following command points: 

1. Station switch command point. 
2. Station deceleration command point. 
3. Merge command point. 
4. Diverge command point 
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situation, such as a stopped vehicle, that would require vehicles to slow down or stop away from a 
station. 
 

6. Dead-Vehicle Detection.  It must be possible to detect a dead vehicle on the guideway, however 
remote that possibility may be.  Each vehicle must transmit its speed and position at frequent 
intervals to a wayside computer—a zone controller.  If the zone controller suddenly does not 
receive the expected signal, it must be programmed to remove the speed signal for all vehicles in 
that link and transmit this information to the next upstream zone controller.  Each vehicle's 
control system must be configured to command reduction in speed to a creep speed if the zone 
controller's speed signal is not received.  A finite creep speed permits vehicles ahead of the failed 
vehicle to move safely to the next zone, it reduces anxiety, and with seated passengers is safe.  
Magnetic detectors must be placed at specified intervals along the guideway to inform the zone 
controller of passage of a vehicle independent of the vehicle controller.  Thus, if a vehicle 
passes one of these markers and not the next, the location of the dead vehicle is approximately 
known. Then, because the passengers are seated and can be protected, and the vehicle will be 
protected by appropriately designed shock-absorbing bumpers, a creeping vehicle can be 
permitted to advance until it soft engages with the dead vehicle, whereupon the position of the dead 
vehicle becomes known and the failure strategy can be engaged. 
 

7. Interchange Flexibility.  The simplest interchange is a Y.  Such an interchange gives the least 
visual impact at any one point, but requires that vehicles first merge, then diverge, which 
creates a bottleneck after merging.  To obtain maximum possible throughput, two-in, two-out, 
multilevel interchanges can be used.  They permit vehicles to diverge first and then merge.  With 
such interchanges, the input and output capacity of the lines is the same, hence the worst that can 
happen is that a vehicle may have to be diverted from the direction it would normally go.  Thus the 
control system does not have to be concerned with sending too much traffic along a particular 
line.  If Y-interchanges are used, control actions are not limited to one interchange; however, 
they are often necessary.  Thus, the control system must permit them. 
 

8. Vandalism and Sabotage.  A system in which the control functions are distributed and the 
wayside computers are protected, for example in safe rooms under the stations, will be less 
susceptible to malicious damage than a system in which a central computer plays an essential 
role.  To minimize the consequences of failures of any kind, distributed control is preferred.  
The required central-computer functions should be such that the worst that can happen if it fails is 
that the system will operate less efficiently. 
 

9. Modularity.  The control units must be easily exchangeable so that down time is minimized. 
 

10. Expandability.  The control system must be designed for easy system expansion. 
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Distance to Slip 
 

 

 
Velocity-Time Diagram, Mirror Symmetry about point 3. 

The purpose of this paper is to determine the distance required for a vehicle to slip one or more 
headway lengths.  To do this I make use of the above velocity-time diagram of two slip 
maneuvers.  The jerk from point 0 to point 1 is –Jc, from point 1 to point 2 is zero, and from 
point 2 to point 3 is +Jc in which Jc is the magnitude of the maximum comfort jerk.  I assume the 
reader is familiar with the three equations for the transition from one point to the next at constant 
jerk, viz.: 

1) The time interval between two points at constant jerk is the quantity new acceleration 
minus old acceleration divided by jerk, or if jerk is zero, the quantity new speed minus 
old speed divided by acceleration. 

2) The new speed is the old speed plus the time interval multiplied by the average 
acceleration. 

3) The distance interval is the time interval multiplied by the quantity old speed plus the 
time interval multiplied by the quantity twice old acceleration plus new acceleration 
divided by six.   
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Equations for the general case. 

The time, speed, and distance relationships during the interval from point 0 to point 1 are 

  1 1 1
01 1 01 01 01 01 1, , , 0

2 6L L
c

A A Adt V V dt dx dt V dt A
J

 = = + = + < −  
  (1) 

In which A1 is the negative acceleration at point 1, VL is the line speed, V1 is the speed at point 1, 
dt01 is the time interval from point 0 to point 1, and dx01 is the distance travelled in moving from 
point 0 to point 1. 

The similar relationships in going from point 1 to point 2 at constant deceleration are 

 ( )2 2
1 22 1 1

12 2 1 12 1 12 12 1 12 1
1 1

, , , 0
2 2

V VV V Adt V V dt A dx dt V dt A
A A

−−  = = + = + = <  − 
 (2) 

In going from point 2 to point 3 we have 

       1 1 1 1
23 01 3 2 23 23 23 2 23 23 3 01, ,

2 3 6c

A A A Adt dt V V dt dx dt V dt dt V dt
J
−    = = = + = + = −   

   
 (3) 

The usual case A1 = -Ac 

 If A1 = -Ac, where Ac is the maximum comfort value of acceleration, we have 

 ( )

2 2

01 1 01

2 3
33 31 2 1 2

12 12

2 2

23 01 3 2 23 3

, ,
2 6

,
2 2

, ,
2 6

c c c c
L L

c c c c

LL c L c

c c c c c c

c c c

c c c

A A A Adt V V dx V
J J J J

V VV V A V V AV V V Vdt dx
A A J A A J

A A Adt dt V V dx V
J J J

 
= = − = − 

 
+   − −− −

= = − = = −   
   
 

= = − = + 
 

 

 (4)        

 ( )

3
03 01 12 23

3 3
03 01 12 23

3
03

2
2

2

L c

c c

L c L c

c c c

L

V V Adt dt dt dt
A J

V V A V V Adx dx dx dx
J A J

V V dt

−
= + + = +

+  −
= + + = + − 

 
+ =  

 

    (5) 

Let S = Slip, Tm = 2dt03 = maneuver time, and Dm = 2dx03 = maneuver distance.  Then 
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( )

( )
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  (6) 

The smallest value of S for which equations (6) apply occurs when V2 = V1.  Then, from 
equations (4), 

     3L c

c c

V V A
A J
−

=  

Then, from the second line of equations (6) 

        
2

min 1 2 c
c

c

AS S S A
J

 
= = =  

 
     (7) 

We usually assume Ac = 0.25g, Jc = 0.25 g/s.  Then Smin = 4.9 m and VL – V3 = 0.25g = 2.45 m/s.  
The distance travelled in the headway time Th is VLTh.  We want to consider slipping one 
headway distance.  Then, if we set VLTh =  Smin the corresponding speed is VL = 4.9m/Th.   

Case for small S. 

For small headways, we will have cases in which S < Smin.  In such cases set dt12 = 0 in equations 
(1) and (3) to get 

  ( )
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Case for Large S. 

We will need to set a minimum speed V3 = Vmin, which will be reached for large values of slip.  
In this case  

   ( ) min
2 min

cL
L

c c

AV VS S V V
A J

 −
= = − + 

 
     (9) 

If S > S2 we must add a section of time dt34 between the descending and ascending speed regions, 
in which  

     2
34

min

.S Sdt
V
−

=       (10) 

Setup Code 

The given parameters are 

    min, , ,c c LA J V V  

Then calculate 
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else  

 If 2S S≤ then 
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The run code is now 

Initial conditions: 0, 0, , 0Lt x V V A= = = =  

   

1

2

3

4

5

6

7

0

0

0

0

c

c

c

c

if t t
Jerk J

elseif t t
Jerk

elseif t t
Jerk J

elseif t t
Jerk

elseif t t
Jerk J

elseif t t
Jerk

elseif t t
Jerk J

else
Jerk

endif

<
= −
<
=
<
=
<
=
<
=
<
=
<
= −

=  

    

2 3

2
2 6

2

dt dtx x Vdt A Jerk

dtV V Adt Jerk

A A Jerk dt
t t dt

= + + ⋅ + ⋅

= + + ⋅

= + ⋅
= +

 

Distance Merge Point to Clearance Point, Dm-S 
  

    
Slip V3 V3,used Dm,base Dm Dm-Sprev 

    
m m/s m/s m m m 

g= 9.807 m/s^2 1 5.0 7.516 7.516 35.262 35.262 35.262 

Ac= 2.452 m/s^2 2 10.0 6.125 6.125 41.612 41.612 36.612 

Jc= 2.452 m/s^3 3 15.0 5.039 5.039 45.471 45.471 35.471 
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tJ= 1 s 4 20.0 4.117 4.500 47.029 48.797 33.797 

VL= 10 m/s 5 25.0 3.302 4.500 47.029 52.888 32.888 

Th= 0.5 s 6 30.0 2.563 4.500 47.029 56.979 31.979 

Vmin= 4.500 m/s 7 35.0 1.882 4.500 47.029 61.070 31.070 

S1= 4.903 m 8 40.0 1.247 4.500 47.029 65.161 30.161 

S2= 17.839 m 9 45.0 0.651 4.500 47.029 69.252 29.252 

   
10 50.0 0.086 4.500 47.029 73.343 28.343 

   
11 55.0 -0.451 4.500 47.029 77.434 27.434 

   
12 60.0 -0.964 4.500 47.029 81.525 26.525 

   
13 65.0 -1.457 4.500 47.029 85.616 25.616 

   
14 70.0 -1.932 4.500 47.029 89.706 24.706 

   
15 75.0 -2.390 4.500 47.029 93.797 23.797 

Conclusion 

The maximum maneuver distance for a slip maneuver beyond the merge command point is 
produced by the vehicle one headway interval behind the merge command point.  This distance 
is 
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3 2

3 min 3 min

3
3 2
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if then 
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 

< =

   −
= + + + −   −   

= − +

 

  Computer Program 

 
'This routine SLIPHDWY.BAS calculates maneuvers for slipping N headway 
distances. 
'Units are MKS 
g = 9.80665 
Ac = .25 * g 
Jc = .25 * g 
tJ = Ac / Jc 
VL = 9 
Vmin = .4 * VL 
Th = .5        'minimum headway 
S1 = 2 * Ac * tJ ^ 2 
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dV = VL - Vmin 
S2 = dV * (dV / Ac + tJ) 
 
dt = .0002        'computation interval 
 
SCREEN 9 
COLOR 7, 8 
T0 = 10 
Y0 = 250 
ScaleT = 15 
ScaleX = 2 
ScaleV = 10 
ScaleA = 10 
LINE (T0, Y0)-(640, Y0) 
LINE (T0, Y0)-(T0, 0) 
LINE (T0, Y0 - ScaleV * VL)-(640, Y0 - ScaleV * VL) 
 
PRINT " i     S      Dm     Dm - S   Dm / S" 
FOR i = 1 TO 20 
    'Initial conditions 
    t = 0 
    x = 0 
    V = VL 
    A = 0 
    S = VL * Th * i 
    IF S <= S1 THEN 
       A1 = -(Jc ^ 2 * S / 2) ^ (1 / 3) 
       dV = .5 * A1 ^ 2 / Jc 
       V1 = VL - dV 
       V3 = V1 - dV 
       dt01 = -A1 / Jc 
       dt12 = 0 
       dt23 = dt01 
       dt34 = 0 
       dt45 = dt23 
       dt56 = 0 
       dt67 = dt01 
 
       dx01 = dt01 * (VL + dt01 * A1 / 6) 
       dx12 = 0 
       dx23 = dt23 * (V1 + dt23 * A1 / 3) 
       dx34 = 0 
       dx45 = dx23 
       dx56 = 0 
       dx67 = dx01 
    ELSE 
       IF S <= S2 THEN 
          V3 = VL - .5 * tJ * Ac * (SQR(1 + (4 * S / Ac) / tJ ^ 2) - 1) 
          dt34 = 0 
          dx34 = 0 
       ELSE 
          V3 = Vmin 
          dx34 = S - S2 
          dt34 = dx34 / Vmin 
       END IF 
       dt01 = tJ 
       V1 = VL - dt01 * Ac / 2 
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       dx01 = dt01 * (VL - dt01 * Ac / 6) 
       dt23 = dt01 
       V2 = V3 + dt23 * Ac / 2 
       dx23 = dt23 * (V2 - dt23 * Ac / 3) 
       dt12 = (V1 - V2) / Ac 
       dx12 = dt12 * (V1 - dt12 * Ac / 2) 
 
       dt45 = dt23 
       dt56 = dt12 
       dt67 = dt01 
 
       dx45 = dx23 
       dx56 = dx12 
       dx67 = dx01 
    END IF 
 
    Tm = 2 * (dt10 + dt12 + dt23) + dt34 
    Dm = 2 * (dx01 + dx12 + dx23) + dx34 
 
    t1 = dt01 
    t2 = t1 + dt12 
    t3 = t2 + dt23 
    t4 = t3 + dt34 
    t5 = t4 + dt45 
    t6 = t5 + dt56 
    t7 = t6 + dt67 
    x1 = dx01 
    x2 = x1 + dx12 
    x3 = x2 + dx23 
    x4 = x3 + dx34 
    x5 = x4 + dx45 
    x6 = x5 + dx56 
    x7 = x6 + dx67 
                
    DO 
       IF t < t1 THEN 
          Jerk = -Jc 
       ELSEIF t < t2 THEN 
          Jerk = 0 
       ELSEIF t < t3 THEN 
          Jerk = Jc 
       ELSEIF t < t4 THEN 
          Jerk = 0 
       ELSEIF t < t5 THEN 
          Jerk = Jc 
       ELSEIF t < t6 THEN 
          Jerk = 0 
       ELSEIF t < t7 THEN 
          Jerk = -Jc 
       ELSE 
          Jerk = 0 
       END IF 
 
 
       x = x + V * dt + A * dt ^ 2 / 2 + Jerk * dt ^ 3 / 6 
       V = V + A * dt + Jerk * dt ^ 2 / 2 
       A = A + Jerk * dt 
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       t = t + dt 
 
       PSET (T0 + ScaleT * t, Y0 - ScaleX * x), 10 
       PSET (T0 + ScaleT * t, Y0 - ScaleV * V), 11 
       PSET (T0 + ScaleT * t, Y0 - ScaleA * A), 12 
       PSET (T0 + ScaleT * t, Y0 - ScaleA * Jerk), 13 
    LOOP UNTIL t > t7 + 1 
    PRINT i; 
    PRINT USING "####.###"; S; Dm; Dm - S; Dm / S 
NEXT i  
 
 
Potential Headway Violation upon Decelerating into a Station 

 

 

 

 

 

 

 

 

 

 

Figure 1. The velocity profiles of a pair of vehicles entering a station. 

Consider a vehicle #1 decelerating into a station to station speed staV , followed by a vehicle #2 a 
time Line Headway behind undergoing the same maneuver.  Let the position of vehicle #1 at 
time zero be (0) 0.x =   The times, accelerations, speeds, and positions of vehicle #1 at the points 
1, 2, 3 in Figure 114 are as follows: 

 
14 For the methodology, see the internal paper “Speed and Position vs. Time” 

V 

t 

0 1 2 3 

Line Headway 

VL 

1 

2 

Vstation 



166 
 

01 1 01 01 01 01

23 2 23 23 23 2 23

1 2
12 12 12 1 12

1 01 2 1 12 3 2 23

1 01 2 1 12 3 2 23

, ,
2 6

, ,
2 3

,
2

, ,
, ,

c c c
L L

c

c c c
sta

c

c

c

A A Adt V V dt dx dt V dt
J
A A Adt V V dt dx dt V dt
J

AV Vdt dx dt V dt
A

t dt t t dt t t dt
x dx x x dx x x dx

 = = − = − 
 

 = = + = − 
 

−  = = − 
 

= = + = +
= = + = +

   (1) 

From equations (1) we find 
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Thus, the maneuver time from line speed to station speed is 
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( )

( ) ( )( ) ( ) ( )

( ) ( )

2 2 2
1 2

03 01 23 12 1 2

2

1 2 1 2

03

2 6 3 2

1 1
2 2

2 2

c c c c
L sta

c c c c c

c c c
L sta L sta L sta L sta

c c c c c

L sta L staL sta c

c c

A A A A V Vdx dx dx dx V V V V
J J J J A

A A AV V V V V V V V V V V V
J A J A J

V V V VV V A dt
A J

   −
= + + = + + − − + +   

   
 

= + + − + = + + − − + 
 

+ + −
= + = 

 

(4) 

Thus, the distance traveled from line speed to station speed is 

                                
( )

2
L sta

m m

V V
D T

+
=           (5) 



167 
 

Using the above canonical formulation, the acceleration, speed, and position of vehicle 1 at any 
value of t are as follows: 
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For vehicle #2 up to time t LineHeadway= the speed stays constant at LV and the distance 
traveled is  

Lx V t= .  For t LineHeadway> we can obtain the acceleration, speed, and position as functions 
of time by making the following substitutions in equations (5): t t LineHeadway→ −  
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The Minimum Headway 

 

 

 

 

 

 

Figure 2. A pair of vehicles moving to the right. 
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Assume vehicle #1 stops due to a failure at deceleration fA and jerk .fJ   From equation (5), the 
stopping distance of vehicle #1 is 

1 1
1 2

f

f f

AV VD
A J

 
= +  

 
     (8) 

After a control time delay ,ct  vehicle #2 stops at the emergency deceleration rate eA  and 

emergency jerk .eJ  Its stopping distance is therefore  

2 2
2 2 2

e
c

e e

AV VD V t
A J

 
= + + 

 
    (9) 

Assuming the length of each of the two vehicles is L , the minimum allowable separation 
between them is 

min 2 1H L D D= + −      (10) 

The minimum permissible time headway is therefore 

min

2

HMinHeadway
V

=     

 (11) 

A program to calculate the acceleration, speed, positions profiles and the minimum headway is 
given in the Appendix.  Some results are given in Figures 3 and 4. 
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Figure 3.  Kinematics of motion of a pair of vehicles decelerating to station speed. 

 

Figure 4. Separation and minimum allowable separation between two vehicles entering a station. 

The parameters used in Figures 3 and 4 are those given at the beginning of the program shown in 
the Appendix.  Many runs can be made for different accelerations and jerks.  For the set shown 
in the program, runs were made with different line headways and control time constants to obtain 
the maximum negative separations as shown in Table 1 and as calculated by the program. 

Table 1. Maximum headway violations for the cases shown. 

\ct LineHeadway →  0.5 1.0 1.3 1.5 

0.05 -3.25 -1.03 0 0 
0.10 -3.80 -1.59 -0.03 0 
0.15 -4.36 -2.15 -0.60 0 
0.20 -4.92 -2.71 -1.17 -0.01 

 

It is seen that if the line headway between two vehicles sequentially entering a station is to be as 
low as one second, the control time constant must be quite small, but not particularly small using 
contemporary technology.  Note from Figure 4 that in the case shown the small headway 
violation increases from zero back to zero in about one second.   

In this work, we considered only the portion of the maneuver from line speed to station speed. 
Further development of the program included in the Appendix shows that, since the second of 
the pair of vehicles will be stopping at least one berth behind the first, there is no headway 
violation in the maneuvers from station speed to rest. 
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Appendix 
 
'This program MINHEAD.BAS calculates the minimum headway permissible 
'between a pair of vehicles decelerating into a station 
'Units are MKS 
DEFDBL A-Z 
DIM Counter AS INTEGER 
DIM A(1 TO 2) AS DOUBLE    'acceleration of vehicles 1 & 2 
DIM V(1 TO 2) AS DOUBLE    'speed of vehicles 1 & 2 
DIM X(1 TO 2) AS DOUBLE    'position of vehicles 1 & 2 
DIM t4(1 TO 2) AS DOUBLE   'time at end of station-speed section 
DIM t5(1 TO 2) AS DOUBLE   'time at command to constant deceleration 
DIM t6(1 TO 2) AS DOUBLE   'time at command to constant jerk 
DIM t7(1 TO 2) AS DOUBLE   'time at maneuver end, total maneuver time 
 
DIM X1(1 TO 2) AS DOUBLE   'position of command to constant deceleration 
DIM X2(1 TO 2) AS DOUBLE   'position of command to constant jerk 
DIM X3(1 TO 2) AS DOUBLE   'position at beginning of station-speed section 
DIM X4(1 TO 2) AS DOUBLE   'position at end of station-speed section 
DIM X5(1 TO 2) AS DOUBLE   'position of command to constant deceleration 
DIM X6(1 TO 2) AS DOUBLE   'position of command to constant jerk 
DIM X7(1 TO 2) AS DOUBLE   'position at maneuver end, total maneuver distance 
 
DIM D(1 TO 2) AS DOUBLE    'stopping distances of vehicles 1 & 2 
 
g = 9.80665     'acceleration of gravity 
Ac = .25 * g    'comfort deceleration 
Jc = .25 * g    'comfort jerk 
tJ = Ac / Jc    'jerk time constant 
Af = .4 * g     'maximum failure deceleration 
Jf = .4 * g     'maximum failure jerk 
Ae = .4 * g     'emergency deceleration 
Je = .8 * g     'emergency jerk 
VL = 12         'line speed 
Vsta = 8        'station speed 
tc = .15         'time constant 
Lveh = 2.743    'vehicle length 
B = 3.048       'berth length 
LineHeadway = .5 'time headway between vehicles while at line speed 
t = 0           'start time 
dt = .01        'computational time interval 
 
'Calculation of the maneuver increments and transition speeds 
dt01 = tJ 
V1 = VL - dt01 * Ac / 2 
dx01 = dt01 * (VL - Ac * dt01 / 6) 
dt23 = tJ 
V2 = Vsta + dt23 * Ac / 2 
dx23 = dt23 * (V2 - dt23 * Ac / 3) 
dt12 = (V1 - V2) / Ac 
dx12 = dt12 * (V1 - dt12 * Ac / 2) 
dx34 = 10      'distance vehicle 1 travels at station speed 
dt34 = dx34 / Vsta          'time of veh 1 at station speed 
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dt45 = tJ 
V5 = Vsta - dt45 * Ac / 2 
dx45 = dt45 * (Vsta - dt45 * Ac / 6) 
dt67 = tJ 
V6 = dt67 * Ac / 2 
dx67 = dt67 * (V6 - dt67 * Ac / 3) 
dt56 = (V5 - V6) / Ac 
dx56 = dt56 * (V5 - dt56 * Ac / 2) 
 
'Times and position increments at the transition points 
t1 = dt01 
t2 = t1 + dt12 
t3 = t2 + dt23 
t4(1) = t3 + dt34            'this and following times for veh 1 
t5(1) = t4(1) + dt45 
t6(1) = t5(1) + dt56 
t7(1) = t6(1) + dt67            'maneuver time 
t4(2) = t3 + dt34 - B / Vsta 'this and following times for veh 2 
t5(2) = t4(2) + dt45 
t6(2) = t5(2) + dt56 
t7(2) = t6(2) + dt67            'maneuver time 
 
 
X1(1) = dx01 
X2(1) = X1(1) + dx12 
X3(1) = X2(1) + dx23 
X4(1) = X3(1) + dx34 
X5(1) = X4(1) + dx45 
X6(1) = X5(1) + dx56 
X7(1) = X6(1) + dx67 
 
X1(2) = dx01 
X2(2) = X1(2) + dx12 
X3(2) = X2(2) + dx23 
X4(2) = X3(2) + dx34 - B        'veh 2 stops one berth short of veh 1 
X5(2) = X4(2) + dx45 
X6(2) = X5(2) + dx56 
X7(1) = X6(1) + dx67            'total maneuver distance 
 
CLS 
SCREEN 9 
COLOR 7, 8 
scaleT = 600 / t7(2) 
scaleA = 10 
scaleV = 10 
scaleX = 4 
scaleS = 40 
T0 = 10 
Y0 = 280 
LINE (T0, Y0)-(640, Y0) 
LINE (T0, Y0)-(T0, 0) 
 
OPEN "KINEMAT.ASC" FOR OUTPUT AS #1 
OPEN "SEPRATN.ASC" FOR OUTPUT AS #2 
 
DO 
  'Motion of first vehicle 
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  IF t <= t1 THEN 
     DelT = t 
     A(1) = -Jc * DelT 
     V(1) = VL + DelT * A(1) / 2 
     X(1) = DelT * (VL + DelT * A(1) / 6) 
  ELSEIF t <= t2 THEN 
     DelT = t - t1 
     A(1) = -Ac 
     V(1) = V1 + DelT * A(1) 
     X(1) = X1(1) + DelT * (V1 + DelT * A(1) / 2) 
  ELSEIF t <= t3 THEN 
     DelT = t - t2 
     A(1) = -Ac + Jc * DelT 
     V(1) = V2 + DelT * (-Ac + A(1)) / 2 
     X(1) = X2(1) + DelT * (V2 + DelT * (-2 * Ac + A(1)) / 6) 
  ELSEIF t <= t4(1) THEN 
     DelT = t - t3 
     A(1) = 0 
     V(1) = Vsta 
     X(1) = X3(1) + Vsta * DelT 
  ELSEIF t <= t5(1) THEN 
     DelT = t - t4(1) 
     A(1) = -Jc * DelT 
     V(1) = Vsta + DelT * A(1) / 2 
     X(1) = X4(1) + DelT * (Vsta + DelT * A(1) / 6) 
  ELSEIF t <= t6(1) THEN 
     DelT = t - t5(1) 
     A(1) = -Ac 
     V(1) = V5 + DelT * A(1) 
     X(1) = X5(1) + DelT * (V5 + DelT * A(1) / 2) 
  ELSEIF t < t7(1) THEN 
     DelT = t - t6(1) 
     A(1) = -Ac + Jc * DelT 
     V(1) = V6 + DelT * (-Ac + A(1)) / 2 
     X(1) = X6(1) + DelT * (V6 + DelT * (-2 * Ac + A(1)) / 6) 
  ELSE 
     A(1) = 0 
     V(1) = 0 
     X(1) = X7(1) 
  END IF 
 
  'Motion of second vehicle 
  tsec = t - LineHeadway 
  IF tsec <= 0 THEN 
     DelT = tsec 
     A(2) = 0 
     V(2) = VL 
     X(2) = DelT * VL 
  ELSEIF tsec <= t1 THEN 
     DelT = tsec 
     A(2) = -Jc * DelT 
     V(2) = VL + DelT * A(2) / 2 
     X(2) = DelT * (VL + DelT * A(2) / 6) 
  ELSEIF tsec <= t2 THEN 
     DelT = tsec - t1 
     A(2) = -Ac 
     V(2) = V1 + DelT * A(2) 
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     X(2) = X1(2) + DelT * (V1 + DelT * A(2) / 2) 
  ELSEIF tsec <= t3 THEN 
     DelT = tsec - t2 
     A(2) = -Ac + DelT * Jc 
     V(2) = V2 + DelT * (-Ac + A(2)) / 2 
     X(2) = X2(2) + DelT * (V2 + DelT * (-2 * Ac + A(2)) / 6) 
  ELSEIF tsec <= t4(2) THEN 
     DelT = tsec - t3 
     A(2) = 0 
     V(2) = Vsta 
     X(2) = X3(2) + Vsta * DelT 
  ELSEIF tsec <= t5(2) THEN 
     DelT = tsec - t4(2) 
     A(2) = -Jc * DelT 
     V(2) = Vsta + DelT * A(2) / 2 
     X(2) = X4(2) + DelT * (Vsta + DelT * A(2) / 6) 
  ELSEIF tsec <= t6(2) THEN 
     DelT = tsec - t5(2) 
     A(2) = -Ac 
     V(2) = V5 + DelT * A(2) 
     X(2) = X5(2) + DelT * (V5 + DelT * A(2) / 2) 
  ELSEIF tsec < t7(2) THEN 
     DelT = tsec - t6(2) 
     A(2) = -Ac + Jc * DelT 
     V(2) = V6 + DelT * (-Ac + A(1)) / 2 
     X(2) = X6(2) + DelT * (V6 + DelT * (-2 * Ac + A(1)) / 6) 
  ELSE 
     A(2) = 0 
     V(2) = 0 
     X(2) = X7(2) 
  END IF 
 
  D(1) = .5 * V(1) * (V(1) / Af + Af / Jf)  'stopping distance of veh #1 
  D(2) = .5 * V(2) * (V(2) / Ae + Ae / Je)  'stopping distance of veh #2 
    
  Separation = X(1) - X(2) 
  IF Separation < Lveh + V(2) * tc THEN SLEEP 
  IF V(2) > 0 THEN Headway = Separation / V(2) 
  MinSeparation = Lveh + V(2) * tc + D(2) - D(1) 
  IF V(2) > 0 THEN MinHeadway = MinSeparation / V(2) 
  dSep = Separation - MinSeparation 
  IF dSep < MaxNegSep THEN MaxNegSep = dSep 
 
  PSET (T0 + scaleT * t, Y0 - scaleA * A(1)), 14 
  PSET (T0 + scaleT * t, Y0 - scaleV * V(1)), 13 
  PSET (T0 + scaleT * t, Y0 - scaleX * X(1)), 12 
  PSET (T0 + scaleT * t, Y0 - scaleA * A(2)), 11 
  PSET (T0 + scaleT * t, Y0 - scaleV * V(2)), 10 
  PSET (T0 + scaleT * t, Y0 - scaleX * X(2)), 9 
 
  PSET (T0 + scaleT * t, Y0 - scaleS * Separation), 5 
  PSET (T0 + scaleT * t, Y0 - scaleS * MinSeparation), 6 
 
  'PRINT USING "#####.##"; t; A(1); V(1); X(1) ; A(2); V(2); X(2); 
Separation; MinSeparation 
  'PRINT USING "#####.##"; t; V(2); Separation; Separation - Lveh - V(2) * 
tc; MinSeparation; dSep; Headway; MinHeadway 
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  IF Counter = 20 THEN 
     Counter = 0 
     'SLEEP 
  END IF 
  Counter = Counter + 1 
  'WRITE #1, t, A(1), V(1), X(1), A(2), V(2), X(2) 
  'WRITE #2, t, Separation, MinSeparation 
  t = t + dt 
LOOP UNTIL t > t7(2) + 1 
PRINT "    MaxNegSep = "; 
PRINT USING "###.##"; MaxNegSep 
CLOSE #1 
CLOSE #2 
 

Some History of PRT Simulation Programs 
J. Edward Anderson, Ph.D., P. E. 

Abstract 

This paper documents 32 vehicle simulation programs that have been developed since 
1969 to simulate the operation of automated vehicles operating in networks of guideway 
under a variety of strategies.  

Introduction 
 

Every group intent on designing a marketable Personal Rapid Transit system has needed to have 
close at hand a simulation program that permits detailed study of the system’s performance 
characteristics both for design and planning purposes.  Since all or any assumptions made in 
developing the simulation must be thoroughly understood; each group, practically speaking, 
must develop its own simulation program.  Many engineers have understood this necessity and in 
time I expect that the details will be taught in engineering courses to the benefit of not only PRT 
designers, but the consulting firms and planners who need to know the details.  Over the 40 years 
in which I have been involved in PRT research, development and design I have become aware of 
32 automated vehicle simulation programs of varying degrees of completeness, and it is my 
purpose in writing this paper to call attention to and discuss them, with the hope thereby that the 
best ideas will come into common use as the field of PRT matures.  The simulation tool is the 
slide rule of PRT development.  If there are additional similar simulation programs, I regret not 
including them, but I simply am not aware of them.   

1970s Era PRT Network Simulation Programs 
 

During the 1970s, at least the following organizations or individuals developed PRT simulation 
programs: 

1. Royal Aircraft Establishment, Ministry of Defense, Farnborough, UK 
2. The Aerospace Corporation, El Segundo, CA 
3. Morgantown PRT Program 



175 
 

4. Morse Wade, IBM Corporation, Poughkeepsie, NY 
5. Applied Physics Laboratory, Johns Hopkins University 
6. Prof. Harold York, University of Minnesota 
7. Marvin A. Sirbu, Massachusetts Institute of Technology 
8. IBM Corporation, Gaithersburg, MD 
9. Kandasamy Thangavelu, Colorado Regional Transportation District 
10. Johnson, Walter & Wilde, Colorado Regional Transportation District 
11. S & A Systems, Dallas, Texas 
12. Dr. Sakasita, Colorado Regional Transportation District 
13. Professor Alain Kornhauser, Princeton University 
14. Messerschmitt-Bölkow-Blohm, Munich 
15. University of Karlsruhe, West Germany 
16. Raytheon Missile Systems Division 

 

Royal Aircraft Establishment 

D. I. Paddison, “Cabtrack Studies: Estimation of Capacity of Cabstops,” RAE Technical Report 
71132, June 1971.  49 pages and 10 figures. 
 
J. C. H. Longrigg, “Cabtrack Studies: Data Sheets for Track Layouts,” RAE Technical Report 71024, 
February 1971.  32 pages and 7 figures. 
 
The Summary of Paddison’s report contains the statement: “Results are presented of a digital 
computer simulation of the operation of six small and medium-sized Cab-stops.”  We now refer 
to “Cab-stops” as “Stations.”  Section 1.2 of Paddison’s report contains the sentence: “Study of 
the control of a complete network will require a simulation of a network in operation.”  None of 
the RAE reports I have seen discuss a complete network simulation, but I have not seen all of the 
reports the study produced.  However, Longrigg provides the formulae needed for calculating all 
of the curves and off-line transitions used in a complete PRT network. 
 

The Aerospace Corporation 

A. V. Munson, Jr., H. Bernstein, J. R. Buyan, K. J. Liopiros, and T. E. Travis of The Aerospace 
Corporation, “Quasi-Synchronous Control of High-Capacity PRT Networks,” PRT15, pp. 
325-350.  On page 349 the following paragraphs can be found: 

B.  
  “The PRT network simulation was implemented to assist in establishing system 
performance parameters such as trip times, waiting times, empty car trip lengths, and guideway 
and stations loadings as a function of system configuration and operating strategies.  A 

 
15 J. E. Anderson, J. L. Dais, W. L. Garrard, A. L. Kornhauser, Personal Rapid Transit, Institute of Technology, 
University of Minnesota, April 1972. 
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secondary but quite important objective was to provide a test bed for development and 
demonstration of routing and empty car handling algorithms.   

 The simulation is implemented in SIMSCRIPT and is currently operational on The 
Aerospace Corporation CDC 6000 series computers.  The configuration of a network with all of 
its components is specified parametrically and great flexibility is available.  In the current 
version, PRT cars are simulated explicitly so that detailed records may be kept on individual 
simulated trips.  This level of simulation has many uses but because of computer memory 
requirements is somewhat limited as to the network size that can be accommodated.  Another 
version of the simulator, which uses much of the basic structure already developed, is being 
designed in which cars are modeled implicitly.  This simulation will not provide the detail on 
individual trips but will allow simulation of much larger networks for study of global questions 
such as guideway and station loadings.” 

J. H. Irving, H. Bernstein, J. Katz, P. Dergarabedian, and T. H. Silva, The Aerospace 
Corporation, “Vehicle Management on Large PRT Networks,” PRT III16, pp. 345-368. 

C. L. Olson, The Aerospace Corporation, Independent Study of Personal Rapid Transit, Report No. 
UMTA-CA-06-0090-77-1, 16 December 1977. 

 
Jack H. Irving, Harry Bernstein, C. L. Olson, and Jon Buyan, Fundamentals of Personal Rapid 
Transit, Lexington Books, D. C. Heath and Company, Lexington, Massachusetts, 1978, 332 pages. 

 
16 D. A. Gary, W. L. Garrard and A. L. Kornhauser, Personal Rapid Transit III, University of Minnesota, June 1976. 
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The analysis of a PRT system requires the following steps: 

1. Develop and calculate via computer the coordinates of the lines and stations of the network, 
which must assume certain types of stations and intersections, the discussion of which is 
given in the above-mentioned documents.  As background for this work, equations for 
calculating all of the curves, transitions to off-line stations, and maneuvers had to be 
developed; and the throughput of stations and intersections had to be understood.  For the 
Aerospace work, the curve and maneuver calculations are given in Appendix A of Irving et 
al. The earliest paper I have found on the details of the Aerospace work on station design 
and throughput is found in PRT II17  on pages 449-460 in the paper “PRT Station 
Operational Strategies and Capacities,” by K. J. Liopiros.  Discussion of an intersection 
simulator is given in the above-mentioned PRT paper by A. V. Munson, et al. 

 

2. Develop a switch table, i.e., for each line-to-line diverge point a Left or Right switch 
command gives the optimum path to every station in the system.  The Aerospace papers 

 
17 J. E. Anderson, Ed. Personal Rapid Transit II, University of Minnesota, 1974. 
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describe in general terms their method for calculating such a table, which they call a Routing 
Table.   

 

3. Estimate ridership.  The Aerospace papers describe a novel Monte Carlo mode split model 
that performs this task more accurately than methods generally used in estimation of 
ridership on conventional transit systems. 

 

4. Estimate of the line and station loadings, the number of vehicles – occupied and empty – 
needed, the trip lengths, and for given line speeds the trip times.  The results of such 
calculations are given and discussed in the Aerospace reports.   

 

NOTE: From my own analysis of a PRT network for Indianapolis in 1980, I developed a 
method for calculating these quantities. Subsequently one of my students at Boston 
University, Richard Komerska, developed a convenient method to perform the 
calculations on a PC.  These works are referenced and discussed below under 1980 era 
programs. 

5. Finally, detailed simulations are run in which the arrival, loading and unloading times of 
each passenger group are randomized.  Such a simulation handles merge conflicts and all 
vehicle movements exactly as they would be handled in a real system.  Thus this tool not 
only gives accurate information on wait times, ride times, and wave-offs; but it provides the 
tool needed to verify the operational software.  Munson et all reported in the above-
mentioned PRT paper that this work was done, apparently for small networks, but the 
network on which it was done is not identified in the papers I have referenced.    

Morgantown PRT Program 

R. H. Bryan, S. E. G. Elias, and R. E. Ward, “Simulation of West Virginia University’s Personal 
Rapid Transit System,” Summer Computer Simulation Conference, San Diego, CA, June 14-16, 
1972.  I have no detail on this work, but because this system, the Morgantown system, has been 
in operation since 1972 and was well funded, the simulation work would have to be complete.  

Morse Wade, IBM Corporation, Poughkeepsie, NY 

R. Morse Wade, Staff Engineer, IBM Corporation, “THE MANHATTAN PROJECT: A Cost-
Oriented Control System for a Large Personal Rapid Transit Network,” PRT II, pp. 417-423.   

A preliminary analysis of a 500-mile synchronously controlled PRT network for Manhattan is 
presented; however, few details are given that would help one understand how it was done.  It 
does not appear from the text that Wade carried his simulation to the level of following 
individual vehicles through the network. 

Applied Physics Laboratory, Johns Hopkins University 

The APL work to which I have access includes the following papers: 
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E. J. Hinman & G. L. Pitts, “Practical Safety Considerations for Short-Headway Automated 
Transit Systems,” PRT II, pp. 375-380. 

S. J. Brown, Jr., “Design Considerations for Vehicle State Control by the Point-Follower 
Method,” PRT II, pp. 381-389. 

W. J. Roesler, M. B. Williams, B. M. Ford and M. C. Waddell, “Comparisons of Synchronous 
and Quasi-Synchronous PRT Vehicle Management and Some Alternative Routing Algorithms,” 
PRT II, pp. 425-438. 

M. B. Williams, B. M. Ford, and M. C. Waddell, “Analysis of Multiple Party Vehicle Occupancy 
in an Automated, Guideway System, APL/JHU, CP 042/TPR 032, March 1976, 96 pages. 

The first two of these papers are preparatory for simulating the operation of vehicles in a network 
of guideways.  The third paper bases its results on a simulation of vehicles operating in a simple 
network of two-way guideways containing six stations, but interconnected in such a way that 
there are four paths from any station to any other.  Asynchronous, quasi-synchronous, and fully 
synchronous operation were modeled.  It appears that at least 360 vehicles were followed in the 
simulation.  The operation of merges is described for the quasi-synchronous strategy.   In the 
synchronous strategy, all merge conflicts are resolved before a vehicle is permitted to leave the 
origin station. 

The fourth paper describes, as the title suggests, the operation of an automated guideway system 
using multi-party vehicles.  From our interest in documenting simulation programs, this paper is 
important because it includes the code of its simulation program.  Most of the results presented 
relate to a single two-way loop containing 12 off-line stations, but a more complex system 
containing three two-way branches meeting at a center point is mentioned.  Data curves are 
shown corresponding to runs with up to about 650 vehicles.  This statement is made:  “Many 
aspects of system operation such as details of vehicle movement, i. e. speed variations and 
merging at station exits, and considerations of station design and capacity, were ignored.”  They 
were felt to have only secondary effects on the desired results, which were the relationship 
between fleet size, vehicle capacity, vehicle occupancy, passenger delays, and the number of 
intermediate stops required.  How accurate that assumption may be can only be determined from 
a more detailed simulation model.   

Prof. Harold York, University of Minnesota     
      

H. L. York, “The Simulation of a PRT System Operating under Quasi-Synchronous Control,” 
PRT II, pp. 439-447. 

Professor York tested his PRT simulation program on the network shown on the next page, 
which consists of 23 stations, four multi-level interchanges, and four each of simple merges and 
diverges.  He assumed one-second headway and with his demand he assumed 1100 vehicles.  His 
program produced line flows in vehicles per hour and average waiting times, which he analyzed 
in some detail.  He mentions accumulating data on aborts (which I now call wave-offs as a 
politically neutral equivalent) but shows no data.  In his simulation he divided his guideway into 
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fixed intervals of equal time, taking the set headway as the time interval, and in each interval he 
placed the destination number of the vehicle that occupies it, with zero for no vehicle.  
Presumably these time intervals correspond to shorter distances as the vehicles maneuver into 
and out of the stations.  In this way the size of the network is a function of line speed, but need 
not be and is not stated.  His program was written in FORTRAN and ran on a CDC 6400 
mainframe computer.        

 

 

 

 

Marvin A. Sirbu, Massachusetts Institute of Technology 

Marvin A. Sirbu, Jr., “Station Configuration, Network Operating Strategy and Station 
Performance,” PRT II, pp. 461-478. 
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In Dr. Siribu’s work, he was mainly interested in 
understanding the performance and throughput of 
PRT stations of two types: parallel-loading and 
linear.  To accomplish his purpose, he developed 
a simulation program in the Simcript 11.5 
programming language that ran on an IBM 
370/165 mainframe computer and made runs of 
1.5 to 6 hours of simulated time.  His guideway, 
shown at the right, consisted of an outer and an 
inner concentric ring interconnected in three 
places with pairs of radial lines, thus giving 6 
line-to-line diverges and 6 line-to-line merges.  
The flow in the outer ring was counterclockwise 
and in the inner ring clockwise.  There were two 
stations on the outer ring between each pair of 
radial lines and one station on the inner ring between each pair of radial lines, making a total of 
nine stations. He operated vehicles in a modified synchronous scheme at 3 seconds headway.  
The modification was to permit vehicles to slip a slot to resolve merge conflicts, mainly as a 
result of occasional station rejections or wave-offs that could occur when a station was too full to 
receive a vehicle.  He determined station capacity as a function of a tolerable frequency of 
station rejections.  At each time headway he updated the positions of the vehicles on the links, 
merges and diverges.  Station operations were event oriented in terms of random arrivals of 
customers, random loading times, random unloading times, and as a result of these random 
processes variable vehicle dispatching times.  His reports give customer statistics, vehicle 
statistics, and station statistics.  He concluded that his linear stations provided better performance 
than his parallel-bay stations.          

IBM Corporation, Gaithersburg, MD 

Martin S. Ross and Alan D. Melgaard, “Systems Management Analysis of Large PRT 
Networks,” PRT III, pp. 369-376. 

On the network shown below, Ross and Melgaard simulated the operation of automated vehicles 
of various sizes assuming seven service polities ranging from pure PRT operation (demand 
responsive single party) to fully scheduled operation.  The network has 22.8 miles of guideway, 
22 off-line stations with 6 loading and unloading berths each, 36 merges and 36 diverges.  They 
ran the simulations on an IBM 370/155 mainframe computer.  Their simulation produced 25 
measures of effectiveness that related to resource utilization, performance, and level of service in 
terms of wait times.  The pure PRT runs used a minimum headway of 1 second with a fleet of 
1193 vehicles.  For the larger-vehicle systems the headways ranged from 2 to 15 seconds and the 
fleet consisted of 423 to 178 vehicles, with the smaller fleets used for the longer headway 
scheduled service.  Their results showed a high level of sensitivity to vehicle capacity, service 
policy, and trip demand.  For example, the average wait time for pure PRT was only 42 seconds, 
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but for the larger-vehicle, multi-party services the average wait time was longer by a factor of 5 
to 13. 

 
Thangavelu, Colorado Regional Transportation District 

K. Thangavelu, “Development and Evaluation of Service Policies for Medium-Headway 
Automated Rapid Transit Systems,” PRT III, pp. 329-344. 

Thangavelu simulated the operation of medium capacity vehicles operating at a wide range of 
headways on the city-wide automated rapid transit network (Colorado RTD’s 1973 plan) shown 
below.  He assigned passengers to the stations from city-wide demand data that had been 
obtained in previous studies and determined the minimum-time routes based on a standard linear 
programming model.   He tested dynamically scheduled and what he called “advanced scheduled 
service” policies.  His program output some 23 parameters including every imaginable variable 
produced in operating such a system.  Typical results show average waiting time, average 
number of stops, average vehicle occupancy, and empty-vehicle statistics.          
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Johnson, Walter & Wild, Colorado Regional Transportation District 

 
R. E. Johnson, H. T. Walter, and W. A. Wilde, “Analysis and Simulation of Automated Vehicle 
Stations,” PRT III, pp. 269-281. 

Appendix A of this paper describes a simulation program that models the flow of vehicles 
through an off-line station.  It is a discrete event simulator consisting of 16 routines, is written in 
FORTRAN IV, and ran on any CDC 6000 series computer.   

Appendix B of this paper describes a second simulation program that includes a detailed 
representation of control-system operation.  It is a Monte-Carlo, discrete event simulator also 
written in FORTRAN.  “Extensive input options and input parameters were designed to allow 
the definition and input of diverse control systems concepts and operating philosophies.”  The 
program models passenger and vehicle movement through the station in detail in 0.1 sec steps.  
The authors say they were working on extending this program to simulation of an entire network.   

S & A Systems, Dallas, Texas 

J. G. Srygley, S. M. Stokes, and T. N. Coomer, “Transportation System Simulation – Case 
Studies”.  This paper was presented at the 46th National Meeting of ORSA (San Juan, Puerto 
Rico, October 16-18, 1974).  It included detailed simulation modeling of GRT Off-Line Stations 
for Colorado RTD’s Alternatives Analysis.   

Dr. Sakasita, Colorado Regional Transportation District 

Masami Sakasita, “An Analysis of Merge Control for the Automated Scheduled Transit (AST) 
System,” RTD, January 1975, 87 pages. 

This very detailed program was written to study through computer simulation the operation of 
merges.  It is another excellent example of the use of computer simulation to study transit 
problems.  The report contains a copy of the program used.   

Professor Alain Kornhauser, Princeton University 

Alain L. Kornhauser, Steven Strong, and Paul Mottola. “Computer-Aided Design and Analysis of 
PRT Systems,” PRT III, pp. 377-384. 
 

The PRT simulation program developed at Princeton University was applied as a 29 station, 21 
interchange network for Trenton, New Jersey.  The simulation operated in the quasi-synchronous 
mode and was designed to accurately model a hilly city.  It used real demand data and resolved 
line-to-line merges and flows in and around the stations.  A method of simulating the flow of 
empty vehicles is included in the paper.  The outputs are wait times, passenger and vehicle miles 
traveled, fleet size, etc.  Shared riding was investigated.     

Messerschmitt-Bölkow-Blohm, Munich 
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Richard Hesse, “Normal and Emergency Control of Automated Vehicles at Short Headways, 
with Special Emphasis on the Development, Testing, and Dynamic Simulation of the Cabintaxi 
System,” PRT III, pp. 283-288. 

Hesse describes a detailed simulation program MBB used to study the Cabintaxi PRT system in 
specific applications in German cities.  The simulation is an asynchronous car follower and 
addresses all aspects of the movement of vehicles and passengers, passenger destinations, 
optimum vehicle paths, movement of empty vehicles and outputs the results on a color TV 
screen as well as in print format, which includes wait time statistics, passenger-miles traveled, 
energy use, etc.  The program was written in assembler language and permitted a network size up 
to about 30 km, 63 stations, and 1000 vehicles to be studied.  It could be expanded by a factor of 
10 by enlarging the core memory.   The program was used to develop and test network control 
systems and the optimization of network layouts with respect to topology, track positioning, 
stations and number of vehicles.   

University of Karlsruhe, West Germany 

Gerd Bahm, “The Influence of Fleet Size and Vehicle Capacity on the Performance and Service 
Quality of Group Rapid Transit Systems,” PRT III, pp. 289-298. 

Bahm developed a simulation model, written 
in the SIMULA 67 programming language, 
which simulated vehicles of any size or any 
number of seats operating under automatic 
control in a network of guideways.  The 
vehicles operated quasi-synchronously in slot 
lengths that permit complete stoppage, i.e., the 
brick-wall stop distance.  The model was a 
mixture of an event-oriented simulation and a 
discrete time-step simulation.  It advanced in 
steps equal to the minimum headway.  
Passenger arrivals were randomized.  The most 
important output variables were the waiting 
time, average speed, distance travelled, and 
headways between vehicles.  The paper reported results of application of the model to the 
network shown here.  The author concluded with the statement that he was investigating large 
networks. 

 
 

 

 

Raytheon Missile Systems Division 
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D. Girard, “AGTT Car Follower Autopilot – Design and Simulation.” Missile Systems Division, 
Raytheon Company, Memo No. SDD-76-836, 18 March 1976, 97 pages. 

This report was prepared as a part of a program to prepare to bid on a federal RFP on control of 
PRT systems.  To test the autopilot, which operated as a car follower, two simulation programs 
were developed: one of them, called String, employed six vehicles and was used for testing line 
maneuvers such as responding to line-speed changes, overtaking a slow vehicle, and emergency 
stopping.  The other, called Merge, used forty vehicles to evaluate the merging process, test ride 
quality and determine the length requirement of the parallel data region.  The larger number of 
vehicles was needed to reach steady state.  The detailed dynamics of each vehicle was followed 
during these simulations. 

1980s Era PRT Network Simulation Programs 
 

At the beginning of the 1980s, any serious work on a PRT simulation program required the use 
of computers far too expensive for an ordinary individual to afford, but by the end of this decade 
such a program could be developed on an easily affordable laptop PC.  During the 1980s, PRT 
simulation programs were developed by at least the following organizations or individuals: 

17. Boeing Company 
18. Otis Elevator Company 
19. The author. 

 

Boeing AGRT Simulation Work 

William E. Greve, Donald E. Haberman, and Robert P. Lang, “Advanced Group Rapid Transit Vehicle 
Control Unit Design Summary, Boeing Aerospace Company, UMTA-WA-06-0011-84-3, May 1985, 
249 pages. 
 
Don D. Lyttle, Dave B. Frietag, and Doug H. Christenson, Boeing Aerospace Company, “Advanced 
Group Rapid Transit Phase IIB, Executive Summary & Final Report,” UMTA-WA-06-0011-86-1, 
March 1986, 205 pages. 
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The Boeing work in the AGRT program mainly involved developing a vehicle longitudinal 
control system (VLCS) that would control each of a system of vehicles operating in a network at 
a minimum of 3 seconds headway.  Their controller was a “point follower” in that, as given in 
the above control block diagram, which is taken from page 18 of the above-cited Greve, 
Haberman and Lang report, each vehicle follows profiled acceleration, speed and position 
commands.   Feedback of position and speed was taken from the odometers shown in the above 
diagram, which were digital encoders that directly provided distance information, and speed by 
differentiating the distance pulses.   Proof of their control system involved extensive simulation 
work in which real components were an increasing portion of the simulation.   

 

Otis AGRT Simulation Work 

W. Womack, “Vehicle Longitudinal Control and Reliability Project Summary,” Otis Elevator 
Company, Report No. UMTA-IT-06-0148-79-10, June 1979, 134 pages. 

“Zone management and Control Conceptual Design,” Otis Elevator Company, Transportation 
Technology Division, Denver, Colorado, August 1981, 124 pages. 
 

These are reports of the second of the two federally funded AGRT studies aimed at development 
of an appropriate VLCS that would permit operation of vehicles in networks of guideways as 
close as 3 seconds apart.  These reports describe a point-follower system in which each vehicle 
followed a calculated maneuver profile to accomplish slot slipping during merging, deceleration 
into a station berth, acceleration to line speed, and speed changes.  During their development 
program Otis used simulations to verify in detail the operation of their control concept during all 
maneuvers. 
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J. E. Anderson simulation program 

J. E. Anderson, “Calculation of Performance and Fleet Size in Transit Systems,” Journal of Advanced 
Transportation, 16:3(1982)231-252. 
 
Richard J. Komerska, Development of a Modeling Tool for the Preliminary Design of Personal Rapid 
Transit Networks, a Master of Science Thesis in Civil Engineering, University of California, Irvine, 
1995 163 pages. 
 

With reference to item #4 on page 4, the above paper derives equations from which to calculate 
the quantities indicated.  Komrska programmed a model that provides a convenient way to make 
these calculations on a PC.  

In August 1986, I initiated the development of a PRT simulation program at a time when I was 
teaching engineering at Boston University and at the same time organizing and working with a 
team of engineers to ready the specifications for an operational PRT system.  Notwithstanding 
these other commitments, I had a working program ready by 1990 in time to be included in a 
proposal for a Phase I PRT Design Study for the Northeastern Illinois Regional Transportation 
Authority, which was completed in 1992.   The program was subsequently used to analyze a 3-
mile, 8-station network for Rosemont, Illinois.    

With no budget for use of a mainframe computer or a DEC Workstation, both computer 
hardware and software were then quite limited for me.  During my first year at BU I had access 
only to the first Compaq so-called “portable” PC, which had a 9-inch screen, only 64K internal 
memory and no hard drive.  To see what my simulation was doing, the first version of which I 
had running within a month of a standing start, I had to refer to print output.  A year later I was 
able to purchase a 286 machine, but it was too slow until it could be upgraded with the 287 
coprocessor.  A year or so later I upgraded to a 386 then 387.  At the time, after experimenting 
with C, Pascal and various versions of BASIC, I programmed in BASIC because it took less time 
to program.  But it was not terribly satisfactory until Microsoft came out with Quick BASIC 4.0, 
which a year or so later upgraded to Professional Basic 7.1, which I used for many years as my 
major computing device.  Considering the other commitments I had and my limitations on 
hardware and software, I estimate that the development of a usable PRT simulation program with 
today’s tools would take me working full time no more than about 4 man-months of effort or 
about 1000 hours at 60 hours per week.   

1990s and 2000s Era PRT Network Simulation Programs 
 

 During the 1990s, as a result of the Chicago project, PRT development became quite 
active again.  In Dr. Jerry Schneider’s web page http://faculty.washington.edu/jbs/itrans/ in the 
index under Simulations reference to the following PRT simulation programs can be found.  
Because of the details given by Dr. Schneider, I see no need to comment further on these 
programs, except for my own. 

 

http://faculty.washington.edu/jbs/itrans/
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20. Hermes PRT Network Simulator by Chris Xithalis (Greece) 
21. PRT International (USA) www.prtnz.com  

J. E. Anderson, Transit Systems Theory, Lexington Books, D. C. Heath and Company, 
Lexington, MA 1978, 340 pages, available on www.advancedtransit.org for calculation of 
curves and maneuvers.  
J. E. Anderson, "Longitudinal Control of a Vehicle," Journal of Advanced Transportation, 
31:3:237-247, 1997 for the gains of a vehicle controller. 
J. E. Anderson, "Control of Personal Rapid Transit Systems," Journal of Advanced 
Transportation, 32:1:pp. 57-74, 1998 for explanation for the asynchronous point-follower 
system. 
M. Joborn, “Empty freight car distribution at Swedish State Railways,” Computers in 
Railways VI, WIT Press, Boston, Southampton, 361-370, 1998 for an effective means of 
moving empty vehicles. 
J. E. Anderson, “Simulation of the Operation of Personal Rapid Transit Systems.” Computers 
in Railways VI, WIT Press, Boston, Southampton, pp. 523-532, 1998 for a description of the 
author’s PRT simulator. 
J. E. Anderson, “A Review of the State of the Art of Personal Rapid Transit.” Journal of 
Advanced Transportation, 34:1, 2000 for how the author applied Joborn’s empty-vehicle 
movement concept. 

22. Logistic Centrum’s PRTsim software (Sweden) 
23. RUF International (Denmark) 
24. The Innovative Transportation Simulator (Italy) 
25. TrakEdit: PRT Simulator from Taxi 2000 (USA) 
26. Raytheon’s NETSIM PRT Simulation Program (USA) 
27. Calver Marketing (UK) 
28. JKH Mobility Services’ Simulation Program (USA) 
29. Princeton’s PRT Simulation Program (USA) 
30. BASim (Australia) 
31. Simulation and Analysis Tools for Urban Automated Rapid Transit Networks 

(S.A.T.U.R.N.) (Canada) 
32. PRT Microsimulation (UK) 

 

 

http://www.prtnz.com/
http://www.advancedtransit.org/
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